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Ill) Theory: [g;] link between geometry and gravity
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“‘Geometry tells matter how to move, and matter tells geometry how to curve”

To find the equations determining a gravitational field, one must first determine the action S,

for this field. The equations are then obtained by varying the sum of the field and particle actions

with respect to g;;.

Field equations

® The S, action, like the electromagnetic action Sy;.;q, must be expressed as a scalar integral
[ H\/—gd) extended over all space and between two values of the time component z°. We
remind you that d) = dz°dz'dxr?dz® = cdtdV and g = —1 for SR. g = [g;]

® The gravitational field equations must not contain derivatives of field potentials of order greater
than 2, as is the case for the electromagnetic field equations (A, plays the role of g;;): 0, F*" =
poJ” with F5 = 0, A5 — 05 A,.

@® Since the field equations are obtained by varying the action, the H expression must not contain

derivatives of ¢g;;. greater than one. So H must contain only the tensor G and the symbols T'.

@® Unfortunately, the quantities g;;. and I}, alone cannot be used to form a scalar. ‘




@ There is, however, a scalar R - the curvature of 4-space - which admittedly contains the metric

tensor & and its first and second derivatives, but only linearly.

It is possible to simplify the expression of S, by eliminating the second derivatives 8°g;;. /01?927

involved in the R invariant. (*)

After this simplification, the integrand of S, will contain only the tensor G and the Christoffel
symbols I'. We have

5 / N o f H/=5d )

with

H(g,09) = g* (T Ty, — Tl - 2)

(*) The demonstration is quite difficult. It can be found in "Modern Geometry - Methods and Ap-
plications”, Part I. The Geometry of Surfaces, Transformation Groups, and Fields (B. A. Dubrovin
, A. T. Fomenko , S. P. Novikov). The main tool is the Stokes’ theorem.




We can therefore write:

55, — 5 / Hy/=gdQ — ‘i o f Ry/=gd | 3)

167TG
where G is called the universal gravitational constant measured in N.m*/kg®. Verify that S, has

the dimensions of an action.

Starting from 65, = — =0 [(H/—g)dS2 we can easily obtain the Euler-Lagrange equations

].G‘H'G
as
. O(Hy=g) 0 9HV=9) | ¢ i
589—1%6,/{ R P i 5g*dQ . )

After calculation, one finds:

1 JoHy—g) 0 0HV=g9)| |, 1
H{ R R }R,k giR (5)
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Action of the matter

58, = 2% / Tibg™®/—gd2 , (6)

where T is the stress-energy tensor of matter. Gravitational interaction only comes into play for

bodies with sufficiently large masses. The expression |7}, = (p + €)u;ur. — pg;r should be used,

where ¢ is the energy density of the body (e/c? is the mass density, i.e. the mass of the body’s

/ ”proper” unit volume, i.e. the volume in the frame of reference where the body element is at rest)
and p is the pressure

Note: in the presence of electromagnetic fields 7;; is the sum of the total stress-energy tensor

including the one coming from the electromagnetic field.



If we define

one get’s

C

S, = % / Av=giol— 55 -1 f {6(A‘/__g) _ 0 9AV—g) } 5g™dQ . (7)

dg* ozt 9oy

We have used that

Y}'If:k — O:

Einstein tensor

We start from the Bianchi identity (V. R, = R, )

1 OAV=g) 9 9(Ay=yg)
NV =gT = P 2 8
oV 9tk dg* Ox! 3%9;‘1. ®)
1 .
5= 5o [ V=9Tudg™a0. ©)
the divergence of the stress-energy tensor is zero.
V.R. _+V.,R, +V,R,=0. (10)

According to their tensor form, this second Bianchi identity is valid in any coordinate system and

at any point of the Riemann space.



Performing a first contraction on the Bianchi identity for ¢ = [, we obtain

ViR, .+ VR, +V,.R,=0. (11)

. . .. art art ..
Taking into account the definition Ry, = 5% — 54 + I I, — T of the Ricci tensor and the

equality R., = —R!, one obtains
ViR, +V.,Ry —V,Riy = 0. (12)
Since the change in variance by means of g;;. is permutable with the covariant we have:
V.RE = V.g*R; = ¢*V.R,, . (13)
Multiply relation (12) by ¢g** and use the permutation property (13), we obtain
ViRF 4+ V,Rl —V,RE=0. (14)

Performing a second contraction with respect to indices k£ and s, we get:

V/RM. + VRF —V,Rf =0. (15)



After contraction, let’s change the summation index [ to index £ in the first term of the previous

equation. Moreover, with the equality R*. = R'* we obtain
2V, R¥ —V,R=0.

The latter expression can also be written as:

1
v, (R:f _ ﬁéfR) _ V.8 =

(16)

(17)

The expression in brackets in the previous expression is a tensor, denoted S*, whose covariant

components are given by:

1 1
Sij = gz-kS_f = Gik (R? - 55;53) R;j — 29’33

(18)

The S;; tensor is called the Einstein tensor. Due to the symmetry of the Ricci tensor, the Einstein

tensor is also symmetrical. According to (17), it verifies the identities:

ViSk=0.

A tensor that satisfies relations of the form (19) identically is called a conservative tensor.

(19)



Elie Cartan showed that if both of the following conditions apply:

i) the quantities .S;; depend only on the gravitational potentials g;; and their first- and second-

order derivatives, and are linear wit/h»ﬂasfnec{ to the second-order derivatives; ii) the tensor S;;

satisfies the conservation equations V. S* = O; then the only tensors satisfying both above condi-

. . \ /
tions are given by the formula S

1
Sz'j =h Rz'j - §ng(R + k)

R

where h and k are two constants.

Elie Cartan

(1869-1951)

(20)



Vacuum equations

In GR, a region where T}, = 0, i.e. no matter, is called a ”"vacuum”. Einstein’s equations are
g ik q

1
Rz'j — ERgz'j =0.

By contracting with g/ we obtain R = 0 (g;;¢" = 0 = 4). Reintegrating into (21) gives:

RIJZO

21)

(22)

In other words, in the absence of matter, the Ricci tensor is zero. This is not a sufficient condition

for flatness, however, so in general space-time can be curved even in the absence of matter. Matter

is therefore not enough to determine the gravitational field, just as charges are not enough to

determine the electromagnetic field. A space-time in which the Ricci tensor is zero everywhere is

called Einstein space-time. Therefore:

Riemann tensor = 0 <> flat space ; Ricci tensor = 0 <> empty space .

(23)

These equations define general relativity. They are sufficient to describe gravitational waves, black

holes, the expansion of the universe and the Big Bang, to found GPS technology...



Einstein equations with matter

so from the principle of least action we deduce 4.5, + 0.5, = 0 leading to

8 "
1 1 - _!I; ! - dQ = . 24
167rG ( ik — gkR i k)59 V=g 0 (24)
hence, given that d¢** are arbitrary one obtains
1 G
- — —T; 2
R, 2szR o Lix (25)
or
1 8rG
—— ——TF. 26
Rﬁ 2 [ R C4 ( )

These are the gravitational field equations or Einstein equations. We have used that g;g'* = ¥,

g'* is the inverse of g;;..



Contacting on the indices i and k we find (0! =4, R=R!, T =T))

8rG 4
R=—-—-T". 27
L (27)
Consequently, the field equations can be recopied as
8rG 1
i =—— | T — =guT ) . 2
Rix = —3 ( k= 50k ) (28)

Note: The equations of the gravitational field are not linear. As a result, the principle of super-

position is not true for gravitational fields, as it is for the electromagnetic field in SR. However, it
should be borne in mind that we’re generally dealing with weak gravitational fields whose equa-
tions are linear to a first approximation. So the superposition principle remains legitimate with the
same approximation.

Note: From (20) Einstein’s equation can be rewritten as

G

1
ViSF=0++ V. TF =0 R, — iRgik + Agir = Lk (29)

A is called the cosmological constant.
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Se=— [ R"A*(V, A V).

Curvature 2-form: | R* = %Rf,,f,d:c” A dx”

Proof:

1 1 ) B}
R A*(V, AV)) = Eﬁ’uv“b;—,‘f‘? V/ Nappo dx" Adx* AdxP A dx

I
- Zan"b VEVE appan®? d*x =g

1
= —5 R ViV (885 — 8y0p) d*x V=g

=—Rd*x /=g



Energy-momentum tensor of a set of independent particles (no interaction between them) of

masses m,,.

We define the mass density as

p=> m.d(F—7,), (35)
where 7, are the radius vectors of the particles. We have:
T* = pcuta” % = uc? \/1—7&?@’17,'“ ; (36)
Conservation law
We verity that
o; (T( f*ield);‘: n T(particzes):?) —0. 37)

The meaning of this relation is that the sum of the energies and momenta of the field-particles are

conserved.



Energy-momentum tensor for macroscopic bodies.

In addition to the energy-momentum (or stress-energy) tensor for a system of point particles
we shall also need the expression for this tensor for macroscopic bodies which are treated as being

continuous. We have

T* = (p + e)u'a" — pg™ (38)

or

T* = (p + e)u'a" — ps™* . (39)

In the above expression € = pc? is the energy density, p the pressure and @' = %df—t the dimension-
less velocity.

Conservation law

Tihia = (p+ S)u'uh — ps* (40)

When v* < ¢ one has V Tflmd 0—

9p
315 +V- (p¥) = (41)
— vV = — Fop . 42

The first equation is the continuity equation and is related to the mass conservation. The other

three are linked to the Euler equation of fluid mechanics (conservation of momentum).




* Generalization of the Poisson and Laplace equations.

Ao =4nGp | (o)

¢ 1s the gravitational field produced by the mass density p

* The equations must be expressed as relations between tensors in space-time.

©) <|Sau = XTIy (00) X :constant

* 1), 1s purely mechanical and describes the state of energy and matter distribution at each

point. It generalizes the second member of Poisson’s equation.

» S\, generalizes the left member of the Poisson equation. It is a purely geometrical quantity.

By analogy with A¢ it contains gravitational potentials and their first- and second-order
derivatives.

* We know that V,7*” = (. This is the law of conservation of energy and momentum.

(00) =V,SH =0




