M1 - Physique 2023-2024

Paul-Antoine Hervieux

Ur_ustra/IPC_MS gl’“/

hervieux@unistra.fr

AE+GR (1907-1917) Slg

167‘G/\/_ - 20
Il) preliminaries of physics and mathematics

 Tensors
« Special relativity, and complements

A R Ll L |
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g ab F ba Ra,b Ta.b : tensors

- Tensor calculus

metric  electromagnetic Ricci Stress-energyT M

: F be Levi-Civita connection = '>

» Gravity is the result of distortions in space-time
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Tensors

“Tensor calculus knows physics better than the physicist himself”

said Paul Langevin (one of Einstein's best friends).
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1911 Solvay conferences

» Paul Langevin prefaced Arthur Edington's book
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A. Writing conventions

1. Notation of vectors and their components

A vector 7 in classical geometry, related to a basis (€1, €2, €3) is written as:
= $1€1 + $2€2 + $3€3 (1)

We will also use lower indices for the components (see covariant and contravariant components).

2. Convention for the summation

oty + 2%y 4y = Z Tyt = 2y 2)
i=1

Einstein’s summation convention consists in using the fact that the repeated index, in this case ¢,

will itself define the indication of the summation. More examples are given below:
. Aﬁil?j = A11$j + AQQS‘L‘j + ...+ Annmj = A._;s‘.'l;'j

o Alyt+ A%2y2 + Aly? + Aly* = Aly' for n = 4. In this example i is called silent indice and

k free indice.



. All —|—A22 + ...+ Arm, = Aﬁ

* a;jr; = b; forn = 3 leads to

111 + 12T + 1373 = by
any + aprs + a;zry = by

a31x1 + Az + azzrs = by

o 7 =uale) + 226, + 13¢5 = a'e;

In conclusion, any expression with a twice-repeated subscript represents a sum over all possible

values of the repeated subscript.



3. Summation over several indices

The summation convention extends to the case where there are several silent indices in the same

expression. For example below for ¢, j = 1, 2:

id g Al 2.2 j - :
Ala'y’ = Ajzy’ + Ajx"y’ summation over i

= Alaly' + Alxly? + A22%y' + AZx®y? summation over j

Suppose we have the relationship a = a;;x'y; with 2° = ¢;;3’. It’s not right to write o =
a.ijc?;jyj y;j. First, we need to rewrite 2 with another silent index as 2° = c¢;;y* and then a =
a;jciry*y;. This results in a triple summation over the mute indices ¢, j, k. It leads to (2* = 8
terms, n = 2 and 3 indices) ajicniytyr + anciay®yr + aeny'ye + a1ac19y*ys + asicay'yr +
a21C0Y> Y1 + 2221y Yo + A2y Yo

The summation can be generalized to any number of indices.



4. Kronecker symbol

This symbol is called the Kronecker symbol.

oty
sy=i == 0 IE 3)
1, ifi=j

It can be used to write, for example the scalar product of two vectors ¢; and €; of norm unity and

orthogonal (also called orthonormal) to each other in the form ¢€; - €; = 4;;. We have

5ijz'yj = YiYi - (4)

(1823-1891)



5.  Antisymmetry symbol

In the case where the indices i, j, k take one of the values 1, 2, 3, the antisymmetry symbol ¢/*

takes on the following values:

—

* €% = () if any two of the indices have identical values. For example: e!1? = 313 = ¢222 = ().

» ¢¥/% = 1, if the indices are in the order 1, 2, 3 or come from an even number of permutations

< of this initial order. For example: ¢!2? = ¢3! = €312 = 1.

e ¢7F = —1, if the indices come from an odd number of permutations of initial order 1,2, 3.

32 _ 321 _ 213 _ _q

For example: ¢!

Using this symbol, a second-order determinant can be written in the following form det[a"]| =

éa'*a? and a third-order determinant as det[a”] = e7*al*a¥ a’*.



B. Change of basis in a vector space

Let us consider two basis (€7, €5, €3) and (€, €}, €}) of a vector space E,,. Each vector of one

basis can be decomposed on the other basis in the following form

&= Afe, (5)
and

& = Apé: (6)

where we use the summation convention for ¢,k = 1,2, ..., n.
Change the components of a vector

A vector 7 of FE,, can be decomposed on each basis as
= _ iz _ otk
r=ux'€e;,=12"¢€,. (7)

Let’s look for relationships between the components z* and 2. Let’s replace the vectors ¢; and &),

in the above relationship by their respective expressions. It leads to

:E - :Bié; - mtA:.ké‘Ik - :I?fké'k - .T,kA}cé; . (8)



As a result of the uniqueness of the decomposition of a vector on a basis, we can equalize the

coefficients of the vectors €, and €; we obtain

' = Algt (9)

and

rt = Ala (10)




C. Contravariant and covariant components

For a Euclidean vector space E,,, related to any basis (€}, €5, €3, .., €,) the scalar product 7 =

x'€; by a basis vector €; reads
e = (2'6) € =1'(6 - €;) =a'g;; = ;. (11)

These scalar products, denoted z; are called the covariant components, in the basis (€;), of the

vector . These components are therefore defined by

;=T . (12)

They will be noted using lower indices. We will see later that these components are naturally

introduced for certain physics vectors, such as the gradient vector. On the other hand, the notion

of covariant component is essential for tensors.



— .

Ze = (a'e) € =26 -¢)=ux

1

The relationship (11) shows that the covariant components x; are related to the classical com-
ponents of the vector . To distinguish them, the latter are called the contravariant components of

the 7 vector. The contravariant components are therefore numbers 2 such that
po

7 =1'¢ . (13)

They will be noted using upper indices. The study of basis changes will justify the naming of the

various components.



Any basis

As an example, let’s consider two vectors €7 and €, of classical geometry with arbitrary di-
rections and lengths. We have (see figure) A= O_M, OM' = rlel, OM" = r%é,, and A=
x'e] + x?¢;. The numbers are the contravariant components of vector A. Let’s use the classic

scalar product expression to express the covariant components. It results
xy = A-ée = ||Al|||é1] cosa, (14)

and

vo=A- & =||A|l||é]| cos B (15)

If the basis vectors €; and €, have norms equal to unity, then the orthogonal projections m’ and
m” of point M represent the covariant components of A.

Note: In an orthonormal basis, the covariant and contravariant components are identical since

;=7 = (2'€) € =2'(6 &) =a"0;; =2’ . (16)




D. Change of basis

Consider two distinct basis (¢;) and (&) of a Euclidean vector space &, linked by the relations

(17)

and

(18)

S ——

. 1
Let be 2 and z’* the contravariant components of a vectof Z respectively in the basis (€;) and (€&}).

1

We have seen that

(19)

and

(20)

Therefore the transformation relations of the contravariant components (19,20) are the opposite
of those of the basis vectors (17,18), with the quantities A and A’ exchanging, hence the name of

these components.



E. Scalar product

From 7 = z'¢; and 4/ = y'€; we obtain

ij= (1) (F€) = o'y (& &) = gya's’ @1
From
Tg=gia'y =7 T=guys’, (22)
we get
9ij = Yji - (23)

F. norm of a vector

We have

norme of 7 = (7 - )% = (¢"'z;x;)"/? . (24)
A vector’s norm is also its length. In an orthonormal base, the contravariant and covariant compo-

nents are identical. We have the important relation

= g'x; . (25)




G. Reciprocal basis

Let be any basis (¢;) of an Euclidean vector space. By definition, n vectors * which satisfy the

following relations:

& - =y, (26)

are called the reciprocal vectors of the €' vectors. They will be noted with higher indices. Each
reciprocal vector €* is orthogonal to all vectors €;, except for k = i.
Example - Let three vectors (€7, é,, €3) form a basis for the vectors of classical geometry. Note

v = €} - (€ A €3), where the symbol A represents the vector product. The following vectors:

-
> g =200 27)
$) v
N q &= (28)
S v
Q - — A —
&=—, (29)

verify relations (26) and constitute the reciprocal system of vectors (€1, €5, €3). In crystallography,

these are the vectors of the associated Fourier space.



We have the following relations (without demonstration):

—— :
i €; = gir€" , i (30)
7= 2,8, 31)
E :i:'-é*‘:s:"",i (32)
Eg""’=é"-é“:i (33)
and i i
g =4 (34)

In conclusion, reciprocal bases play strictly symmetrical roles, with components that are con-

travariant in one basis becoming covariant in the reciprocal basis and vice versa.



EXAMPLES OF EUCLIDEAN TENSORS

A. Covariant components of the fundamental tensor

In the previous chapter, we used the quantities g;;, defined from the scalar product of the basis

vectors €; of a Euclidean vector space E,, by

These n? quantities constitute the covariant components of a tensor called the fundamental tensor

or metric tensor.

Tensor components are generally classified in the form of an ordered ordered table

911 G12 G13
921 G22 G23 (36)
931 932 Gs33
Example - Consider the basis vectors of the Ej3 vector space €; = (2,0,0),é> = (0,1,0),€3 =
(0,0, 3). We have:

gu=4.92=19353=9,9; =0if i # j, (37
leading to
400
010 (38)

009



Change of basis - Let’s study how the quantities g;; vary when we perform a change of the basis.

Let €], be another basis linked to the previous one by:
¢ = Al & = Aei . (39)
We have
g5 = (Ate) - (a)a) = (aF4)) @) - (40)

I o :
g =AM Ay (41)
! 1

and i i
1 1
i 9i; = AY Aﬁigk.! i (42)

The covariant components g;; of the fundamental tensor are no longer transformed like the covari-

ant components of a vector but by involving the product of the quantities A’F.



B. Basis change properties

By definition ¢;; = A A’lt], and t}, = Aj AJt,; are, by definition, the covariant components of

a second-order tensor.

On can showthat .
1 ., 1
o= A A (43)
1 1
y L, I
o = ALA (44)
1 1
and : !
: i
i vrkf, — AikA;Ivsj i (45)

Note that ! is called a second-order mixed tensor.




Examples of second-order tensors

* Metric tensor g;;.

Tensor of inertia I;;.

The conductivity tensor 0;;. We have j* = o} E*.

Tensorial product of two vectors: u* = z'y, u! = x;y7, u;; = xy;.

Electromagnetic field tensor F,,,.

Stress-energy tensor, sometimes called the stress-energy-momentum tensor or the energy-

momentum tensor, 7.

Examples of third-order tensors

u* = 2%’ z* and all the combination of indices (4 different types).

Nonlinear optical susceptibilities are tensors. e.g. P, = x;jxE'E”.

» Tensors in mechanics and elasticity by Leon Brillouin.

ENGINEERING PHYSICS:
An International Series of Monographs

TENSORS IN
MECHANICS AND
ELASTICITY

Léon Brillouin

///?P'*\ Academic Press
%y
S New York and London

(1889-1969)



By using the general definition we have the following relations

. o ,
o uIt = AJAT AluP,
o= AT AM AP,

i _— AiA'm AR,

mp?

. . . ’ ]
o« ul = AJA) Al




TENSORIAL ALGEBRA

Tensor product - In mathematics, the “tensor product” F, ® E,, of two vector spaces F, and
E, is a vector space to which is associated a bilinear map £, x E, — E, ® E,, that maps a pair
(v, W) U € Ep, W € E, to an element of £, ® E, denoted 7 ® 0.

Tensor product of identical spaces - In practice, we often have to use tensors formed from
vectors belonging to identical E),, vector spaces.

Tensor product of p vectors - In general, we can form the space E® corresponding to p times

the tensor multiplication of the space E, by itself, i.e.:
EP =FE, QFE,®..QF, . (46)

If we now denote p vectors of E, as 7'} = 1'€;,, Ty = 1'2€;,, ..., T, = x'7€;, the tensor products

of B are tensors of order p of the form
T BB R ®% =287 (0, 08 0 08) 47)

with 1,49, ...,7, = 1 ton.



A. Tensor classification

1. Order0

Scalars are conveniently called zero order tensors. To form a scalar, we use the scalar product
of tensors of the same rank. The simplest example is the scalar product of two vectors (rank one

tensor).

-y =gya'y’ . (48)
Note: There are no indices left!
We can generalize to tensors of higher rank e.g.
W g Gem = W g™ grm = vy, (49)

Note: Once again there are no indices left!

2. Order 1

Vectors z*, u* vy, P* = x¥ E'E7...only one indices left.



3. Order?2

Gij etc...
Rule: By multiplying by a quantity g;; or g/ and summing, we can place each of the indices of

a tensor in a position that is either contravariant or covariant. We have:

11%2...1p __ . 11k1 ok ipk
u P =g " g g P Uk k.. (50)
12i3...1p __ kyio...d
Uy T = Gk WY (S1)
13...1p __ kikoiz...1
Wiin = Girk1GizkU . (52)

Theorem: for a sequence of n® quantities, related to a basis of a tensor space EY, to be con-
sidered as components of a tensor, it is necessary and sufficient for these quantities to be linked
together, in two different bases of EY®, by the previous formulae for transforming the components.

This conclusion can be generalised to n” quantities that can constitute the components of a tensor

of a tensor space B\,



B. Operations on tensors

1. Addition of tensors of the same order

In order to add up, the tensors must obviously be related to the same basis. The sum of the
covariant components of two tensors gives the covariant components of their sum. The same

applies to the mixed components relative to the same basis. We have

T=U+V, (53)
and
(u* +0R)E, @ R e =tFe @ e ® e . (54)
2. Tensorial multiplication of tensors
WM R ERBRVERE =u'E R x vM"E ®EH® e, (35)
leading to
W=U®V, (56)
and for the components
wijklm — u‘ijvklm ) (57)



3. Contraction of indices

In addition to the operations of addition and tensor multiplication, there is an operation that can
be used to obtain other tensors from a given tensor. This is the index contraction operation.

Example 1: scalar product - Consider the tensor product of two vectors 7 and ¢ with respective
contravariant z* and covariant y; components. The components of the tensor product V of these

two vectors are:

'U; = :.r:iyj . (58)

It’s a mixed second-order tensor. Let’s add up the different components of the V tensor such that
1 = j, it leads to:

v=2a'y . (39)

The quantity v is a zero-order tensor or scalar. Such an addition of indices of different variance
is, by definition, the operation of contraction of the indices of the tensor V. This operation has
enabled us to go from a second-order tensor to a zero order tensor; the V tensor has been stripped
of one covariance and one contravariance.

Example 2: third-order tensor - Let’s take the example of a tensor U whose mixed components
are u;f Let’s consider some of its components such that j = £, i.e. the quantities u;? and add them
together, we obtain

vV=ull 2w = 5;‘1;,}3 : (60)



These new quantities v* form the components of a first-order tensor V (vector), as we shall see.

The v quantities are contracted components of the U tensor.

Iensor of any order - The contraction operation therefore consists in choosing two indices, one
covariant, the other contravariant, equating them and summing with respect to this twice-repeated

index.

In general, the contraction of a tensor makes it possible to form a tensor of order (p — 2) from
a tensor of order p. Of course, the contraction operation can be repeated. For example, a tensor
of even order, 2p, will become a scalar after p contractions and an odd-order tensor, 2p + 1, will

become a vector.



4. Tensoriality criteria

One way of recognizing the tensor character of a sequence of quantities is to study the way
these quantities are transformed during a change of basis and to check the conformity of the trans-

formation formulas.

The contracted multiplication will enable us to obtain another tensoriality criterion, which may

be easier and quicker to use than the previous one.

The demonstrations will be carried out on examples, but can be generalized to tensors of any

order.

Completely contracted product - Let’s consider the sequence of n® quantities u}f, attached to a
basis €; ® ¢; ® €* and look for a way to determine whether they can constitute the components of

a tensor. Let, on the other hand, be vectors 7 = x;€", §j = y;é’, Z = zFé. If the sequence u;’ is

tensorial, then the contracted product
a= u}fsciyjzk . (61)

is a scalar quantity, invariant to base changes, according to the properties of the contracted product.

By generalizing, we arrive at the following conclusion: for a set of n”™ quantities, with p
upper indices and ¢ lower indices, to be tensorial, it is necessary and sufficient that their product,
completely contracted by the the contravariant components of any p vectors and the covariant

components of any ¢ vectors, is a quantity that remains invariant to the change of basis.



5. Special tensors

—

» Symmetrical: u;; = u;;; example: the fundamental tensor g;; = ¢; - €.

* Partially symmetrical: uﬁjk = u{ik

 Antisymmetric tensor: u" = —u/'

* partially antisymmetrical: ufj b= —uf w
Note 1 (important: beginning of the notion of covariance): Let’s use the general criterion of
tensoriality to demonstrate the tensorial character of g;;. The expression g;;z'y’ is a completely
contracted product of the contravariant components z* and 3’ of an arbitrary first-order tensor (a
vector here). Since the scalar product is an invariant quantity with respect to basis changes, it
follows that the n? quantities gi; are the covariant components of a tensor.

Note 2 : a;;z'y’ =1 — ajz"y” = 1if a},, = A} A),a;;.

Note 3: a tensor will be completely antisymmetrical if any index transposition of the same
variance changes the corresponding component into its opposite.

kji

Note 4: completely symmetrical third-order tensor: uﬁjk = uf * = u, k9

i
=u, .

Note 5: Any tensor u;; can be expressed as the sum of a symmetrical tensor and an antisym-
metric tensor. We have:

.. 1 .. .. 1 .. .
W = (i +u) + (- ) (62)

The first term of the above sum is a symmetrical tensor and the second, an antisymmetrical tensor.



6. Exterior product of two vectors

Given two vectors ¥ = z'¢; and i = y’¢; of a vector space E,, let’s form the following
antisymmetric quantities:

u = :t:'iyj - :cjyi . (63)

These are the components of an antisymmetric tensor U, denoted & A i/, whose decomposition on

the basis ¢; ® € is written as

U=ZAy=(a'y —2'y)E®e. (64)

The second-order tensor & A ¢ is called the exterior product of the vectors Z and ; it is also said
to be a bivector.

Strict components of the exterior product - Of the n? components of the exterior product, n
components are zero and the other n(n — 1) components have opposite values. We can therefore
consider that half of the latter components is sufficient to characterize the tensor, and we’ll say

that the exterior product has n(n — 1)/2 strict components.



Note that for n = 3, the number of strict components of the exterior product of two vectors is
also equal to 3. This makes it possible to form, with the strict components of the bivector & A ¥/,
the components of the vector product z' = I A /.

To do this, we set

?.L23 — $2y3 . m3y2 — zl (65)
,u31 — :L,Syl L mlyS — z2 (66)
?.L12 — $1y2 . m2y1 — 23 ' (67)

A vector product therefore only exists for three-dimensional spaces and and we know that it only
transforms like a vector for certain basis changes. It’s an axial vector. The 2 vector is said to be the
adjoint tensor of the U tensor. This is a special example of the adjoint tensor of an antisymmetric

tensor.
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Integral formulation

Differential formulation

VAE--2B
V.B -0
VIE-£

—

VAB=pj + Eoﬂo%

(%F""B = ,quﬁ
—_— 1
8cu (§EQB76F75) =0

Tensorial (or covariant) formulation

dFF =0
dx F = pyxJ

Formulation in terms of differential forms



The Lorentz-Poincaré transformation

The most common form of the Lorentz transformation is:

2 = (z — vt) @)
1 v=y 3)
=2 (4)

where (t, z,y, z) and (t', 2", v/, 2’) represent the coordinates of an event (space-time) in two inertial

reference frames whose relative velocity v is parallel to the z axis, ¢ is the speed of light, and the

Lorentz factor which is given by: v = —=—= = e = L —dt

velocity between inertial reference frames, c is the spé:ecl of light in vacuum, [ is the ratio of v

where v i1s the relative

to ¢,t is coordinate time, and 7 is the proper time for an observer (measuring time intervals in the

observer’s own frame).

» Maxwell's equations are invariant under the Lorentz transformation



In matrix form, the Lorentz transformations can be written as:

ct' v =By 0 0] [ct
' —By v 00| |=x
= (5)
Yy 0 0 10] |y
Ed 0 0 01] [=z]

where the matrix A satisfies the following expected properties: (i) det(A) = +1, which means
that the transformation preserves the orientation of the space; (ii) AT n A = 7, where 7 is the
Minkowski metric 7 = diag(1, —1, —1, —1), which means that the matrix is pseudo-orthogonal

?

and preserves the space-time interval of Minkowski space.

10 0 0
: . . S : 0-10 0
The matrix representation of the Minkowski metric tensor is| 7" =
00 -1 0
00 0 -1
This writing in 4 x 4 matrix form corresponds to the standard representation of the Lorentz

group. Objects that transform under this representation are quadrivectors (here, the time-position

quadrivector).
In special relativity, a four-vector (or 4-vector) is an object with four components, which trans-

form in a specific way under Lorentz transformations. We have

" = Nig# (6)




and for a general tensor

Toiod = AN A NG A AT L (7)

The most important quadrivectors are:

Displacement (vector): z* = (ct, T) = (ct, z,y, z) = (2%, 2", 22, 2%).

Four-velocity: u® = 7(c, &) where ~ is the Lorentz factor at the 3-velocity .

* Four-momentum: p® = (E'/c, p) = mou® where p'is the 3-momentum, E is the total energy,

and my 1s the rest mass.

Four-gradient: 0" = (%%, —‘5’); we have d, = (%%, V_") One can use 9" = g"" 0, where
g"” = " is the Minkowski metric tensor.

d’Alembertian operator: 0* = 9,0 = 555 — A.

* Four-current: J“ = (r:p,j") where p is the electric charge density and J the electric current

density.

Four-potential: A® = (¢/c, A) where ¢ is the electric scalar potential and A the vector

potential).



The electromagnetic tensor

Fos = 0.Ap — 03A, is the electromagnetic tensor is the combination of the electric and
magnetic fields into a covariant antisymmetric tensor.

By using the usual relations E=-V¢— %I and B = V A A we have:

( 0 E./c E,/c Ez/c\
-FE, 0 —-B. B
Faﬁ == /C Y (8)
—Ey,/e B, 0 -B

\~E./c -B, B. 0 )

We have also F* = np#* F,51" leading to

( 0 —E./c —E,/c —E'z/c\
Ex 0 —Bz B

o — | Bl ’ ©)
E,/Jc B, 0

—B,
\E./Jc =B, B. 0 )

Since F'*¥ 1s a rank 2 tensor, it transforms as follows

FHY = A N PR (10)



Maxwell equations

The two inhomogeneous Maxwell’s equations, Poisson (p) and Ampere (j) combine into:

OuFP = poJ” . (11)

The two homogeneous Maxwell’s equations, Faraday’s law of induction and Gauss’s law for

magnetism combine to form:

1 F*uu — ﬁ,u.y — lepvpong
N (EEHMEFTJ) = Dual tensor _ (12)
9 F" = 0

where 497 is the Levi-Civita symbol.

In the four-dimensional space-time, the Levi-Civita symbol (not a tensor) is defined by:

¢

+1 if (4,4, k, 1) is an even permutation of (0, 1,2, 3)

€ijkt = § —1 if (4,7, k,1) is an odd permutation of (0,1,2,3) - (13)

() otherwise

Some examples:

£0321 = —€pia3 = —1 (14)

€1023 = —€pi2z = —1 (15)



Lorentz’s gauge

Lorentz’s gauge: d, A® = () or more familiar V-A+ ciz %. In the Lorenz gauge, the microscopic

Maxwell’s equations can be written as: 930° A* = 119.J°.

Lorentz’s gauge

- 1 -
pa— DA(Fat) — _gj(ra )
VA|012%({—0 > < 6100

~ 0

Wave equations

» Continuity equation: |J” 5 = 937 = (|expresses charge conservation. Using the definition of

quadrivectors, we check that we find the usual relationship %p +V- j=0.

> It is associated with the gauge invariance of Maxwell's equations
(Noether's theorem for internal symmetry).



Maxwell’s equations in terms of differential forms

In general, an k-differential form (or simply k-form) in variables ', ..., 2" will be an expression

w= lt- cdzt A A dzt* (16)

T' 15yl

where the coefficients #;, _;, (coefficients of the tensor T) are smooth functions of the variables

.....

x!, ..., 2" and antisymmetric in the indices. Remember that dz* A dz’/ = —da’ A dz'.

Examples:
1. O-form: a function w = f(z*, ..., 2").
2. 1-form: w = A, dz®

Each k-form w is associated with an (k + 1)-form dw called the exterior derivative of w which is

written as
dw= > > 3“ m”“dx"” Adz™ AL Adz* (17)
1< i i o
Example: for a 0-form (i.e. a function w = f(z', ..., 2™)), we find the expression of the 1-form
(differential of a function):
af
dw=df = Z ~—da? = 9;fda’ . (18)

i=1



Maxwell’s equations in terms of differential forms

From this definition follows the general Stockes’™ formula

/wzfdw. (19)
ax v

Here ¥ is an (k + 1) dimensional oriented variety and 9% is its boundary.

Examples:
L [)df = [} f'(x)dz = £(b) — f(a).
2. Divergence theorem: fv(\:‘} LF)dV = Jov F-dS.

One of the basic relations is Poincaré’s Lemma:

d(dw) = 0. (20)

Example: d(dA) = dF = 0 with A = A,dz". A, is the quadrivector potential. A form w is
said to be closed if dw = 0.



Maxwell’s equations in terms of differential forms

All electromagnetism allows itself to be summarized in the language of 2-forms. Using the

formalism of differential forms, Maxwell’s equations can be written in an extremely simple way

dF =0
d*F:ﬂu*{]j

2D
(22)

where F' = dA with A a 1-form A = A,dz® and J = J,dz®. *F is the dual electromagnetic

tensor.



Maxwell’s equations in terms of differential forms

Hodge dual or Hodge star operation.

Let us introduce an operation known as Hodge star which establishes a duality between k-forms
and (n—k)-forms. Roughly speaking, it replaces exterior product of k variables by exterior product
of the complementary set of n — k variables (up to a constant factor, which depends on the metric
tensor and the order of the variables in the two products). More precisely, let 0 = (7y, 15, ..., 7,,)
be a permutation of (1,2, ..., n) then for any k € {0, 1, ..., n} the Hodge dual of the corresponding

elementary k-form is

*(d:t’.‘il A d:t,;g AL A d:r,;k} = Sgll(J)Equz---EgkdIiHl A d.I‘ik+2 FARAY diE,;n . (23)

where sgn(o) is the sign of ¢ and (g;,2;,...5;,) € {1, —1}" is the signature of the metric tensor.

If we live in a Minkowski space-time with signature (+, —, —, —) thenn = 4 and ¢, = —¢, =
—gy = —€, = L.
Examples
E5 with the ordinary metric. If f and g are functions (0-form) of (z,y, z) one has:
af of of
df = —dzr + —dy + =—d 24
=00t gyt 5.4 @4
af af of
*df—a—xdyhdz+3—ydzf\d$+a—zdxf‘\dy. (25)



Maxwell’s equations in terms of differential forms

sl=dt Nde ANdy Ndz, *(dtANdeAdyndz)=1-(-1)°=—1.

x(dt) =dx Ndy A dz,
x(dx) = dt Ndy N dz,
x(dy) = dt Ndx N dz,
x(dz) = dt N dx N dy.

x(dt N\ dx) = dz A dy, x(dz AN dy) = —dt N\ dzx,
x(dt N dy) = dz A dz, x(dx N dz) = —dt A dy,
x(dt N dz) = dy N dex, x(dy AN dr) = —dt A\ dz.



Maxwell’s equations as a field theory

The total action of the ”particles+field” system is as follows:

S = Spa'rt + Sfield + Si'n.t )

with
Spart = —McC [ ds ,
1 1
Sticg = ———— | FOPF,5dQ)
and
1
Sz'nt - —E[AaJadQ s

with dQ) = cdtdxdydz = cdtdV .

(D

(32)

(33)

(34)



Maxwell’s equations as a field theory

The lagrangian density of the “particles+field” system is:

L = Licta + Lint (35)
1
—  FOPE,— A,J°
e 8 Jo, (36)

and

Lyart = —mci\/1 — 2. (37)

By using Spurt = [ Lparidt with Ly, = —mc*y/1 — 32 and knowing that At = /5 — 'y =
j;tf dt\/1 — 32 = % [ ds we get Spure = —me [ ds. Moreover, if v < ¢, Lpgt = %mvz the

traditional non-relativistic expression.




Maxwell’s equations as a field theory: field equations

The Euler-Lagrange equation for the electromagnetic lagrangian density £ (A,, JsA,) can be

stated as follows (variation with respect to A,, only L4 and L;,,; are concerned): Jg [%] —

a(?fa = (. By noting
FA = Fm,n”)‘nw (38)
F., = 0,A, —0,A,, (39)
S = (40)
the expression inside the square bracket is
oL 1 O(Eunn ) 1)
N0sAa) 4o 0(9p4a)
- _4_; 107 (B (0565 — 683) + Fyu (0503 — 6265 ) (42)
_ _I; ia . (43)
The second term is 25 = —J°.

dA,

Therefore, the electromagnetic field’s equations of motion are 8;3 ﬁ:f = 0 FP* = p1pJ*| which

is the Poisson-Ampere equation. One recovers the Poisson equation for a = 0.



Covariant formulation of classical electromagnetism

Maxwell equations as a field theory: Lorentz equation

To obtain the Lorentz equation, we need to use the Euler-Lagrange equation for the
dynamic variables of particle positions. Only the Lagrangians associated with the
particles and their interaction with the electromagnetic field are involved.

dp_f—‘-f — QFQSH with dt = ydr

For a = 0, dEy;, = qﬁ - udt

The variation in kinetic energy during the time interval dt is the work done by the
electric field acting on the particle during this time interval.

_ b
Fora=1,2.3 _p:qE(F)+qFX B(r)

According to Lorentz's equation, F acts as an electromagnetic force.



Covariant formulation of classical electromagnetism

Maxwell equations as a field theory: energy-stress tensor

» The stress-energy tensor is the conserved Noether current associated with space-
time translations (external symmetries).

In special relativity the stress-energy tensor is the conserved Noether current associated with

space-time translations. From the lagrangian density £ we have

oL
1 = mﬁw‘qa — o, L. from Noether*
9,T" = 0
0% 1 1 v po B oAv

*See the paper: A short review on Noether’s theorems, gauge symmetries and boundary terms



Maxwell equations as a field theory: energy-stress tensor

1 /1 00 L /1 0 77A0
L po HopAV " = F,o F*7 + F°\ F
T #0(49 F,,F* + F* F ) #0(4p + )
1 po 1 0i i0 1 ij
We have ZFpGF = Z(FoéF + FioF™) + ZFijF
1/ E'FE 1
— __(+——)+—x2x§2
2 c c 4
2
Moreover FOFN = FOF0 = O — (F0)2 = —
2
w_ 1 (E* B\ _«E B
We deduce T = o (262 to )= F 2
Then Toi— 1 [ 1 g " Fyo " + FO\FY
Lo 4\v/



Maxwell equations as a field theory: energy-stress tensor

and FOFN = FUF7
_ _FUJsz
— FOsz'j
EJ
= —7(—@;;&3’“)
1 :
— (EAB)
C
1 i I
we deduce T" = — (Tf A §) —
HoC c
We call the Poynting vector = EnB
Ho
w b
The electromagnetic stress-energy tensor can I Tcu TCIQ
therefore be written as ™ = | o1 a2
C
13 31 32
— 1 T




Maxwell equations as a field theory: energy-stress tensor

—

We set

g o fZ g 1 .
T =¢ | —E'E'+ —6" |+ — | —B'B’ +
2 Ho

2c2 7

~——

We define the Maxwell tensor:

_T'ij

Jij =

210

B
20 )

energy density

In order to give a physical interpretation of this local relationship, we will integrate it

over a finite volume Q 19

= _TUO
c ot

/ T3z + c/ OTOB7 =0

0 /Toodga: = c/@T“OdS"
ot

_9 / TY#7 = ¢ // T%n'dS

Since 7% is the energy density contained in the volume €2, 7"

T =0
s,
ot

flow.

= II" is the outgoing energy



Maxwell equations as a field theory: energy-stress tensor

Conservation laws in the presence of sources

0,T" = J\F*

Hz‘
—ng.fl?
C

) __ f O,TFdF = / 0,07 7 = / o', dS
Q Q o0

) (e

ot

This relation expresses that the variation of the total momentum contained in the {2 domain is

equal to the sum of the forces exerted on the domain. It allows us to interpret

as the local momentum density of the electromagnetic field

c2

o7'n;dS as the force exerted on a surface element 7idS or o is Maxwell’s stress tensor



Gravitational field in relativistic mechanics

In an inertial reference frame based on Cartesian coordinates, the interval ds is determined by

the formula

ds? = 2dt® — da® — dy® — d2* .

When we move to any other inertial reference frame (i.e. using the Lorentz-Poincare transfor-
mation), we know that the expression of the space-time interval remains unchanged. But when

we move to a non-inertial reference frame, the ds” is no longer the sum of the squares of the

differentials of the four coordinates. B L L L LLLLLLL L 1|

i

| 1/

Example of a non-inertial reference frame:
uniformly rotating (around z-axis) coordinate system



Gravitational field in relativistic mechanics

So when we move to a uniformly rotating coordinate system = = z’ cos Qt — 3/ sinQt, y =

x'sin Qt + 3 cos Qt, 2’ = z the interval takes the form:

ds* = [¢* = Q% (2" + o/*)]dt* — dx”* — dy* — d2* + 2Qy/d2’dt — 20’ dy/ dt.

Therefore, in a non-inertial frame of reference, the square of the interval is a certain general

quadratic form of the coordinate differentials, i.e.

ds® = Z gijdxidxj,

i,j=0..3

where the g;; are functions of the space z',2* z° and time coordinates 2. Thus, the four-

coordinate system z°, 2!, 22, 23 is curvilinear when using accelerated reference frames. The quan-
tities g;; that determine all the properties of geometry in each curvilinear coordinate system define

the space-time metric.



