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Curved surfaces

Carl Friedrich Gauss

(1777-1855)

Disquisitiones generales circa superficies curvas, 1828

Recherches générales sur les surfaces courbes

General research on curved surfaces



Curved surfaces

2d surface immersed in a 3d Euclidean space

In mathematics, differential surface geometry is the branch of differential geometry

that deals with surfaces (the geometric objects of the usual E3 space, or their

generalization as 2-dimensional varieties), possibly equipped with additional

structures, most often a Riemannian metric. In addition to the classical surfaces of

Euclidean geometry (spheres, cones, cylinders, etc.), surfaces naturally appear as

graphs of functions of two variables, or in parametric form, as sets described by a

family of curves in space. Surfaces have been studied from various points of view:

extrinsically, by focusing on their embedding in Euclidean space, and intrinsically,

by focusing only on properties that can be determined from distances measured

along curves drawn on the surface. One of the fundamental concepts discovered in

this way was Gaussian curvature, studied in depth by Carl Friedrich Gauss (between

1825 and 1827), who demonstrated its intrinsic character.
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Extrinsically and intrinsically curved

A triange on a plane surface A triange on a sphere

A triange on a curved surface

The surface of the central panel and the sphere are both extrinsically curved, but the 

former is intrinsically flat while the latter is intrinsically curved. 

Pythagore:   OK                                      OK                                 not OK

folded sheet of paper



Extrinsically and intrinsically curved

A triange on a plane surface
A triange on a curved surface

folded sheet of paper

If you were a tiny ant moving across the folded paper, able to measure angles and

lengths of lines on the surface, but unable to look outside the paper, it would have no

way of understanding that the surface on which it resides is not a plane. The two-

dimensional geometry defined by the lengths of the intrinsic straight lines is the same

as that of the plane. This geometry is called intrinsic geometry. This is why we say

that the intrinsic geometry of the folded sheet of paper is flat, even though the paper

itself is actually curved.



Extrinsically and intrinsically curved
Given two points on the sphere, the shortest line connecting them on the surface

is a portion of a great circle. These are the intrinsically straight segments of the

sphere.

So straight lines on the sphere define

an intrinsic geometry that differs from

the geometry of the 2d plane.

The shortest way to get from the North

Pole to the South Pole is to follow a

meridian. More generally, any great

circle (i.e. the intersection of the sphere

with a plane passing through center O)

defines a geodesic of the sphere, and

conversely any geodesic of the sphere

is an arc of a great circle.
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An ant moving on the sphere and able to measure the lengths of lines on the surface

but unable to look outside the surface will be able to understand that it is not on a

plane. To do this, all you'd have to do is measure the length of the line drawn by all the

points at distance r from a center O: if the intrinsic geometry is not flat.

When the geometry is not flat, the surface is said to have an intrinsic curvature.
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Extrinsically and intrinsically curved
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Curvature, osculating circle

The osculating circle of a curve C at a given point P is the circle that has the

same tangent as at point as well as the same curvature K. Just as the tangent

line is the line best approximating a curve at a point P (it involves the value of the

first derivative of the function representing the curve C at point P), the osculating

circle is the best circle that approximates the curve (it involves the value of the

second derivative of the function representing the curve C at point P).

K (at P) = 1/R

R

For a circle, curvature is constant and is

characterized by the radius of the circle. It

is 1/R. For any curve, the curvature is

different at each point of the curve.

osculating circle



Gaussian Curvature

tangent plane

Main curvature planes

normal vector

The minimum and maximum curvature values Kmin and Kmax are called principal

curvatures. In general, they are different and, in this case, the planes corresponding

to the two principal curvatures are perpendicular to each other. Their intersection

with the tangent plane defines the principal directions. In the illustration opposite, the

principal curvatures are of opposite sign, since one of the curves turns its concavity

in the direction of the normal vector and the other in the opposite direction.
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Gaussian Curvature

K = Kmin x Kmax Gaussian curvature

For a sphere of radius R, K is constant everywhere and is equal to: 

K = 1/R x 1/R =1/R2
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Gaussian Curvature

Points on a surface are classified according to the Gaussian curvature of the

surface at that point.

A point where the Gauss curvature is strictly positive is said to be elliptical.

Such are the points of an ellipsoid, a two-sheet hyperboloid or an elliptical

paraboloid. The two principal curvatures are of the same sign. If, moreover, they

are equal, the point is an umbilicus. Such are the points of a sphere, or the two

vertices of an ellipsoid of revolution.

A point with zero Gaussian curvature is said to be parabolic. At least one of the

principal curvatures is zero. This is the case for points on a cylinder or cone, since

the curvature along a generatrix of the cylinder passing through the point is zero*.

This is also the case for any developable surface. If both principal curvatures are

zero, the point is a flat. In the plane, all points are flats.

A point where the Gaussian curvature is strictly negative is said to be

hyperbolic. At such a point, the two principal curvatures are of opposite sign. This

is the case for all points of a one-sheet hyperboloid or hyperbolic paraboloid.

*A cylinder is intrinsically flat; example of a folded sheet of paper.
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Gaussian Curvature

Hyperbolic (K<0)Elliptical (K>0)

Some points on the torus have

positive curvature (elliptical points),

while others have negative curvature

(hyperbolic points).
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Curved space
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Curved space

symmetric tensor
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Covariant derivative
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Covariant derivative

:
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Covariant derivative

Christoffel symbols of the first kind

Christoffel symbols of the second kind
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Covariant derivative
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Covariant derivative
>

>
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(1853-1925)

Gregorio Ricci

Covariant derivative
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(1829-1900)*

* Professor at the University of Strasbourg from 1872 until his retirement in 1894.

Covariant derivative
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Covariant derivative

22



23

Geodesics
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Geodesics

Note: The geodesic equation (42) can be obtained using the principle of least action, 

with S given by (38) and varying with respect to the metric tensor gij. 
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Geodesics

The shortest route from the North

to the South Pole is to follow a

meridian. More generally, any

great circle (i.e. the intersection of

the sphere with a plane passing

through the center O) defines a

geodesic of the sphere, and

conversely any geodesic of the

sphere is an arc of a great circle.



26

Parallel transport

cycle
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Parallel transport
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Parallel transport
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Parallel transport
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Curvature
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Curvature

(*)
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Properties of the curvature tensor

(1856-1928)

Luigi Bianchi
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Ricci tensor and scalar curvature
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Riemannian space
Examples of Riemann spaces
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Riemannian space

M
M

u1 u2
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Riemannian space
Definition of a Riemann space

(3)

(3)

(3)
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Riemannian space

(3)

‘
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Riemannian space

‘
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Exercices
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Exercices

> Suppose r = cte = a. We have dr = 0. Space of dimension 2.

> Only the two-dimensional case doesn't produce monstrous calculations. The indices can only take two

values, and the special cases derived from symmetry relations cover all components of the Riemann-

Christoffel tensor.

>

>
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Exercices

Using symmetry arguments we have:

→ Four independent coefficients to calculate

Curvilinear coordinates 

Metric tensor

Christoffel symbols



42

Exercices

Expanding these summations one gets:



Exercices
Ricci tensor

Scalar curvature

→ Riemannian space



Exercices
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Exercices

→ Conclusion?



Exercices
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Exercices

we obtain

4) Using and

→ Conclusion?



Exercices
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Exercices

1) Let's determine the values of the Christoffel symbols along the trajectory;

We have for

The contravariant components of acceleration are as follows:

We find the classical expression for the acceleration of a particle travelling a 

circular trajectory at constant speed.



Exercices

2) Christoffel symbols along the trajectory:

The contravariant components of acceleration are as follows:

The covariant components of the fundamental tensor along the trajectory are :

The radius of the circle covered is leading to


