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Problem Set 2
The Ising model

1 1d Ising model: exact solution with the transfer matrix method

Let us consider a chain of N spins si = ±1 (i = 0, 1, . . . , N − 1) at the temperature T and in an
external magnetic field H, with a ferromagnetic interaction J between nearest neighbors. The
corresponding Hamiltonian reads

H = −J
N−1∑
i=0

sisi+1 −H
N−1∑
i=0

si,

where we use periodic boundary conditions, that is, sN = s0.

1.1 Thermodynamical properties of the system

(a) Show that the canonical partition function of the system reads

Z =
∑
s0=±1

∑
s1=±1

∑
s2=±1

. . .
∑

sN−1=±1

Ts0s1Ts1s2 . . . TsN−1s0 ,

where the transfer matrix T (with dimensions 2× 2) is defined through its matrix elements
as

Tsisi+1 = exp

(
βJsisi+1 +

βH

2
[si + si+1]

)
,

with β = 1/kBT , and where the rows are labelled by si = +1 and −1, and the columns by
si+1 = +1 and −1, respectively. In particular, show that

T =

(
eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
.

(b) Using matrix multplication, show that

Z =
∑
s0=±1

(
T N
)
s0s0

= Tr
{
T N
}

= λN0 + λN1 ,

where λ0 and λ1 (|λ0| > |λ1| by convention) are the eigenvalues of T . At the thermodynam-
ical limit (N →∞), argue that Z = λN0 .

(c) Deduce from the previous result that

Z =

[
eβJ cosh (βH) +

√
e2βJ sinh2 (βH) + e−2βJ

]N
(d) Still at the thermodynamical limit, determine the free energy of the system.

(e) Deduce from the previous question the average magnetization M = 〈si〉 of the system.
Plot your result as a function of the applied magnetic field. What can you tell about the
noninteracting case J = 0 and the limit J/kBT � 1 (strongly-interacting limit). Give a
qualitative interpretation to your results. Is there a phase transition for the exactly-solved
1d Ising model? Compare with the mean-field solution (cf. lecture and/or Problem 2).
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1.2 Correlation function

The correlation function between two spins separated by R− 1 lattice sites is defined as

ΓR = 〈s0sR〉 − 〈s0〉〈sR〉,

and the correlation length ξ by

ξ−1 = lim
R→∞

{
− ln |ΓR|

R

}
. (1.1)

(a) Let us express ΓR in terms of the transfer matrix T and the matrix S representing the spin
operator. We write T and S in their diagonal form:

T =
∑
n=0,1

λn|un〉〈un|,

S =
∑
si=±1

si|si〉〈si|.

The vectors |si = +1〉 = (1, 0) and |si = −1〉 = (0, 1) correspond to the two possible spin
states. Using T and S, show that

〈s0〉 = 〈sR〉 = 〈u0|S|u0〉

in the thermodynamical limit.

(b) Then, show that

〈s0sR〉 =
1∑

n=0

(
λn
λ0

)R
〈u0|S|un〉〈un|S|u0〉

for N � 1.

(c) Deduce from the two previous questions that

ΓR =

(
λ1

λ0

)R
〈u0|S|u1〉〈u1|S|u0〉. (1.2)

(d) Calculate explicitly the correlation function (1.2). It will be accepted without calculating
them that the eigenvectors of the transfer matrix read |u0〉 = (α+, α−) and |u1〉 = (α−,−α+),
with

α± =
1√
2

1± eβJ sinh (βH)√
e2βJ sinh2 (βH) + e−2βJ

1/2

.

In particular, study the zero-magnetic field limit. In the latter case, plot the correlation
function as a function of R.

(e) Calculate the correlation length (1.1) using the expression (1.2). Comment on the low- and
high-temperature limits.
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2 Mean-field solution of the Ising model

Consider a system of N(� 1) atoms whose positions are fixed to the nodes of a crystalline
lattice with volume V , which is in equilibrium with a thermostat at the temperature T and
subject to an external magnetic field B0. To each atom i is associated a magnetic moment
µi = gµBSi, where g is the Landé factor, µB the Bohr magneton, and Si the spin of the ith

atom. In what follows, we assume that Si can only take the values ±1/2 in the direction of
the applied magnetic field.

2.1 Paramagnetism

Let us first neglect the interactions between the magnetic moments. The system can then be
described by a Hamiltonian coupling the magnetic moments with the applied field B0 and
which simply reads

H = −
N∑
i=1

µi ·B0 = −gµB

N∑
i=1

Si ·B0.

(a) What is the state of the system at zero temperature (give a concise answer, without
performing any calculation)? What is the effect of a temperature increase on such a
state?

(b) Calculate the canonical partition function Z and the free energy F of the system.

(c) Show that the average magnetization M of the system reads

M =
N

V

gµB

2
tanh

(
gµBB0

2kBT

)
.

Plot M as a function of the applied magnetic field. Does the system showcase a phase
transition?

(d) One defines the magnetic susceptibility as

χ = lim
B0→0

∂M

∂B0
. (2.1)

Show that χ follows the Curie law

χ =
C
T
. (2.2)

Give an expression of C as a function of the parameters of the problem. Notice that for
weak magnetic fields, one has M = χB0.

2.2 Ferromagnetism

Let us now consider a ferromagnetic interaction between nearest-neighbor magnetic moments.
The Hamiltonian of the system then reads

H = −gµB

N∑
i=1

Si ·B0 − J
∑
〈i,j〉

Si · Sj , (2.3)

where 〈i, j〉 corresponds to a summation over pairs of nearest neighbors i and j on the lattice,
and where J is the ferromagnetic coupling constant (what is the sign of J?).

(a) Within the mean field approximation, one neglects the correlations between the fluctua-
tions of the spins with respect to their mean value 〈Si〉. In what follows, we assume that
each atom has p nearest neighbors. Show that the effective magnetic field Beff exerted
on a lattice site i reads Beff = B0 +λM , whereM is the magnetization of the interacting
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system. Give an expression of λ as a function of the parameters of the problem. Show
that the Hamiltonian (2.3) reads within the mean field approximation as

H = −gµBBeff

N∑
i=1

Si + J
Np

2

(
VM

NgµB

)2

.

(b) Calculate Z and F within the mean field approximation.

(c) Use the results of Part 2.1 to determine the following self-consistent equation, which
determines the value(s) of the magnetization M :

M =
N

V

gµB

2
tanh

(
βgµB

2
(B0 + λM)

)
. (2.4)

Rederive the above result by minimizing the free energy found at question 2.2(b) with
respect to M .

2.2.1 Properties of the system at zero magnetic field

In this part of the problem, we consider a vanishing external magnetic field, i.e., B0 = 0.

(a) How many solutions to the transcendental equation (2.4) can you find? (Use a graphical
method.) Does the system present a phase transition? If yes, give an expression for the
critical temperature Tc.

(b) Determine the magnetization in the low-temperature limit T � Tc, as well as in the
vicinity of Tc (i.e., for 0 < 1− T/Tc � 1).

(c) Calculate the ensemble-averaged energy of the system. Deduce from your result the
corresponding specific heat C. How does the latter quantity behave as a function of
temperature? In particular, what happens for T = Tc?

2.2.2 Properties of the system at finite magnetic field

We now consider the system to be subject to a finite magnetic field (B0 6= 0).

(a) Solve for the self-consistent equation (2.4) graphically. Consider first the case T > Tc,
and then T < Tc. You shall consider that the magnetic field is finite, but weak (with
respect to what?)

(b) Use the previous result to calculate the magnetic susceptibility defined in Eq. (2.1).
Compare to the paramagnetic case and to the Curie law (2.2).

2.2.3 Mean-field critical exponants

From your results above, deduce the mean-field critical exponants, which are defined, in the
vicinity of the critical temperature, as

M(T,B0 = 0) ∼ (Tc − T )β,

C(T,B0 = 0) ∼ |T − Tc|−α,
χ ∼ |T − Tc|−γ .

Compare these results to those of Problem Set 3.
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