Exercises on the general relativity course

Paul-Antoine Hervieux^{1,*}

¹Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France

(Dated: November 24, 2023)

Abstract

I. EX1

We perform a change of basis of a vector space E_2 , defined by:

$$\vec{e}'_1 = 3\vec{e}_1 + \vec{e}_2 \; ; \; \vec{e}'_2 = -\vec{e}_1 + 2\vec{e}_2 \; .$$
 (1)

- Starting from the definition of the covariant components of the fundamental tensor g_{ij} , calculate its new components g'_{ij} as a function of the old ones.
- Verify the results using the general formula of a change of basis for a second rand tensor.

II. EX2

The mixed components t_{jk}^i of a tensor \mathbb{T} , belonging to the tensor product space $E_2^{(3)}$ are as follows:

$$t_{11}^1 = 0$$
, $t_{12}^1 = 2$, $t_{21}^1 = -1$, $t_{22}^1 = 3$, $t_{11}^2 = 1$, $t_{12}^2 = -1$, $t_{21}^2 = 0$, $t_{22}^2 = -2$. (2)

- Calculate the contracted components u_k = tⁱ_{ik} of the tensor T. Write the expression for the tensor U of components u_k.
- We give ourselves a basis $\{\vec{e}_i\}$ of E_2 in which the fundamental tensor g_{ij} has as matrix:

$$[g_{ij}] = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -3 & 1 \end{pmatrix}$$
(3)

Determine the covariant components t_{ijk} of the tensor \mathbb{T} .

- Determine the contravariant components g^{ij} of the fundamental tensor.
- Calculate the mixed components t_k^{ij} of the $\mathbb T$ tensor.

^{*} hervieux@unistra.fr

III. EX3

A point M is represented in cylindrical coordinates by the variables ρ, φ, z .

- Determine the expression of the position vector $\vec{OM}(\rho, \varphi, z)$ of any point M on the Cartesian basis $\{\vec{i}, \vec{j}, \vec{k}\}$.
- Determine the vectors $\vec{e_1}, \vec{e_2}, \vec{e_3}$ of the natural basis and represent them on a graph.
- Show that these vectors are orthogonal to each other.
- Calculate the norms of the vectors in the natural basis.
- Determine the linear element of E_3 .
- Determine the volume element (jacobian of the transformation).

IV. EX4

Prove the transformation formula for Christoffel symbols:

$$\Gamma^{i}_{kl} = \Gamma^{\prime m}_{np} \frac{\partial x^{i}}{\partial x^{\prime m}} \frac{\partial x^{\prime n}}{\partial x^{k}} \frac{\partial x^{\prime p}}{\partial x^{l}} + \frac{\partial^{2} x^{\prime m}}{\partial x^{k} \partial x^{l}} \frac{\partial x^{i}}{\partial x^{\prime m}} .$$
(4)

V. EX5

The spherical coordinates are defined by: $(x = r \sin \theta \cos \varphi, y = \sin \theta \sin \varphi, z = r \cos \theta)$.

- Calculate the line element ds^2 .
- Obtain the components of the metric tensor g_{ij} .
- Calculate the Christoffel symbols of the first kind in spherical coordinates.
- Calculate those of the second kind.

VI. EX6

A particle moves along a trajectory defined in spherical coordinates (r, θ, φ) . Determine the contravariant components a^k of the acceleration \vec{a} of this particle for the following trajectories:

- The trajectory is defined by: $r = c, \theta = \omega t, \varphi = \pi/4$ where t is the time.
- The trajectory is defined by: r = c, θ = π/4, φ = ωt. Calculate the norm of the acceleration and show that we find the back classic formula: ||*a*|| = rω².