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We describe the details involved in presenting the time development of one-dimensional
quantum-mechanical systems in the form of computer-generated motion pictures intended for
pedagogic purposes. Concentrating on reflection-transmission phenomena, we formulate the
problem in terms of a Gaussian wave packet impinging on a square well or barrier and being
reflected and transmitted. The wave equation is solved numerically by methods discussed
in detail and photographs of the wave packet vs position at a variety of times and for a range

of projectile energies are given.

I. INTRODUCTION

HE purpose of the present article is to de-

scribe the physical and mathematical
details underlying the presentation of the time
development of physical systems in the form of
motion pictures. It is our hope that such pictures
will help provide insight into the behavior of
these physical systems and thereby be of some
pedagogic value.

We concentrate here upon one-dimensional
quantum-mechanical scattering (reflection—trans-
mission) phenomena as described by the time-
dependent Schridinger equation. We formulate
the problem in terms of a localized wave packet
moving towards a potential barrier or well and

* Work performed under the auspices of U. S. Atomic
Energy Commission contract No.W-7405-eng-48.

1 Address during the year beginning September 1966:

Science Teaching Center, Massachusetts Institute of
Technology, Cambridge, Mass.

being reflected and transmitted. The wave equa-
tion is solved numerically by methods to be dis-
cussed and the probability density projected on
a cathode-ray tube. From the tube, photographs
are made, and these in turn are processed into
the successive {rames of the film. :

II. FORMULATION OF THE PROBLEM

The standard textbook presentation! of re-
flection and transmission phenomena treats the
problem in a time-independent fashion and re-
quires a solution of Hy=FEy subject to the
conditions

¢ (IJC) - eikx_I_Re—ikz’

— Teﬂcx,

x large and negative,
x large and positive,

1See for example L. I. Schiff, Quanium Mechanics
(McGraw-Hill Book Co., New York, 1949), pp. 92-95.
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where the potential is short ranged and localized
near x=0 and the projectile particle is assumed
incident from the left. Since reflection and trans-
mission are, in fact, time-dependent phenomena,
such a formulation is, in many ways, undesirable
especially from a pedagogic point of view. This
fact has been noted by a number of authors, and
Low,? in particular, has given a complete, time-
dependent formulation of scattering in three
dimensions which provides a convincing justi-
fication of the standard - time-independent
formulation.

For our purposes here, namely, a motion-
picture display of reflection and transmission, we
clearly must adopt a time-dependent formulation
in the manner of Low. Our plan, then, is to choose
a one-dimensional wave packet initially centered
at some position x, with a spread Ax and having
an average wave number ko with spread Ak and
follow its development in the course of time as it
moves into the region of a short-range potential
and is reflected and transmitted.

This program, then, requires an integration of
the time-dependent wave equation for a system
governed by a time-independent potential V' (x):

h? 9*

9
___i+ V()¢ (x,8) =iha—j. (1)

2m 0x?

For ease of writing, we work in a system of units
in which the mass m=4% and #=1. Then Eq. (1)
becomes

—HY=[/9x— V@) W@t = —idy/ot. (2)

The standard procedure for solving this equation
is in terms of the stationary states of the Hamil-
tonian H. If we have Hu,= E,u, for the bound
states and Huy= E(k)u; for the continuum, then
a formal solution to the problem is given by

Y(x,t) =2 ane” iy, (x)

+/dka(k)e-w(’””uk(x), (3)

with -
An= <um¢ (x:0)> (4:>
and

a (k) = (ur¥ (x,0)), ()

2F. E. Low (unpublished lecture notes). See also
E. Merzbacher, Quantum Mechanics (John Wiley & Sons,
Inc., New York, 1961), pp. 217f.
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where ¢ (x,0) is the given initial state of the
system. This procedure, however, has not been
adopted here for several reasons. To begin with,
for almost all potentials the eigenfunctions and
eigenvalues have to be determined numerically.
Even if we were to quantize in a large finite region
(the one-dimensional analog of box normaliza-
tion), in order to reduce the continuous part of
the spectrum to a discrete spectrum, there would
obviously be a large number of states involved
in Eq. (3). Second, even with all the eigenfunc-
tions and eigenvalues known or evaluated, the
computation of the terms comprising Eq. (3) at
each x and ¢ of interest is a lengthy task. Finally,
we should have to restrict the initial state of the
system, ¥ (x,0), to some limited combination of
eigenstates or be forced to carry out the many
numerical integrations required to evaluate the
coefficients @, and a(k) given by Eq. (4) and
Eq. (5) and required in Eq. (3).

To avoid these problems we have found it con-
venient to deal directly with Eq. (2) making use
of the eigenstate expansion Eq. (3) only for the
purpose of checking the accuracy of our solution
at a few isolated values of the time £ In dealing
with Eq. (2), we convert it from a differential
equation to a finite difference equation in both
space and time, a procédure which is described
in detail in the following section.

III. NUMERICAL INTEGRATION
TECHNIQUES®

In order to convert Eq. (2) to a finite differ-
ence equation, let us designate time by a super-
script # and spatial position by a subscript j.
Thus ¢ (x,i) — ;. The various x values become
je where ¢ is the mesh width and =0, 1,---, J.
Similarly, the time variable goes over into #é
where 6 is the time step and =0, 1, 2,-- ..

To derive the difference equation we require,
let us begin by considering the spatial variation
of the wavefunction y;; for this purpose we sup-
press the time index #. We then make two
Taylor’s series expansions as indicated :

Vir=¥;t el +3e" T3 +0(eh)
Yici=v¥;— b +3% — 3¢ +0(e).

8 For background and details concerning the subject of

this section the reader is referred to R. D. Richtmyer,

Difference Methods for Initial-Value Problems (Interscience
Publishers, Inc., New York, 1957).
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Upon adding these equations a little manipula-
tion quickly yields the standard expression

¥ = (0%/0x%) ;= (1/ &) Yip1— W+ 1H-O(&).

This expression for the second derivative of ¢
evaluated at the point x=ux;=je then replaces
9%y /0x* in Hy, and we have

—Hy;=[(8%/3x*—= V)¢ ];
=1/ Y120+ ]— Vs (6)

The operation of H on ¢; is always taken in this
way in what follows.

To treat the time development of ¢, we note
that the formal solution of Eq. (2) is given by

Y(xh) = e TEY (), 9

where the exponential operator is defined in
terms of the Taylor’s series

[—i@—to)

o0
e—i(t—t)H — Z MGy + /)
k=0 k!

From Eq. (7) we have
gimtl= g BHY;m (8)
which, correct to terms of order 8§, becomes
Yt = (L= H)y;" =" —ibHy;".

If we now use Eq. (6) to evaluate Hy;, this last
equation assumes the form

Yt =+ (88 @) [ — 2457
+yiam—eVyn] (9)

One feature of this equation is especially attrac-
tive: it is an explicit differencing scheme, i.e., one
which gives the wave function at time step #+1
directly in terms of the function at the earlier
time #n. Clearly this permits a straightforward
integration scheme and allows for an easy deter-
mination of ¢ for all # and j. The scheme, how-
ever, has the very serious drawback of being un-
stable; that is to say, roundoff error and errors
arising from dropping terms of order & and
higher in the expansion of e~®# can grow without
bounds as the time integration proceeds from step
to step.

A procedure which eliminates instability in-
volves rewriting Eq. (8) in the form

%.n — eiﬁH¢jn+1, (10)
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which leads to the difference equation

Yt =y — (16 &) [Yia" T — 2,1
Fyiam =Vt ] (11)

Though stable, this equation is #mplicit rather
than explicit. By this we mean that ¢ is not
given directly in terms of ¢ and certain algebraic
techniques must be applied in order to obtain the
wave function at time step #-+1 from that at #.
This is not an insurmountable problem—in fact
the differencing scheme we finally settle on is im-
plicit, and we indicate below the way it is
handled. For the present we remark that Eq. (11)
must be ruled out on the grounds that it is not
unitary, a flaw present in Eq. (9) as well.

Unitarity is the characteristic of the original
wave equation which ensures that the normaliza-
tion of the wave function does not change in time.
The operators e=%H with H Hermitian are clearly
unitary. However, no approximation of these
operators which involves expanding the expo-
nential and retaining only a finite number of
terms is unitary. In particular, the first-order
approximations we have been discussing, 1446H,
are not unitary. Thus, both differencing schemes,
one of which leads to Eq. (9), the other to
Eq. (11), involve mutilating the time-develop-
ment operators e=%¥ in such a way as to destroy
an important physical characteristic. A relatively
simple unitary approximation to ¢~%# is, how-
ever, provided by the Cayley form

(1—3%i0H)/(1+39H), (12)

which has the further desirable property of being
correct to order 8. Let us, then, replace ¢=#¥ in
Eq. (8) by the Cayley form to get

4= [~ $idH) /(14 i) 1y
or
(1430 H)g; = (1 — 30 H)y,
Carrying through the indicated algebra and using

Eq. (6) to evaluate Hy,;» and Hy,;* yields the
difference equation

Yir™ (N = eV = D¢ -y
= —¥u1"+ A+ EVi+2)¢" —¢,17,
where A= 2¢2/4. This difference equation is stable

and unitary, but implicit; and we now discuss
the means by which it may be solved.

(13)
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Let us define
Q"= —yipr"+ (A EV+ 209" — ¢
Equation (13) is thus
Vit (N = @V = 2)ymH g =0y
Following standard procedure we make the as-
sumption that
Vit ="y 1+ i (13)

where ¢,” and f;” are two auxiliary functions de-
fined by this equation. Substituting Eq. (15)
into Eq. (14), we find

¢jn+1 — [2 + €2 V]_ — ejn—ih]_lxbj_ln-,_l
+24eVi—e— N (fi"— 7).

This equation is identical with Eq. (13) except
for its being written for j rather than j—1. By
comparing Egs. (15) and (16), we get

ej1"=[24¢eV;— 6jn—i)\]—1

(14)

(16)

and
Jim"= e (fi" =),

Solving these for ¢;” and f;* in terms of ¢;_;* and
fi_1™ yields

e;"=24eV,—in—1/¢;_1" a7
and

Ji"= Q"+ fioa"/ ei_a™ (18)

It follows from Eq. (17) that ¢, is time inde-
pendent, so that we may write simply e¢;, there
being no need for the time index. The same is not
true of f;» for it depends upon £, which is a
time-dependent quantity.

Equations (17) and (18), which we have de-
rived above, are recursion relations for the ¢ and
£ functions. To obtain starting values for the re-
cursion, we imagine that the physical system
with which we work is situated in a large (one-
dimensional) ‘‘box,” and that the wavefunction
for the system must vanish on the “walls” (end
points) of the box. Thus

¥ (0,6)=y¢(L,t)=0 for all ¢,

where we assume that the box extends from 0 to
L:0<x< L. Now 7=0 represents x=0 and, we
define j= J such that L'=Je. Then our boundary
conditions may be stated in the form

o=y =0 for all n.
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With the first of these conditions in mind, let us
write Eq. (14) for the case j=1:

¢2"+1 = (2‘,‘ 62 V1—’i>\)¢1"+1+91".

By comparing this last expression with Eq. (15),
we get the results
61=2+62V1—1;)\
and
fl" — an_

These starting values, in conjunction with the
two recursion relations Eqs. (17) and (18), now
provide a means of determining e, es, €3, * - and

©f1my foy S5t for all .

From the second of the two boundary condi-
tions, ¢ ,=0, all #, and Eq. (15) written for
j=J—1, we have

Yro1™tt=—fs 1" es 1

Thus, by recurring up on the ¢’s and f’s, we find
an expression for the wavefunction at the next-
to-last net point j=J—1 (it is zero at j=J). By
inverting Eq. (15) we get

Y= (Y™ — i) /e

Now, by combining Egs. (19) and (20), we can
determine ¥ ;_»"*!; and this, in turn, when used
in Eq. (20), provides ¢ ;3" etc. down to 1!
(¥o™*! being zero). Thus we have outlined a pro-
cedure by means of which one may obtain ¢, for
all j=0,1,2,---, Jand all . One sees that ulti-
mately this procedure must begin with a knowl-
edge of ¥, for all j; i.e., of the initial wavefunc-
tion, the one conventionally written ¢ (x,0), all «,
for this enables us to evaluate Q,° from which all
the rest follows.

This completes the specification of the method
of solution, and we now derive the criteria to be
satisfied by a suitable choice of input parameters.

(19)

(20)

IV. CRITERIA FOR CHOICE OF
INITIAL CONDITIONS

We treat the reflection—transmission event in
a “physical” way by following the time develop-
ment of a wave packet as it moves into and out
of the region of a potential. This initial wave
packet can, of course, be chosen in a variety of
ways, the choice being dictated largely by con-
venience. We have elected to represent the initial
state of the particle which impinges upon the po-
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tential by a Gaussian wave packet. Thus, we put
‘10 (xyo) = gthozg— (1_20)2/2”2'

We see that this packet is centered about x=1x,
with a spread in x governed by ¢o. The factor
ez makes our initial wave function move to the
right with average momentum k,. Since we are
quantizing in a large box of length L at the edges
of which the wave function must vanish, it is
clear that xy and ¢, must be chosen so that
¥ (0,0) and ¢ (L,0) are essentially zero, Choosing
xo=1L/4, we find

¥ (x,0) = gikozg— (e—1) % I200” (21)

whence
[9(0,0) | =g 2meo’,

If we choose ao to be 59, of the box length L,
ao=1L/20, we find

[4(0,0) [ =2 54X107°.

To approximate this by zero is clearly to incur
no perceptible error, and the situation is ob-
viously even more favorable for |¢(L,0)|. The
choice o¢=L/20 in the initial Gaussian wave
packet is thus compatible with box normaliza-
tion, but there are two further restrictions which
must be imposed in order that box normalization
not give rise to difficulties. First of all, the packet
must not be allowed to travel so far that it hits
the walls. We ensure this by letting the center of
the packet which, as already mentioned, starts
from x=_71/4, move no farther to the right than
x=3L/4. This, in turn, is accomplished by re-
quiring that the average velocity of the wave
packet be
Vo= ZkozL/ZT,

where 7= N3 is the total time required by the
packet to move from L/4 to 3L/4. Thus

2ko~ Je/2Ns=JN/4Ne,

where we have used L=Je and A=2¢/5. With
this choice of ko and with x¢=_1/4, we utilize ap-
proximately only the center half of the available
space, omitting the outer quarters, and the
packet is thus prevented from reaching the walls.

The second of the two restrictions concerns the
fact that the wave packet spreads in the course
of time. We must arrange matters so that the
reflected and transmitted packets continue to be
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well enough localized so that at the end of the
event they are out of the region of the potential
and still far from the walls. An analysis of the
spreading of a Gaussian wave packet, which is a
standard problem,? shows that if ¢, is the initial
spread, then after a time T the spread is given by

7= (o477} = (og*+ 16 N2t/ W)L,

Actually this expression applies to a Gaussian
packet moving in free space, but our actual nu-
merical calculations show that it can provide re-
liable estimates of the spreading even in the
presence of a potential. For negligible spreading
we must therefore have 16N%e/\? reasonably
small compared with ot

There are additional limitations on the choice
of input parameters. We consider first those made
necessary by the replacement of the continuous
variable x by the discrete index j as discussed in
Sec. III. To do this we examine two extreme
cases: (1) propagation with no potential at all,
and, (2) propagation in a constant well set equal
to the maximum value of the potential in the
actual problem. We first note that since the mesh
width eis the smallest inverval in x which can be
resolved by the differencing method, the largest
wave number allowed is kp..=w/e. With the
initial Gaussian wave packet as given by
Eq. (21), the probability distribution in momen-
tum space is

P (k) ~ e (k0)”, (22)

Let %, be the largest momentum present to any
appreciable extent (e.g. with probability 10—3) in
this distribution. Then, clearly, we must require
that k., < Emaz-

In the first case, with no potential, the eigen-
states of the system are ¢;(x)=sinkx; the
second derivative of ¢; is, of course,

d2¢k/dx2= —kz(ﬁk, (23)
whereas the second difference is

K9 ¢u(+9—20u() +o1(i— 9

2

2

€ €

2{1 —coske)
= . ¢’k(x)’
€

* E. Merzbacher, op. cit., p. 159.
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Since ke is presumed to be small, this may be
approximated by

— (1 —F2/12) ¢4 (x). (24)

Thus, in order that (24) be an accurate approxi-
mation to Eq. (23) we must require that

En2e/12&1. (25)

In the second case, where the potential is con-
stant with the value V. the eigenstates are
¢r (%) =sin (k24 Vinex)3x. Thus, an argument like
the one just given results in the requirement

(km2+ Vmax) 52/12<<1,
which by virtue of Eq. (25) becomes
Vimax€e?/12K1.

We turn now to the effects of the finite time
step 8. Let us consider the actual system to be
treated—that is, the large one-dimensional box
with a potential in the center. The states of this
system are denoted by X (x,t) = e~ %#+'T', (x). Note
that outside the region of the potential X;(x,?)
~gribo—ert and w, = k2. If the errors introduced by
the spatial mesh e are ignored, the finite differ-
encing in time, Egs. (10) and (12), gives

1—4wyd /
Xk(x t—l—6) = k(x t)
’L(_U,Ig 2
= 2 T RIDX, (x,8) ; (26)
whereas the exact expression is
X (2, 146) = e—ierdX (xt).

From Eqgs. (26) and (27) there result two im-
portant consequences. First, the over-all nor-
malization of each mode is constant in time; so
those modes which were negligible at (=0
remain negligible. This, of course, is a conse-
quence of the unitarity of approximation (12).
Second, at every time step a phase error ¢ is
introduced into each mode of the system; by
comparing Eqgs. (26) and (27) we find

b=wid[1— (2/wd) tan—tw;/2 ] 22wi?68/12.

Hence the total phase error after NV time steps is
approximately

Nes?33/12.

The complete wavefunction ¢ (x,f) is a coherent

(27)
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sum of the eigenstates with average energy
wo = k¢’; the largest energy contained in the wave
packet is w,=k,2 Thus, in the probability
density

D(at) = [ (=) |,

it is only the relative phase error which will enter,

and to minimize it we require that
(N83/12) (bt —ko®) 1.

In summary then, the following conditions
must be satisfied in constructing a one-dimen-
sional scattering event:

(1) Bo=JN/8Ne (A=2¢/0),
(2) (¢/00)*=[1+4 (4Ne*/No¢?)* ]}
not too much greater than unity,
(3) (Bne)?/12«K1,
(4) Vauaxe?/12K1,
(5) N&*(k,b—ko%) /12«1,
(6) kn<r/e.

Of course, the last four conditions, being in-
equalities, do not tell us precisely what values of
e and & are needed to give accurate results.
Therefore, we have constructed a scattering
event in the above manner with a square-well
potential utilizing the least favorable values of
well depth and momentum £, of the set we have
considered and choosing several values of § and
e (or alternatively A and ¢). We have also ana-
lyzed the scattering event by the standard ex-
pansion in eigenstates and used this exact solu-
tion to check the accuracy of our numerical inte-
gration procedures.® In this way we have chosen
the quantities ¢ and A to be used in the actual
computation for film production. The specific
quantitative results are contamed in the next
section.

V. INPUT PARAMETERS

There is no loss in generality in choosing
L=Je=1, that is to say, in normalizing in an
interval of unit length. Therefore, from the above
discussion we have o¢=0.05, and the initial posi-
tion of the center of the wave packet is xo=7%.
Trial computation and comparison with the

5 As we have remarked, the calculation of the solution in
terms of an eigenstate expansion is much too time con-
suming to be used in the production of a film. The eigen-
state expansion, evaluated at a few time steps, was used

only as a check to determine the accuracy of the much more
rapid numerical-integration method.
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F1G. 1. Gaussian wave-packet scattering from a square
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The average energy is one-half the well depth
Numbers denote the time of each configuration in arbi-
trary units.

Fr16. 3. Gaussian wave-packet scattering from a square
well. The average energy is twice the well depth. Numbers

denote the time of each configuration in arbitrary units.
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Fi6. 2. Gaussian wave-packet scattering from a square
well. The average energy is equal to the well depth. Num-

bers denote the time of each configuration in arbitrary

Fi1c. 4. Gaussian wave-packet scattering from a square
barrier. The average energy is one-half the barrier height.

Numbers denote the time of each conﬁguratlon in arbi-
trary units.
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F1c. 5. (a) Gaussian wave packet scattering from a square barrier. The average energy is equal to the barrier height.
Numbers denote the time of each configuration in arbitrary units. Note the resonance effect in which a part of the proba-
bility distribution remains for a long time in the region of the potential. (b) Details of the decay of the resonant state seen

in (a).
Q 400 560
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F1G. 6. Gaussian wave-packet scattering from a square
barrier. The average energy is twice the barrier height.
Numbers denote the time of each configuration in arbi-
trary units.

exact result for a square-well potential [ Egs. (3),
(4) and (5)] indicates that if we choose

koe2m/20, (28)
the spatial differencing procedure is quite accu-
rate. Since the distribution of momenta in the
packet is Gaussian and sharply peaked, the
largest effective momentum &, is not too different
from kg, and hence criterion 3 is well satisfied.
Apart from an exception to be noted later, the
limitations on computer speed and memory make
it convenient to restrict the number of mesh
points to, at most, 2000; and thus we can treat
momenta k,<100x. We have then made compu-
tations at three values of kg, choosing the mesh
interval to satisfy Eq. (28).

Thus,
ko= 507, =107 J=1000,
ko= 70.7m, e= 0.707X107%, J=1414,
ko=100x, = 0.5X1073, J=2000.

This gives a range of energy which should satis-
factorily demonstrate the energy dependence of
one-dimensional scattering phenomena.
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We have also chosen a value of 8 (or rather \)
by selecting a series of values and comparing the
results of the numerical integration with the
exact results. We note from Eq. (22) that the
distribution of momenta is very strongly peaked
about k=k. Since the momentum resolution of
the packet is Ak/ky~1/0ko, the most poorly re-
solved distribution is that with ky equal to its
smallest value, 50x. In this “worst” case, the
density of momenta falls to 10~ of its maximum
values for k,,=1.5k. Thus, if we choose & so that
many time steps are contained in one period of
the dominant mode, k= ky, all other modes in the
packet will also be treated accurately. The value
A=1 gives a time step 6=2¢*, two hundred and
fifty times smaller than the period of the domi-
nant mode. That this is adequate is verified by
comparison of the results of the integration with
the exact solution. Criterion 1 then determines
the number of time steps required to complete a
scattering event. For the above momenta,
between 800 and 1600 steps are needed, a rather
moderate number of computations.

We may also note that with the above parame-
ters the width of the packet at the end of the
scattering event is always less than 1.65 gy, satis-
fying criterion 2.

Finally, we must choose a potential. For this
film and for the purpose of checking the accuracy
of our integration method, we have used square
wells and square barriers with depth (or height)
Vo= =42(50x)% In all cases, criterion 4 is satisfied
insofar as 0.004 is small as compared with unity.
We have chosen the half-width of the potential
to be 0.032, guaranteeing that there is essentially
no spatial overlap between the wave packet and
the potential both at the beginning and at the
end of the scattering event.

We have made a quantitative comparison
between the results of the numerical integration
and the exact solution for the problem of trans-
mission and reflection by a square well, with the

.parameters ko=507, e=10"3, A=1. The two cal-
culations give results for the reflection and trans-
mission coefficients which agree to within 297,
while the positions of the peaks and valleys in the
distribution functions |¢(x,#)|? (see Figs. 1-6)
are virtually identical. We, therefore, feel that
films generated in this manner are accurate, both
qualitatively and quantitively, and can be peda-
gogically useful.
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VI. RESULTS AND DISCUSSION

The film we have produced by the methods
discussed here consist of six scattering events
each lasting about 1 min. The entire film, in-
cluding titles, has a running time of about 10
min. Examples of what is seen in the film are
shown in Figs. 1-6. The first three sets of dia-
grams represent reflection and transmission by a
potential well, and the second set of three by a
barrier. For the most part these illustrations
speak for themselves. We should emphasize, how-
ever, that the rapid oscillations appearing when
the packet is near the potential are accurate and
do not result from approximations or machine
error.

Figure 5, in which the particle energy is equal
to the barrier height, requires some special
comment, for it represents a type of resonance.
A portion of the wave packet is captured by the
barrier and remains trapped for a period which is
long as compared with the usual time of trans-
mission through the barrier. The captured part
of the packet is seen in the diagrams to bounce
to and fro between the barrier walls, a small
amount of probability escaping at each collision.
Eventually, by this mechanism, the entire packet
escapes. To generate a film of this event, it was
necessary to alter some of the input parameters
of Sec. V. Specifically, we chose J=5000 and
e=0.7071 X107 so that L=Je=23.5 rather than
1 as in all other cases. (Note. that the large
number of net points here would not be feasible
in all cases since it increases computation time
by a factor of about five.) Further, only the
center portion of the region between x=0 and
x=1 was photographed, enabling the trans-
mitted and reflected parts of the packet to leave
the field of view so that the nonphysical reflection
from the walls (which takes place too far from
the region of the barrier to influence what occurs
there) will not appear in the film to interfere
with a clear presentation of the escape of the
trapped part of the packet.

The reader will note occasional breaks or dis-
continuities ar various points in some of these
pictures. This effect is due to an evidently in-
herent malfunction of the equipment involved in
rendering the machine calculations into graphical
form. At the present time there appears to be no
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simple way to avoid this problem; but, for-
tunately, the discontinuities, while annoying, by
no means destroy the effect of the film. This
situation emphasizes the fact that the use of
computers to illustrate time development in
physical systems by motion pictures is still in a
preliminary, if no longer rudimentary, stage. Qur
feeling, nonetheless, is that despite their short-
comings these films already have considerable
merit as a pedagogical tool and, as methods are

refined and scope broadened, they will play an

GOLDBERG, SCHEY, AND SCHWARTZ

increasingly important role in science teaching
both at the college and graduate levels.
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Although a basic assumption in Chandrasekhar’s theory of the dynamical friction acting on a
star in a cluster has been regarded as disqualifying his theory for adaptation to an electron in
a plasma, it is shown here that a new adaptation, with recognition of a contrast between the
effects of other electrons and of ions, leads to a good formula for the friction. That is, it leads
to a formula agreeing with one which Sitenko and Chien deduced from the Fokker—Planck equa-
tion. Disagreements with certain other Fokker—Planck theories have been traced to definite
errors in these theories. Finally, Chandrasekhar’s assumption that the friction exerted gravi-
tationally on the star is the same as if only one other star acted on this one at any one time
has been re-examined; and relatively simple reasons have been found for the validity of the
electrostatic equivalent of his assumption, even though great numbers of electrons and ions

act on an electron in a plasma at any one time.

I. INTRODUCTION

ORCES retarding the motions of ions or elec-
trons are familiar and obviously important
when the ions or electrons are alpha rays, beta
rays, or cathode rays. Such forces are less
familiar, and their importance is not so obvious,
when they act on ions or electrons moving
chaotically in a plasma. If an alpha ray or a beta
ray enters a plasma in the absence of any
magnetic field, it is deflected and loses speed
until it becomes indistinguishable from other

particles of its kind in the plasma. During this .

transition, there is no sudden change of character
in the forces acting on the particle; they are
electrostatic forces. exerted by other particles
already in the plasma. At any instant, the force
component deflecting the particle has an un-
predictable direction in the plane normal to the
particle’s velocity. The component in line with

the velocity, however, has a predictable direction :
backward, against the velocity. This component
is the dynamical friction.

These rules about the components hold, even
when the particle is moving no faster than the
average of its kind in the plasma. The deflecting
component is still in an unpredictable direction,
and the dynamical friction continues to act, at
any instant, against the velocity at that instant.
This does not make the speed of the particle
approach zero. Instead, these forces make the
particle gradually lose all “memory’ of its initial
vector velocity; or even of whatever vector
velocity it has at any later instant. As noted by
Chandrasekhar,! this loss of memory is one of

1S. Chandrasekhar, Principles of Stellar Dynamics (Uni-
versity of Chicago Press, Chicago, Ill., 1942; Astrophys.
J. 97, 225 (1943); reprinted together as Principles of

Stellar Dynamics (Dover Publications, Inc., New York,
1960).





