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Curved surfaces

2d surface immersed in a 3d Euclidean space

In mathematics, differential surface geometry is the branch of differential geometry
that deals with surfaces (the geometric objects of the usual E; space, or their
generalization as 2-dimensional varieties), possibly equipped with additional
structures, most often a Riemannian _metric. In addition to the classical surfaces of
Euclidean geometry (spheres, cones, cylinders, etc.), surfaces naturally appear as
graphs of functions of two variables, or in parametric form, as sets described by a
family of curves in space. Surfaces have been studied from various points of view:
extrinsically, by focusing on their embedding in Euclidean space, and intrinsically,
by focusing only on properties that can be determined from distances measured
along curves drawn on the surface. One of the fundamental concepts discovered in
this way was Gaussian curvature, studied in depth by Carl Friedrich Gauss (between
1825 and 1827), who demonstrated its intrinsic character.




Extrinsically and intrinsically curved

A triange on a plane surface A triange on a sphere

a’+b = ¢

A triange on a curved surface
folded sheet of paper

Pythagore: OK OK not OK

The surface of the central panel and the sphere are both extrinsically curved, but the
former is intrinsically flat while the latter is intrinsically curved.



Extrinsically and intrinsically curved

A triange on a curved surface
folded sheet of paper

A triange on a plane surface

If you were a tiny ant moving across the folded paper, able to measure angles and
lengths of lines on the surface, but unable to look outside the paper, it would have no
way of understanding that the surface on which it resides is not a plane. The two-
dimensional geometry defined by the lengths of the intrinsic straight lines is the same
as that of the plane. This geometry is called intrinsic geometry. This is why we say
that the intrinsic geometry of the folded sheet of paper is flat, even though the paper
itself is actually curved.



Extrinsically and intrinsically curved

Given two points on the sphere, the shortest line connecting them on the surface
IS a portion of a great circle. These are the intrinsically straight segments of the
sphere.

The shortest way to get from the North
‘[ Pole to the South Pole is to follow a
. meridian. More generally, any great
s S circle (i.e. the intersection of the sphere
/) N with a plane passing through center O)
[ A - defines a geodesic of the sphere, and
[y S e ¢ conversely any geodesic of the sphere

l B* | o0 I IS an arc of a great circle.

So straight lines on the sphere define
an intrinsic geometry that differs from
the geometry of the 2d plane.



Extrinsically and intrinsically curved

An ant moving on the sphere and able to measure the lengths of lines on the surface
but unable to look outside the surface will be able to understand that it is not on a
plane. To do this, all you'd have to do is measure the length of the line drawn by all the
points at distance r from a center O: if P # 27r the intrinsic geometry is not flat.
When the geometry is not flat, the surface is said to have an intrinsic curvature.




Curvature, osculating circle

The osculating circle of a curve C at a given point P is the circle that has the
same tangent as at point as well as the same curvature K. Just as the tangent
line is the line best approximating a curve at a point P (it involves the value of the
first derivative of the function representing the curve C at point P), the osculating
circle is the best circle that approximates the curve (it involves the value of the
second derivative of the function representing the curve C at point P).

K (at P) = 1/R

C
/—\ For a circle, curvature is constant and is

characterized by the radius of the circle. It
is 1/R. For any curve, the curvature is
R different at each point of the curve.

osculating circle



normal vector

Main curvature planes

\E

tangent plane

The minimum and maximum curvature values K_., and K__, are called principal
curvatures. In general, they are different and, in this case, the planes corresponding
to the two principal curvatures are perpendicular to each other. Their intersection
with the tangent plane defines the principal directions. In the illustration opposite, the
principal curvatures are of opposite sign, since one of the curves turns its concavity
In the direction of the normal vector and the other in the opposite direction.




K= Kmin X Kmax Gaussian curvature

For a sphere of radius R, K is constant everywhere and is equal to:

K=1/Rx 1/R =1/R?
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Gaussian Curvature

Points on a surface are classified according to the Gaussian curvature of the
surface at that point.

A point where the Gauss curvature is strictly positive is said to be elliptical.
Such are the points of an ellipsoid, a two-sheet hyperboloid or an elliptical
paraboloid. The two principal curvatures are of the same sign. If, moreover, they
are equal, the point is an umbilicus. Such are the points of a sphere, or the two
vertices of an ellipsoid of revolution.

A point with zero Gaussian curvature is said to be parabolic. At least one of the
principal curvatures is zero. This is the case for points on a cylinder or cone, since
the curvature along a generatrix of the cylinder passing through the point is zero".
This is also the case for any developable surface. If both principal curvatures are
zero, the point is a flat. In the plane, all points are flats.

A point where the Gaussian curvature is strictly negative is said to be
hyperbolic. At such a point, the two principal curvatures are of opposite sign. This
IS the case for all points of a one-sheet hyperboloid or hyperbolic paraboloid.

*A cylinder is intrinsically flat; example of a folded sheet of paper. 11



Gaussian Curvature

SHBRYE RS SR

e G T e R N G SR
Elliptical (K>0) Hyperbolic (K<0)

Negat‘i‘Vé'é'Urvatum |

Some points on the torus have
positive curvature (elliptical points),
while others have negative curvature
(hyperbolic points).

Postive Gupvature
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I. CURVILINEAR COORDINATES

Consider the transformation of one 4-dimensional coordinate system (we place ourselves di-

rectly in 4-dimensional space-time) into another one (z°, !, 22, 2%) — (2/°, 2%, 2/?, 2"*) we have

331 — fﬁ(xfojmfl’xfzjxlg) ’ (1)

where f* are certain functions.
Example (in 3d): 2° = z,2! = y,2°> = zand 2° = r.2/' = 6,22 = p. We have (x =
r cos 6 cos g, x = rcosfsinp, z = rsinb).
The coordinate differentials are transformed according to the formulas
dx’

~ Ox*

dx’ dx'® (2)

We call contravariant quadrivector any set of four A’ quantities which are transformed in a change
of coordinates as the differentials of those coordinates. Thus,

_ox

o Ox'*

Al Ak (3)




Similarly we have

ax,'k
A, = A 4
7 awz k ( )
o 02t 0xF
Azk — Hm
5 D (3)
= .. (6)

It is the natural generalization of quadrivectors and 4-tensors definitions in Galilean coordinates.

The square of the length element in curvilinear coordinates is a quadratic form of dx’

ds® = g;;da'da’ (7)

/
where and symmetric tensor

Note: the contraction of g;; by the contravariant tensor dx'dz’? gives a scalar. Therefore g; jisa

covariant tensor called the metric tensor. ds”* = g} ;dz"dz" = ds*.

Volume element

In Galilean coordinates we had: dQ2 = da'dx'dz*dx?®. For curvilinear coordinates we have:

dQY = \/—gdQ

with g = det[g;;]. It is related to the Jacobian of the transformation.
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II. COVARIANT DERIVATIVE

In Galilean coordinates dA; are the components of a vector (e.g di” = (dx, dy, dz)) and gﬁ,:‘ are

the components of a tensor.
In curvilinear coordinates it is not the same. This is because dA; is the difference between
vectors at different points in space, and vectors at different points in space transform differently

since the coefficients in the transformation formulas are functions of the coordinates (e.g. A’ =

S AT,
proof
A; %if A, (8)
dA; = %’Z k dA 9)
— %3; f dA (10)

Therefore dA; do not transform like a vector.

15



Note: If % = 0 then z'* are linear functions of z* (e.g. Lorentz transformation) and dA;

transform like a vector.
When comparing two vectors that are infinitely close, one must be transported parallel to the

point when the other is located (in mathematics it is called parallel transport).

Let us consider a contravariant vector. A’ are its components at the point of coordinates z* and
A + dA? at the neighboring point; let’s transport (parallel) the vector A’ to the point infinitely
close x' + dz'; let § A’ be its increase. The difference D A* between the two vectors located at the

same position 18

DA' = dA* — §A". (11)

Since the sum of two vectors must transform according to the same law, the increase must be linear
in the components. So we have

SA" = —T% Ardat (12)

where T, (z");

16



The form of I' depend on the coordinate system.

¢, is called the connection associated with the metric

For a Galilean coordinate system I' = 0.

I';; 1s not a tensor! A tensor that is zero in one coordinate system is zero in any other

: /i oz dx™ dx™ g
coordinate system So that we have(T", 57 57 9 L m

: . . ) ” V - kl
I'},; are called Christoffel symbols of the second kind — Nete I: Instead of I and I, we sometimesuse{

and
i

ki

i

Note 2: Bear in mind that Christoffel symbols are not tensors. This is why we must differentiate

We have
i DA i
0A;
DA; = ( o I‘ﬁAk) da' .
proof

Let be A; and B*. We have §(A;B?) = 0. Therefore
B'SA; = —A;0B' = I'}, B* A;da’

this is true whatever B leading to 0 A; = 'Y Apdx!. We define also

Christoffel symbols of the first kind  [Tixt = gimI; -

between the two types of symbols.

(13)

(14)

(15)
(16)

(17)

17



In DA; = (%

vector) gives a vector.

— T} A ) dx' the expression in brackets is a tensor since its product with dz' (a

Generalization of the notion of derivatives. These tensors are called covariant derivatives of the

vectors A® and A;. We define

DA" = Alda' DA; = Ayda!|.

In Galilean coordinates '}, = 0 leading to DA* = BA% rdat.

Covariant derivative of a tensor

DA™ = dA™ — A" = Alfda'

with
) O A ) .
Af = - + D A T A
One also obtains
i BAZ m At 7 m
kil = r —IjA + 10 AL
0A; " "
At =~ = T At = T Aim

(18)

(19)

(20)

2D

(22)
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> It is possible to generalize to all orders.

> If @ is a scalar field, since dp = 0 = Dy = dp = gm—ﬁd:rk = Oppdz”.

(A;By)y = Ay B + A; Byy.

A;_k _ QMA?:;E and Ai;k — gkIA?g-

1

w =L and L g = L.

» n? —@ different quantities ofa rank-2 symmetrical tensor
» 4 times the previous result (for n=4; 4x10=40)

There are 40 different quantities I'},.

proof of Iy = I'y:

Since A, is a tensor it implies that Ay.; — A;. is also a tensor. Suppose A; = gm‘%. We have

8A; _ 920 __ 9A,
dzk T oxtdzk T Ot

Using the definition of the covariant derivative we have

15
Api = A = (T = Th) 55 - (23)

In Galilean coordinates the covariant derivatives are the ordinary derivatives 1.e. the first member
of the above equation is null. But since Aj.; — A;.x is a tensor its nullity in one coordinate system

implies its nullity in any other system.

19



Christoffel symbols under a change of coordinates (without proof).

L O0xt 9z ox’?  9*a’™ Oxt
" ox™ Jxk Ot i oxrkort o™
Link between the Christoffel symbol and the metric tensor.

We have

r,=r

Dgz'j =0.

It 1s the Ricci’s theorem.
Gregorio Ricci

proof We have DA; = g DA and A; = g, A*. It implies

Comparing with D A; = g;. D A it leads to
A Dgge = 0 VAR
= Dgg:k =0

= Giky =0 .

(1853-1925)

DAZ =D (gikAk) = g,_'kDAk + AkDgz'k .

(24)

(25)

(26)

(27)
(28)
(29)

20



We can therefore express Christoffel’s symbols in terms of the derivation of the metric tensor.

Let’s write these derivatives by circularly permuting the indices 7, £, {:

g
8:;‘ =L eiatLen
I
Bac’: e b ol
Ok

__05:]10" = Dtk — Dia -

By using I'; iy = I'; ;1 we obtain

ox!

1 [ 0g;
Fi,kl=§( .

9ga G
o 0n

b

and with '}, = ¢""T",,, ;, we have

Ogmi  OGri

i L im (agmk

k= 59 9z

ork  dxm

}-

(1829-1900)*

* Professor at the University of Strasbourg from 1872 until his retirement in 1894.

(30)
€3

(32)

(33)

(34)
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dA; DA
o azf 1S an antisymmetric tensor (e.g. Fj in em). In

Note 1: In cartesian coordinates

curvilinear coordinates this tensor reads A;., — A;.;. However, given that I}, = I'/, and using the

definition of the covariant derivative we have that

0A; 0A;

Ae"k_Ak'i:__ — .
’ T ozk Oxt

(35)

Note 2: It is easy to generalize the electromagnetic field equations of special relativity (SR) so

that they can applied in any 4-dimensional curvilinear coordinate system, 1.e. in the presence of a

gravitational field. In SR F};, = 3‘4 — 2% Jeading in GR to Fj, = Ay, — Ay = gﬂ, 24 Thus

Fj, and A; do not change. Therefore the first group of Maxwell’s equations conserves its form:

Fit + Flige+ Fia;i = 0 < %™ 20 — (). For the second group, things are slightly more complex.

Lorentz equation

d i _ D i '
(SR) —= = qF*u, = (GR) P gFity, (36)
T dr
dn’ . .
= (GR) —= + Tjyutu' = gF™u, (37)

22



Motion of a particle in a gravitational field

In SR, the motion of a free material particle is determined by the principle of least action

6S:—m65/ds:0.

(38)

Recall that the distance between two events (1 and 2) in Minkowski space-time is given by s, =

[02(t2—t1)—(:1?2—:1:1)2—(yg—yl)Q—(zg—zl)Q]lﬂ and A1 = To—T1 = :12 dt\/ 1-— ﬁ = %de

We have also s = cdT = cdt/~| where dr is the infinitesimal proper time in the moving frame of

reference.

By writing the Euler-Lagrange equation, we can find the equation of motion. Instead, it’s

simpler to find the equation of motion of a particle in the gravitational field by suitably generalizing

the differential equations of free motion of a particle in SR i.e. in a 4-dimensional Minkowski

space. These equations can be expressed as follows:

di' Jds = 0 = di' =0

(39)

where 4’ = dz'/ds is the normalized 4-velocity (@' = u'/c). In the present case (within the

framework of SR), this corresponds to a straight line. In the ordinary 3d-space this translates into

a uniform rectilinear motion (acceleration is zero i.e. dv'/dt = 0, so speed is constant).

23



Clearly, in curvilinear coordinates, this equation can be generalized as follows:

D' = 0= di’ + Tha*dx' =0 (40)
d*z" . dx® da!
o Tar Mg a0 @b
i d*a! - dx* dot i
1 o — 1
o i T T .

% is the 4-acceleration of the particle. Therefore one can call the quantity —mI'; ufu! the 4-

force acting on the particle in the gravitational field. The tensor g;; plays the role of the potentials
of the gravitation field: its derivatives define the I'}, field.

—

d?z?

.
ds?

is the 4-acceleration of the particle
— « —mI},u*u' the 4-force acting on the particle in the gravitational field

* The tensor g;; plays the role of the potentials of the gravitation field

=

Note: The geodesic equation (42) can be obtained using the principle of least action,
with S given by (38) and varying with respect to the metric tensor gj. 24



The geometric properties of figures drawn on the surface of a sphere are no longer those of

Euclidean geometry. Thus, the shortest path from a point A to another point B, on the spherical

surface, is constituted by an arc of a great circle passing through points A and B. For the sphere,

as straight lines in the plane. They are the sphere’s geodesics.

great-circle arcs play the same role

The shortest route from the North
to the South Pole is to follow a
meridian. More generally, any
great circle (i.e. the intersection of
the sphere with a plane passing
through the center O) defines a
geodesic of the sphere, and
conversely any geodesic of the
sphere is an arc of a great circle.

25



Parallel transport, connections, curvature

Classical Euclidean geometry is based on the notions of parallelism and rigid displacements.
A vector in a plane, defined at a point M on a line and making an angle ¢ with the line, retains the

angle it makes with the line if moved parallel to itself along the line.

o
=
l

26



If ' = z'(s) are the parametric equations of a curve (s being the curvilinear abscissa measured

from a given point) then the vector v* = dz’/ds is the unit vector carried by the tangent to the
curve. If the curve under consideration is a geodesic, we have Dv' = 0 along this curve. This
means that if we transport the vector v* in parallel from a point z* on the geodesic to another point
z' + dx' on the same geodesic, it coincides with the vector u’ + du’ tangent to this line at the point
x' + dx'. Consequently, in parallel transport along a geodesic, the tangent remains unchanged.
What’s more, the angle between two vectors is clearly invariant when they are transported in

parallel. We can therefore assert that during the transport of any vector along a geodesic curve, the

angle between this vector and the tangent to this curve is constant.

e

geodesic
27



To illustrate parallel transport in any space, let’s take the example of the sphere S2. Consider a
spherical triangle (whose sides are geodesics) formed by two half-meridians VA and N B and an

equatorial arc AB, as shown in the figure below.

28



We’ve seen that parallel transport of a vector along a geodesic preserves the angle it makes with
it. If we move vector V/, tangent to arc N A at V, along arc N A and then along arc AB, we obtain
the vector I_/;

Parallel transport of 1% along arc N B gives vector V1, which makes an angle with Vs equal to
angle AN B. The angle between V; and V}, is not zero, as it would be if the same thing had been

done in a plane. This example illustrates the role of the curvature of the surface and that the result

of a parallel transport depends on the path followed.

29




Let’s establish the general formula determining the variation of a vector during its parallel

transport along an infinitesimal closed contour.
This variation AA; may be expressed as § 0 A, where the integral is taken from the given

contour. Using §A4; = I'* A.dz' we have

AA, = j{ I, Ada’ . (43)

Note: The vector A; under the integral sign varies as it travels along the contour.

Applying Stokes’ theorem to the curvilinear integral, noting that the area bounded by the con-

tour under consideration is an infinitesimal quantity A f'™ (infinitesimal surface element, dz' A

dx™), we obtain

1[0(T},,A)  0(T},A) 1
AAL = — m — Af™ 44
T2 oaf dz™ / 44)
1 [Or ari, C0A, AT
o | Dhmg Pk i TR i OB A g 45
2| 02! ox™ L km oz “c’?ac"”] / (45)

Using 2% = I} A,, (related to 0A; = I' A dz' must be admitted) we get

1
Ady = 5 Rjy A i (46)




where R},  is a 4th-order tensor defined by

i

klm —

Iy, Oy

i

n _Fi n
6.’1’?! orm nl~ km nm- kl *

(47)

The tensor character of R results from the fact that in the above expression of A A, in the left-hand

side we have a vector which is the difference of the values of a vector at one and the same point.

The tensor 1s called the curvature tensor or Riemann tensor.

We can easily obtain an analogous formula for the contravariant vector A* (or the contravariant

components of a vector):

1 .
AAF = —§Rk AIAfIm

ilm

(48)

When we take the covariant derivative of a vector A; with respect to z* and z! twice, the result

of the derivation generally depends on the order of derivation, unlike for ordinary derivatives. In

this case, we have

(*) Aipy = Ajpgand Afk;: = A‘_fﬂ are the second covariant derivative. We have A":k;_{ =V, (3;CA’: + I‘jkAj) and D*A" = A} dakdz'.

T
Az’;k;l - Ai;l;k = AmRiki :

(49)
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From (47) one has R}, = —R}, .

We have: R}, + R, + Ri,.. = 0.

Ritim = 9ginR}y,, which leads to Rigpm

gﬂp ( }:.!Fi}m o Fﬁml—‘z{)'

1

azgim

Q’k:

oxkox!

+ dx?

orm™m

_ 329 il _ 82 gkm _|_
Axkdz™ dzrtdz!

Riim, = —Riitm = —Rigmy and Ri, = Rimir. Therefore all components of R, for

which 7 = k or [ = m are zero.

Rikim + Rippt + Ripi = 0

Bianchi identityiRR};

ikl:m + Rzmk! + Rﬁlm k

= 0.

Luigi Bianchi

(1856-1928)

32



The Ricci tensor 1s defined as

Rix = ¢"™ Riimk = Ry, - (50)
Using (47) one get’s z E
or;,  Jr;

Ry = =4 = o + Tl = T T (51)

This tensor is obviously symmetrical i.e. ;. = Rp;.

Finally, by contracting F;;. one obtains the invariant

R = g*Ri. = ¢"¢"™ Ririm - (52)

R 1s called the scalar curvature of space.

33



Examples of Riemann spaces

Sphere - Consider a sphere of radius R, area S, located in ordinary three-dimensional space.

The Cartesian coordinates x, y, z of a point M on the surface .S can be expressed, for example,

in

terms of the spherical coordinates, longitude ¢ and colatitude #. The sphere is fully described if

0<f#<mand 0 < p < 2.

Two such parameters, used to determine a point on the surface of the sphere, are called curvil

n-

ear coordinates on the surface or Gaussian coordinates. Any other parameters, u, v, can of course

be chosen as curvilinear coordinates on the surface.

The linear element of the surface ds?, square of the distance between two infinitely neighboring

points M and M’, is written in terms of spherical coordinates, for i =constant :

ds® = R%d#* + R*sin® Odyp? .

(1)

We obtain an expression for the linear element as a function of just the two Gaussian coordi-

nates # and .

Riemannian fundamental tensor - Being described using two parameters, the surface of a sphere

(considered as a two-dimensional space) is an example of a two-dimensional Riemann space

34



The linear element (1) is of the general form:

ds? = gijduiduj . (2)

where du' are the contravariant components of the vector dM = MM’ with respect to the natural

reference frame (M. é;). Posing yl = 6, u?2= ¢, we obtain by identification of formulas (1) and

2): -
[ .
g = R2 yf ‘ / 4
7 gi2=9an =0
5 goy = R?sin’6 . /

The quantities g;; with i, j = 1, 2, constitute the components of a tensor which is the fundamental
tensor of the Riemannian space formed by the surface S. This is an example of a Riemannian

fundamental tensor or Riemannian metric.

Exercise 1: First of all replace R by a in the above expressions. From the g;; values compute the
six (justify why six) possible different I'; ; (there will be 40 in four dimensions). Then compute
I'; x and R},,,,. How many elements of this tensor are non-zero? Finally compute the components

.. i 35
of the Ricci tensor and the scalar curvature. Conclusions.



Definition of a Riemann space

A Riemann space is a variety to which a metric has been attached. This means that, in each
part of the variety, represented analytically by means of a coordinate system (u'), we have given

ourselves a metric defined by the quadratic form

ds® = gi;du'du’ . 3)

The g;; coefficients are not entirely arbitrary and must satisfy the following conditions:
* The g;; components are symmetrical: g;; = g;i.
* The determinant of the matrix [g,;] is non-zero

* The differential form (3), and therefore the concept of distance defined by g;;, is invariant to

any change of coordinate system.

* All partial derivatives of order two of g;; exist and are continuous (we say that g;; are of

class C2).

A Riemannian space is therefore a space of points, each marked by n coordinates u*, endowed
with any metric of the form (3) verifying the above conditions. This metric is called Riemannian.
If the metric is positive definite, i.e. g;jv*v’, for any non-zero vector 7, the space is said to be
properly Riemannian. In this case, the determinant of the matrix [g;;] is strictly positive and all its

36

eigenvalues are strictly positive.



How do we distinguish between a Euclidean and a Riemannian metric? First, let’s define what

we mean by a Euclidean metric.

We know that every Euclidean space has orthonormal basis such that g;; = d;;. By definition, a
metric of a space is said to be Euclidean when any fundamental tensor of this space can be reduced,
by an appropriate change of coordinates, to a form such that g;; = 0;;. Thus, the fundamental

tensors defined by the linear elements (3) cannot be reduced to a Euclidean tensor. The definition

of Riemannian spaces shows that Euclidean space is a very special case of such spaces. There is

only one Euclidean space, whereas an infinite number of Riemannian spaces can be invented.

Let’s ask the key question: when is intrinsic geometry defined by a flat g;;(z") metric field?

Certainly, the constant metric field g;;(z*) = d;; defines a flat metric, because in this case the
distances are given by ds® = 5z-jd:1:“'d:sj which means that the coordinates z* are the Cartesian
coordinates of a Euclidean space. But if we introduce new coordinates z’* the resulting metric
gi;(z"") = %ﬁ%&d is also flat, since the intrinsic geometry doesn’t change by changing the
coordinates. Hence the question: how do we know whether a given g;;(z") defines a flat intrinsic

‘?
geometry’ 37




Now, if space is flat, we can choose global Cartesian coordinates. In these coordinates g;; = 0;;

and the expression cancels out insofar as the quantities I' cancel out, since they consist solely of
derivatives of the metric, hence Rj};; = 0. Now R}, is a tensor IR: if it cancels out in one coordinate
system, it cancels out in all the others. We have therefore found a way of testing whether the space

1s flat: it must satisfy R}, = 0.

Riemann was able to show that R}, = 0 is not only necessary but also sufficient for space

to be flat. In other words, it is possible to put the metric into g;;(z"') = d;;-form in a region. In
more mathematical terms, R}, = 0 are the integrability conditions for solving z* = f*(z") when

gi;j () is given.

We’ll call R7;,; the Riemann tensor or Riemann curvature tensor. It generalizes Gaussian cur-
vature to the intrinsic geometry of spaces of arbitrary dimension. This is the beautiful result of

Riemann’s thesis.

Exercise 2: Same as Exercise 1 but for a three dimensional sphere (7, 6, ¢). Conclusion.
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The line element for an infinitesimal displacement from r, 6, p to r + dr, 0 4+ dfl, ¢ + dy is

dM =dré, +rdiég +rsinfdpe, ,
where
€, =sinfcospx + sinfsin 4 + cosh z,
€g = cosfcosp T + cosfsiny —sinf 2,
€, = —sSinQT +cospy

are the local orthogonal unit vectors in the directions of increasing r, ¢, and ¢, respectively, and

39

T, 1, z are the unit vectors in Cartesian coordinates.



> Note: (€, €y, €,) is not a local basis since dM # dbég + dpe, + dré,. Therefore one must

define new vectors: €1 = rég, €2 = rsinfle,,é3 = €,. In this case we have dM = du'é; with
du! = df, du® = dp, du® = dr.
> Using dM = du’€; we have ||dM||? = ds? = g;;du*du’ with g;; = & - €.

> Only the two-dimensional case doesn't produce monstrous calculations. The indices can only take two
values, and the special cases derived from symmetry relations cover all components of the Riemann-

Christoffel tensor.

> Suppose r = cte = a. We have dr = 0. Space of dimension 2. 20



g =a®> gp=a’sin’f gy =g12=0

gl=1/a2 ¢2= - Si1n . ' =g2=0

r'‘'y=0 I*;=0
I''yy,=0 I?%,=cotanf
F121 =0 F221 = cotan @

oy = —sinf cos M9 =0

Using symmetry arguments we have:

1 2 1 2
Ryni =R =Ra22=R02=0

1 2 1 2
Ronn=R911 =R 122 =R"122=0

Curvilinear coordinates

Metric tensor

Christoffel symbols

—> Four independent coefficients to calculate
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Rujn=0kT"; — il + T T — Ty T

Expanding these summations one gets:

1 pl
R y19=—R191=""--
BTty — T+ (Ma My + Toa T?yy) — (M Thig + Doy Ty0)
e =0—=0+(04+0)—(0+0)=0

R*j19=—-R*i1="---
RI?y — I+ (TPa My + TP T%y) — (P Thg + TP T%0)
1 —cos®d
co.=0—0pcotanf + (0 + 0) — (0 + cotan f cotanf) = —cgsg =1
sin
Rly91 = —Rlyg=---

=019y — I gy + (D Thag + Tl Tog) — (Mo Doy + g I'%y))
oo =00 (—sinf cosf) — 0+ (0+0) — [0+ (—siné cosf) cotan b
cor = (—cos® 0 +sin?f) + cos? § = sin? §
R%y1 = —R%9 =
011290 — 0oy + (I 11 Thog + T%9 T99) — (T2 Ty + %9 T'%y))
co=0—-04(04+0)—(0+0)=0 42



Ricci tensor Rj. = R}

Jimm

Rii=RYni+RY1p=0+1=1
Ri2 = RY91 + R*120=0+0=0
Ry =R'9;1 + R%15=0+0=0
Ry = nggl + Rzggg —sin?# + 0 =sin’ @

Scalar curvature R =¢"™" Rmn

1 1
_ 11 22 - - 2
R—g Rll‘l—g R22—§'1+m51:ﬂ9 #0

- Riemannian space









1 0gir | 09i1  Ogi

Lig = 2 (62:" ork ozt )’ (33)
i 1 i (0G| Ogm  Ogi

k=59 ( ozt T 0k am) (34)

1

- Conclusion?
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V. EXS

The spherical coordinates are defined by: (x = rsinfl cos @, y = sinf/sin ¢, z = r cos ).
1) * Calculate the line element ds.
2) * Obtain the components of the metric tensor g;;.
3) * Calculate the Christoffel symbols of the first kind in spherical coordinates.

4) * Calculate those of the second kind.

1) Note the coordinates ut =71 u
dM = du'é; with &, = é,, €, = rég and €3 = rsin fé, alocal basis.
We have: dM - dM = ds? = gijduiduj with g;; = €; - €;.

2) Tltleadsto: g3 =1, goo = 12, g33 = r*sin*f and g;; = 0if i # J.

3) We then have: 0,9y = 2r, 01933 = 2r sin® # and 9yg33 = 212 cosf sin 6.



Applying the formula
Iy = % (Orgij + Oigjk — OG1i)
we obtain
Iopo=—71 ; D303 = —1r?sinfcosf ; I'sy;3 = —rsin’f

Iigg =lggr =71 3 Dizgz =133 =7 sin® @ ; Dggo = Tggg = r? cos 0 sin 0

4) Using I‘k j= = g" Lt and gikg"™ = ‘5f

we obtain
leg =T F221 — F122 =1/r ; F331 = F133 =1/r
', =—rsin®f ; I,%, = —sinfcosf ; I,°,=TI,", = cotand

- Conclusion?



VL EX6 A%t . dz* da!

P

0

A particle moves along a trajectory defined in spherical coordinates (7, #, ). Determine the

contravariant components a” of the acceleration @ of this particle for the following trajectories:

1) e« The trajectory is defined by: r = ¢, § = wt, p = 7 /4 where { is the time.

2) e« The trajectory is defined by: r 3@,&'4 7 /4, ¢ = wt. Calculate the norm of the acceleration

and show that we find the b assic formula: ||a@|| = rw?.




1) Let's determine the values of the Christoffel symbols along the trajectory;

We havefor r=c¢, 0 =wt, p =7/4

1 1
>, =r’=—=-; I}’ =I’===-; I’ =TI, = cotanwt
2 1 12= 1 L 3l 137 1 o 32 2 3
11 , 1 _ .2 : 2 _ _
I'y'oy=—u =—c ; I's'g=—csin"wt ; I';% = —sinwicoswt

The contravariant components of acceleration are as follows:

PP Orbit
d? ut du’ du® du? )\’ dud\? {  Axis N
1 1 1 1 2 i W
a' = +T =0+7T — ) +T — | =—cw : ) :
dt? PRar dt “(dt 33\ dt ! /
Centrlpetal
o force ’,
a2 —0 - a3 —0 Velocity oo

We find the classical expression for the acceleration of a particle travelling a
circular trajectory at constant speed.

d?u’ i du® du
W= et =00 = Tl




2) Christoffel symbols along the trajectory:
| 1 1
>, =I% = - == I, =T% = == r,°, =1,% =cotan7/4 =1
I, =—-u'=—c ; T'y=—csin®*n/4=—(c/2) ; T;%° =—(1/2)

The contravariant components of acceleration are as follows:

d? ul du? duk du? )\ dud ) 2 cw?
1 . e (2 p () g
CTIE TP T W 0+22(dt)+33(dt) >

1 2 3\ 2 2
o —0+2r,2, LI o (d”) — X . P#=0

dt dt TP\ de 2
The covariant components of the fundamental tensor along the trajectory are :

gu=1: gu=c ; g= 02/2 d'ou |la|| =+/gija'a = cwz/\/i

The radius of the circle covered is 7 = csin (7/4) = ¢/v/2  leading to

lall = cw?/v2 = re?



