Exercises on the general relativity course

Paul-Antoine Hervieux ${ }^{1, *}$
${ }^{1}$ Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France

(Dated: November 24, 2023)

Abstract

I. EX1

We perform a change of basis of a vector space E_{2}, defined by:

$$
\begin{equation*}
\vec{e}_{1}^{\prime}=3 \vec{e}_{1}+\vec{e}_{2} ; \quad \vec{e}_{2}^{\prime}=-\vec{e}_{1}+2 \vec{e}_{2} . \tag{1}
\end{equation*}
$$

- Starting from the definition of the covariant components of the fundamental tensor $g_{i j}$, calculate its new components $g_{i j}^{\prime}$ as a function of the old ones.
- Verify the results using the general formula of a change of basis for a second rand tensor.

II. EX2

The mixed components $t_{j k}^{i}$ of a tensor \mathbb{T}, belonging to the tensor product space $E_{2}^{(3)}$ are as follows:

$$
\begin{equation*}
t_{11}^{1}=0, t_{12}^{1}=2, t_{21}^{1}=-1, t_{22}^{1}=3, t_{11}^{2}=1, t_{12}^{2}=-1, t_{21}^{2}=0, t_{22}^{2}=-2 \tag{2}
\end{equation*}
$$

- Calculate the contracted components $u_{k}=t_{i k}^{i}$ of the tensor \mathbb{T}. Write the expression for the tensor \mathbb{U} of components u_{k}.
- We give ourselves a basis $\left\{\vec{e}_{i}\right\}$ of E_{2} in which the fundamental tensor $g_{i j}$ has as matrix:

$$
\left[g_{i j}\right]=\left(\begin{array}{ll}
g_{11} & g_{12} \tag{3}\\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
2 & -3 \\
-3 & 1
\end{array}\right)
$$

Determine the covariant components $t_{i j k}$ of the tensor \mathbb{T}.

- Determine the contravariant components $g^{i j}$ of the fundamental tensor.
- Calculate the mixed components $t_{k}^{i j}$ of the \mathbb{T} tensor.

[^0]III. EX3

A point M is represented in cylindrical coordinates by the variables ρ, φ, z.

- Determine the expression of the position vector $O \vec{M}(\rho, \varphi, z)$ of any point M on the Cartesian basis $\{\vec{i}, \vec{j}, \vec{k}\}$.
- Determine the vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ of the natural basis and represent them on a graph.
- Show that these vectors are orthogonal to each other.
- Calculate the norms of the vectors in the natural basis.
- Determine the linear element of E_{3}.
- Determine the volume element (jacobian of the transformation).

IV. EX4

Prove the transformation formula for Christoffel symbols:

$$
\begin{equation*}
\Gamma_{k l}^{i}=\Gamma_{n p}^{\prime m} \frac{\partial x^{i}}{\partial x^{\prime m}} \frac{\partial x^{\prime n}}{\partial x^{k}} \frac{\partial x^{\prime p}}{\partial x^{l}}+\frac{\partial^{2} x^{\prime m}}{\partial x^{k} \partial x^{l}} \frac{\partial x^{i}}{\partial x^{\prime m}} . \tag{4}
\end{equation*}
$$

V. EX5

The spherical coordinates are defined by: $(x=r \sin \theta \cos \varphi, y=\sin \theta \sin \varphi, z=r \cos \theta)$.

- Calculate the line element $d s^{2}$.
- Obtain the components of the metric tensor $g_{i j}$.
- Calculate the Christoffel symbols of the first kind in spherical coordinates.
- Calculate those of the second kind.

VI. EX6

A particle moves along a trajectory defined in spherical coordinates (r, θ, φ). Determine the contravariant components a^{k} of the acceleration \vec{a} of this particle for the following trajectories:

- The trajectory is defined by: $r=c, \theta=\omega t, \varphi=\pi / 4$ where t is the time.
- The trajectory is defined by: $r=c, \theta=\pi / 4, \varphi=\omega t$. Calculate the norm of the acceleration and show that we find the back classic formula: $\|\vec{a}\|=r \omega^{2}$.

[^0]: * hervieux @unistra.fr

