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Documents, cell phones, computers, tablets, pocket calculators, etc., are not allowed.
The text contains 3 pages in total, and the 2 exercices are independent from each other.

1 Ising dimer

Let us consider two Ising spins si = ±1 (i = 1, 2) forming a dimer. The two spins are subject to
a uniform magnetic field H, and interact through a ferromagnetic exchange interaction J . The
dimer is connected to a heat reservoir which maintains its temperature T constant. In what
follows, we denote β = 1/kBT , with kB the Boltzmann constant. The Hamiltonian of the system
then reads

H = −Js1s2 −H(s1 + s2).

(a) What is the sign of J? Justify your answer.

(b) At vanishing magnetic field (H = 0) and zero temperature (T = 0), what are the spin
configurations?

(c) Calculate the exact canonical partition function Z and the free energy F of the system.

(d) The average magnetization per spin m = 〈si〉 of the system is given by

m = −1

2

∂F

∂H
. (1.1)

(i) Justify expression (1.1).

(ii) Show that

m =
sinh (2βH)

cosh (2βH) + exp (−2βJ)
. (1.2)

(iii) Without interaction between the two spins (J = 0), prove that Eq. (1.2) recovers the
paramagnetic behavior m = tanh (βH).

(iv) For a nonzero value of J , plot m as a function of H for various temperatures. What
happens in the T = 0 limit? Does the system present a phase transition?

(e) The zero-field magnetic susceptibility is defined as

χ =
∂m

∂H

∣∣∣∣
H=0

.

Calculate χ and comment on the T = 0 limit.

2 Debye–Hückel theory

We consider a dilute classical system of point-like charges. The system can be either a liquid
(i.e., a solvent) in which charged solutes are dissolved (that is, a salt) or a plasma (that is, a
mixture of ions and electrons). The charges behave to a first approximation as an ideal gas (to
which one must add the contribution of the solvent in the case of an electrolyte). We denote
by ε the dielectric permittivity of the medium, i.e., the solvent in the case of an electrolyte
(ε = εw ' 80 ε0 for water) or the vacuum permittivity in the case of a plasma (ε = ε0).
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We will thus consider a completely ionized gas of volume V formed by N/2 positive charges
with charge +ze and N/2 negative charges with charge −ze, with z the valence and where e is
the elementary charge.

The interaction energy of the system reads

U(r1, . . . , rN ) =
1

2

N∑
i,j=1
(i 6=j)

qiqj
4πε |ri − rj |

, (2.1)

where ri is the position of the ith particle with charge qi = ±ze. Equation (2.1) can be conve-
niently rewritten as

U(r1, . . . , rN ) =
1

2

N∑
i=1

qiϕi(ri) with ϕi(ri) =

N∑
j=1
(j 6=i)

qj
4πε |ri − rj |

where ϕi(ri) is the electrostatic potential created at the position ri of the ion i by the N − 1
other charges.

2.1 Generalities

(a) Give an interpretation of the Bjerrum length `B = e2/4πεkBT , where T is the temperature.
Give a numerical estimate of `B for monovalent ions in water and in vacuum at room
temperature (e = 1.6× 10−19 C, ε0 = 8.9× 10−12 F/m, kB = 1.4× 10−23 J/K).

(b) In what follows, we assume that the density of charges satisfies

N

V
�
(

4πεkBT

e2

)3

⇔ N

V
`3B � 1.

What does this physically mean?

2.2 Poisson–Boltzmann equation

We are aiming at calculating the electrostatic contribution to the energy, the free energy, and the
pressure of the considered system. The theories developed in the general case (virial expansion,
van der Waals mean-field approximation, etc.) do not apply here because of the long-range
nature of the Coulomb interaction (2.1). If the solution was homogeneous at all scales, and the
electrolyte concentrations were uniform, the total electrostatic energy would be zero and the
system would behave like an ideal classical gas. But a given ion changes the charge distribution
around it, preferentially attracting charges of opposite sign.

We will therefore describe the cloud created around a given ion of charge q by calculating the
electrostatic potential φ created by the central ion and the cloud. In what follows, the charge
q is placed at the origin, and it is assumed that φ depends only on the distance r to the ion
(spherical symmetry), with limr→∞ φ(r) = 0. Moreover, we denote by ρ(r) the charge density
of the cloud.

(a) By writing down the relevant Maxwell equation and assuming that the ionic charge densities
follow the Boltzmann distribution, demonstrate the Poisson–Boltzmann equation

∆φ(r) =
ze

ε

N

V
sinh

(
βzeφ(r)

)
, r > 0, (2.2)

with β = 1/kBT . What kind of approximation has been made in writing this equation?

(b) In the low-density approximation, it is possible to linearize Eq. (2.2). Using that

∆φ =
1

r

d2

dr2
rφ
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since φ = φ(r), demonstrate that in such a case one has

φ(r) =
q

4πε r
e−r/`D , (2.3)

where `D is called the Debye length. Give an expression of `D and discuss the physical
meaning of Eq. (2.3). Estimate `D for a 1 molar electrolyte of monovalent salt and for a
plasma in the same conditions (1 mol = 6.0× 1023).

(c) What is the charge density ρ(r) associated to the electrostatic potential φ(r) given in
Eq. (2.3)? Show that ∫

d3r ρ(r) = −q.

(d) We now want to calculate the average electrostatic potential 〈ϕi〉 seen by the ion i (i =
1, . . . , N), i.e., created by all the charges of the electrostatic cloud (the contribution of the
most distant charges is negligible). Justify the following expression:

〈ϕi〉 = lim
r→0

{
φi(r)−

qi
4πε r

}
= − qi

4πε `D
.

(e) Demonstrate that the total average energy of the charges can be expressed as

〈E〉 =
3

2
NkBT −

V

8π
√
kBT

[
(ze)2

ε

N

V

]3/2
. (2.4)

What are the hypothesis that we have made to derive this result?

2.3 Free energy and equation of state

(a) Justify why the average energy (2.4) is not well-adapted to calculate the equation of state of
the electrolyte. (Hint: How does one get the pressure P from 〈E〉 seen as a thermodynamic
potential?)

(b) We are now trying to calculate the free energy F of the system. First, demonstrate that

〈E〉 = −T 2 ∂

∂T

(
F

T

)
. (2.5)

Then, by integrating Eq. (2.5), show that

F = Fi.g. −
V

12π
√
kBT

[
(ze)2

ε

N

V

]3/2
,

where Fi.g. corresponds to the free energy of the monatomic ideal gas.

(c) Demonstrate that the equation of state of the electrolyte can be written as

P = kBT
N

V
− 1

24π
√
kBT

[
(ze)2

ε

N

V

]3/2
Discuss this result, and especially its relation with the virial expansion.
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