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Let us examine how, in the limiting case, the metric tensor g,;. determining the field is related

to the non relativistic potential ¢ of the gravitational field.
The motion of a particle in a gravitational field ¢ is determined, in NR mechanics by a la-

grangian having (in an inertial reference frame) the form

mwz

where ¢(7,t) characterizes the field and is called the gravitational potential. The equation of

motion (Euler-Lagrange) of the particle is
7==Vo, (©6)

Let us write the lagrangian (5) in the form

2
L=—mc2+%—m¢5- (7)



Note: L = —me? + ™ shall be the same exactly as that to which the corresponding relativistic
function L = —mc?y/1 — ;32 reduces in the limit 5 — (.

The NR action S has the form

_ _ v 9
S—/Ldt——mcf(c—%+ )d. (8)

Comparing this with the expression S = —mc [ ds we see that
2
ds=(c—%+¢’)dt, )
leading to
vt 9 :
ds® = (c— ot -) dt? = (2 + 2¢)dt* — dr? | (10)
c ¢

where we have neglected the terms with 1/¢? and used #dt = dF, dr? = d7 - dr.

Therefore the component gy, of the metric tensor is given by

2
guu=1+§¢- (11)



Further we can use the expression of the stress-energy tensor:

TF = poc’u;u" . (12)

where 1 is the rest mass density of the body.
As for the four-velocity ii’, since the macroscopic motion is also considered to be slow we must
neglect all its space components and retain only the time component. So we have: @ = () with

a =1.3and @° = iy = 1. It leads to

T[? =T = poc? . (13)
Using the field equations
1
p = 3¢ (T;“ - Eafir) , (14)
we get
4




1 )
From R;. = %’E — aa_l;% + I‘ik[‘}?n — I‘;}"Fﬁcm and using the fact that:

e
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e

we get
R{JU — 0 _ 8F30
dre

From I, = 59" (%2 + 3t — Gi4t) we obtain

1 9900
Fo: — _om [ _ ~ZIU00
00 = 59 ( ox™

. 1 fa%al 8900
~ 27 ( ax“)

_ 199

I
Therefore R = % ;; % = LA¢ leading to

A¢ = 4nGpy -

This is the Poisson equation where my is the source term and ¢ the field.

(16)

A7)
(18)
(19)

(20)

2D

(22)

(23)

(24)



The integral solution of this equation reads as

o(7")
o(f) = -G / e d3“" (25)
If 11(7") = md(7") then ¢(7) = —"'ll’"l The correction to the Minkowski metric is
2 20\ 5, 2 2 2
ds® = 1—1-? cdt® — dx® — dy” — dz (26)
2
- (1 — Ggm") tdt® — da® — dy* — d2? . (27)
c2r

On the earth’s surface we have:

(Mo = Mg = 5.972 x 10% kg

c=3x10® m/s
X (28)
r=rg = 6371 km

= 2GMg 2GM@ ~1.3x%x 107 .

0
Consequently, the correction to the Minkowski metric in our environment (the Earth’s surface) is
of the order of a billionth. As the equations show, this is enough to cause bodies to fall! This
corresponds to the geodesics of the slightly modified metric. Remember that for a Minkowski
space (with the metric ds?> = ?dt? — dz?... and Ry, = 0) there is NO GRAVITATION!
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This is a truly new prediction of the theory.

At the Earth’s surface, the gravitational potential is ¢ = gh where A is the height above ground.
We have 0

ds® = (1 + ngj) Adt? — da? — dy? — d2* . (1)

Let’s consider two equal clocks. One is kept on the ground (z = 0) and the second is set at

altitude h for a value ¢ of the time coordinate. Then bring it back to ground level and compare the

two clocks’ indications.

N
7

@ @ altitude

3
e

time

\%

* Validif h < re



At time ¢, the time T}, measured by the ground clock is ¢ because at A = () the metric is that
of Minkowski (ds* = 2dt? — da? — dy?

indicates the proper time, i.e.

— dz?). But this is not the case for the upper clock: it

h
uP / \/gOOd$Od$O — / \/ 1 ‘i‘ - ngtQ ~ (1 + 'i_z) t > Tdown . (2)

This result is quite spectacular: a clock runs faster if it is at a higher altitude. The relative difference

between the measured times is given by

AT

T=

gh

2

For h = 1 m this gives

— ~ 107,

3)

4)

This means that if the clock is kept 1 meter higher than another for 100 days (~ 107 s), the lower

clock will lag behind it by 1 ns (1079 s).



% Today’s best clocks have an accuracy of over 1071 s, and this effect has been extensively

verified in the laboratory.
# Clocks run more slowly if they are lower in the gravitational potential.

% Note: A red shift (we move towards the infrared) indicates a decrease in light energy (we move
towards the infrared) which, using Planck’s £ = hw = % formula, corresponds to an increase in
period.
% The satellites of the American GPS system orbit at a radius of F ~ 26600 km. Calculate the
time it would have taken for the system to accumulate a 3 km location error on Earth if it had been

set up before the discovery of general relativity, and therefore ignoring the effects of the latter.
GPS signals travel at the speed of light. They therefore cover a length of / = 3 km in a time of

AT =1/c >~ 107" s. The relativistic correction is as follows:

AT/T = — ~ 107,
/ rec?  Rc?

So T = AT/1079 ~ 10 s: less than three hours.
Understanding general relativity has therefore played a key role in the construction of GPS

navigation systems.
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The Schwarzschild line element

This is an exact solution of Einstein's equations for the limited case of a single spherical non-rotating mass.
First obtained by Karl Schwarzschild, German physicist and astronomer.

He obtained this result in 1915, the same year that Einstein first introduced general relativity.

His last articles were published in 1916.

first paper

On the Gravitational Field of a Point-Mass,
According to Einstein’s Theory

Karl Schwarzschild
Submitted on January 13, 1916

Abstract: This is a translation of the paper Uber das Gravitations-
feld eines Massenpunktes nach der Einsteinschen Theorie by Karl
Schwarzschild, where he obtained the metric of a space due to the
gravitational field of a point-mass. The paper was originally published
in 1916, in Sitzungsberichte der Kdniglich Preussischen Akademie der
Wissenschaften, S. 180-196. Translated from the German in 2008 by
Larissa Borissova and Dmitri Rabounski.

(1873 — 11 May 1916)



The Schwarzschild line element

This is an exact solution of Einstein's equations for the limited case of a single spherical non-rotating mass.

First obtained by Karl Schwarzschild, German physicist and astronomer.
He obtained this result in 1915, the same year that Einstein first introduced general relativity.

His last articles were published in 1916.

(1873 — 11 May 1916)

second paper

On the Gravitational Field of a Sphere
of Incompressible Liquid,
According to Einstein’s Theory

Karl Schwarzschild
Submitted on February 24, 1916

Abstract: This is a translation of the paper Uber das Gravitations-
feld einer Kugel aus incompressiebler Fliissigkeit nach der Einsteins-
chen Theorie published by Karl Schwarzschild, in Sitzungsberichte der
Kdniglich Preussischen Akademie der Wissenschaften, 1916, 5. 424—
435. Here Schwarzschild expounds his previously obtained metric for
the spherically symmetric gravitational field produced by a point-
mass, to the case where the source of the field is represented by
a sphere of incompressible fluid. Schwarzschild formulates the phys-
ical condition of degeneration of such a field. Translated from the
German in 2008 by Larissa Borissova and Dmitri Rabounski.



The Schwarzschild line element

The Schwarzschild metric is as follows

dr?

2 _ (1 _ 2 02 2(.: 2992 _
ds* = (1 —ry/r) Edt* — r*(sin® 0d*p + d*6) T—r,/r’

(29)

1s the gravitational radius (please check the physical dimension).

i

= (2"=ct,x' =r, 22 =0,2% = )
» From (29) one can compute the Christoffel symbols I'}; and then the Ricci tensor Rj.
* We assume that A = () in the Einstein equation. - S

* In order to solve the Einstein’s equation one needs to specify the stress-energy tensor Tf .

I
I
One can use the general form T}, = (p + €)@,y — pgip- l
\
\

* In the case of a symmetrical central field in vacuum, i.e. outside the masses generating it, we S /

have Ti’“ = () and the problem is completely integrable. This is the so-called Schwarzschild Se———~

solution.



Directly from (29) we have: goo = 1 — r,/r, g1

—r?sin® 6. It is easy to show that: ¢ = (1 —r,/r)7!, ¢"' = — (,,_: 77
9
g2 = —r~2, and ¢** = —r~2sin™?4.
Using I'}, = 1™ (Qg“fﬁ + %?l"ﬁ - gﬂ%) we obtain:

with

It =T%=1/r
I3, = cotd
I, = —rsin?0(1—r,/r)
Ty = =1 (1= 7/
§ T%, = —sinfcosfly, = N /2T, =1//2

[y = e
[y=%=0
| [y=35=0,
er=e"=1—r,/r
b’E%
KR

- _(ﬁ)’ﬁm = —r?, and g3 =

)" = ==y,

(30)

(3D



Since A and v do not depend on ¢ we have \ = i = (). Moreover \ = In (ﬁ
g

From the Einstein’s equation we verify that R;; = (. Please check using the definition:

R

The equation of motion is

oy, ar}

).

ot

Oxk

d*a T da* da
dr? Mdr dr

=0

+ Tl = T T, -

Using (2%, x1, 22, 23) = (ct, 1,6, ¢) and ds = cd7 we have for example ¢ = 0:

and for the other components

d?r
ds?
d*6
ds?
d?p
ds?
d*t

ds?

dr dsds

d*t  dvdrdt B

E+ dr dsds ~—

Ld\ (dr\*>  _, (dO\® ., _,
+§§ (ﬂ) —re (ﬁ) — rsin” fe (

2drdd dp\?
+;Eg—sm€cosﬂ (E) =0

2drdy dy df
+;£$+2C0t9££_0

dvdrdt

?

eV~ dy
2 dr

(

dt
ds

) =0

(32)

(33)

(34)

(35)

(36)

(37

(38)



By choosing # = 7 /2 corresponding to a trajectory in the plan (zoy) it leads to cos# = cot§ = (

and d*0/ds* = dfl/ds = (. The new equations of motion are as follows

J Py  2drdy
352 Trdsds =

d*t  dydr dt _

\@+drdsd5 -

O=rl2 .
/ /’/’ \ N
\ / 7z
/ X
y

xoy : plane of the trajectory

dar_l_ld)\ dr\? o [(de 2+e"_"‘du dt
ds?  2dr \ds ds 2 dr \ ds

(39)

(40)

(41)






- d? 2drde __ de _ h o - .
® The equation %% + =952 = () leads to < = 5 with h a constant of integration.

® The equation 95 + j; j: 0 leads to % = ke~ with k a constant of integration.
From ds? = (1 — r,/r) 2dt? — r?(sin® d%p + d%0) — f one gets
_y [dr dy dt
1 —
(1 —=1ry/7) (ds) + 7 (ds) — (1 =14/r)c (ds) —-1=0. (42)

Using 1 — r,/r = ¢” and % = ke™" we obtain

2 2 9
(j—:) 42 (j_f) _%(H (jf))=cte. (43)

This differential equation must be compared with the NR result:

dr\’ o { dp 29
(E) +r (E) +EU(T)=cte (=2E/m) , (44)

with U(r) = =92 = 2 Jeading to

dr\> , [(dp\® 26w’
(E) +r (E) - = cte. (45)




The equations (45) and (43) are identical if:

1. on neglects the second member in parenthesis in (43)

2Q.v<<ec=y=1=dr=dt

— oGm'
3. wesetry, =25

Using L = mrE%f one can rewrite (45) as

L2

Gm'L? 1
— =cte .

lm dr\ 2 Gmm’+
2 dt r

2mir?

c2m o3

(46)



The equations (45) and (43) are identical if: .
m

1. on neglects the second member in parenthesis in (43) r

Zov<<e=y=l=dr=dt P
m

. wesetr, =292 : : :
3 g c? Constant of motion: orbital angular momentum (fixed by IC)

Using pne can rewrite (45) as

2

1 [dr\*> Gmm' L2 Gm'I*1
(E) o omr?  m ?‘—3=cte. (46)




The equations (45) and (43) are identical if: .
m

1. on neglects the second member in parenthesis in (43) r

Zov<<e=y=l=dr=dt P
m

. wesetr, =292 : : :
3 g c? Constant of motion: orbital angular momentum (fixed by IC)

Using(L = mr2%e

- pne can rewrite (45) as

2

2 ! 2 P2
1 (%) _Gmm+ L Gm'L i:cte. 46)

| o omr?  &m r3

Usual gravitational potential energy (attractive force, Newton)



The equations (45) and (43) are identical if: .
m

1. on neglects the second member in parenthesis in (43) r

Zov<<e=y=l=dr=dt P
m

. wesetr, =292 : : :
3 g c? Constant of motion: orbital angular momentum (fixed by IC)

Using(L = mr?4e Centrifugal barrier (repulsive force)

- pne can rewrite (45) as

2

1 /dr\? Gmm'! 12V Gm'I?1
7Y - _ — —cte. 4
(dt) r + 2mir? c2m o3 e (46)



The equations (45) and (43) are identical if: .
m

1. on neglects the second member in parenthesis in (43) r

Zov<<e=y=l=dr=dt P
m

. wesetr, =292 : : :
3 g c? Constant of motion: orbital angular momentum (fixed by IC)

Using(L = mr2%e

- pne can rewrite (45) as

2

1 /dr\? Gmm' L2 Gm'I?1

Supplementary potential energy (attractive force, RG)



The equations (45) and (43) are identical if: .
m

1. on neglects the second member in parenthesis in (43) r

Zov<<e=y=l=dr=dt P
m

. wesetr, =292 : : :
3 g c? Constant of motion: orbital angular momentum (fixed by IC)

Using(L = mr?4e Centrifugal barrier (repulsive force)

- pne can rewrite (45) as

1 d 2 I 2 Ir2
_m(d_z) _Gmm+ L Gm'L i:cte. 46)

2 r omr:  Em r3
\—Y—’ \ )

Usual gravitational potential energy (attractive force, New*on)

Supplementary potential energy (attractive force, RG)

® The quantity — G172 riﬂ = ~/r® = U has the physical dimension of an energy (please check).

czm



Veff(r)

%

The effective potential V 4(r) for a massive particle around a central mass.
The curve further to the right is the Newtonian one.



Gravitational field created by a massive object

The relativistic effect of gravity on an object orbiting a central mass m’is simply this
additional attractive force

F = — 3G'm' L2 1
e cim rd

> First, it is proportional to L2, namely to the radial velocity. This means that it is a
magnetic-like force: it is not felt by a mass without angular velocity.

» Second, it is inversely proportional to c?; therefore, it is a relativistic effect and

Is small for non-relativistic velocities.

> Third, it is proportional to r#, which means that it becomes important — in fact,
dominant — at small radii. In the solar system, the planet with the smallest radius and
the largest angular velocity is Mercury; therefore, we may expect that Mercury is the
first planet where the effect of this relativistic force has a chance to be detected.

> Fourth, it is proportional to m™. Therefore the smaller the mass of the body in orbit
around m', the greater the force.



According to the textbook "Mechanics” by Landau we have dp = 5”“”’"’“ . Using a(1—¢€?) =

ﬁ where e is the eccentricity of the orbit, one gets the final expression
6rGm’
dp = rad .
7 c?a(l — e?)

47)

For Mercury we have a = 57.91 x 10° km and e = 0.206. Using G = 6.674 x 107! m*kg~'s—2

and m’ = 1.989 x 10°° kg (solar mass) on get’s (27 rad = 360 deg and 1 deg = 3600 arcsecond)

dp = 0.103" for one period .

Given that we have 415 revolutions per century we have

5o =42.8" per century .

This theoretical prediction is in excellent agreement with the measurements which is

0 Wmeasured = 42" +1" per century .

(48)

(49)

(30)



U= —aofr

p = M3maz,

Focus

20- >

pir = 1+ecosd.  Polar equation

rmin = P(1+¢€) = a(l—e) rmax = pi(1—e) = a(1+é€)



Ap = Ay

rmax
bt = 3 J‘ M dr/[r?
VZn(E—U)- p2)r?)
Gmm' _ Gm'L? 1 Tmin
r c2m
ProBLEM 3. When a small correction 8U/(r) is added to the potential energy U = —a/r,

the paths of finite motion are no longer closed, and at each revolution the perihelion is dis-
placed through a small angle 3¢. Find 8¢ when (a) 3U = B/r2, (b) 3U = y/r.

SorutioN. When r varies from rpin to rmax and back, the angle ¢ varies by an amount
(14.10), which we write as

iy Tl

in order to avoid the occurrence of spurious divergences. We put U = —a/r+8U, and
expand the integrand in powers of 8U; the zero-order term in the expansion gives 2, and
the first-order term gives the required change 8¢:

M2
r2 ] a7

P ¥ max

24 =

2mdU dr A 2 {2"' L .
ol 7= U ek B

where we have changed from the integration over  to one over ¢, along the path of the “un-
perturbed’’ motion.

In case (a), the integration in (1) is trivial: 8¢ = —2mBm/M? = —2nB/up, where 2p (15.4)
is the latus rectum of the unperturbed ellipse. In case (b) 728U = y/r and, with 1/r;given by
(15.5), we have 8¢ = —6bmaym?/M? = —6my[ap?.

(14.10)



Note (Rovelli): ’In his long search for field equations, Einstein recalculated this precession several
times, with each provisional formulation of his field equations. When he found the field equations
leading to the correct value (not using the Schwarzschild metric, which he didn’t yet have, but the
approximate solution ds* = —(1 — M/r)dt* + (1 + 2M/r)dr* + r*dQ?), he convinced himself

they were the right ones.”



M1 - Physique 2023-2024

Paul-Antoine Hervieux

Ur_ustra/IPC_MS gl'“/

hervieux@unistra.fr

AE+GR (1907-1917) Slg

I\VV) Applications

"~ (R — 1
167G / 2)d'z

— The gravitational deflexion of light

A R Ll L |



One can rewrite ds® = (1 —r,/r) 2dt* — r?(sin® 0d?p + d*0) — % as

ds* = ~ydt* — r*(sin® d*p + d*6) — ?drz : (52)

withy = (1 —r,/r) c*.

Dividing by ds? the above expression one gets

8(&»)2 z(dga)z (dt)2
— | — — ] - — ] =-1.
v \ ds o ds i ds (53)
We have seen that:
r2d£=h (54)
ds
ﬁ=I<:e‘”’=ﬁ, (55)
ds ¥

where h and k are two constants. Posing u = 1/r and using the above three equations we obtain

2
du r,  3ry ,

u+dcp2:2h2+ 5 u” . (56)




- - - - _ o ade
To describe the propagation of light, we must impose ds = 0. Using 7“2 = h, we can see that

this is equivalent to making A tend towards infinity 2~ — co. Equation (55) becomes

L Y (57)

de? 2
This second order differential equation can be integrated by successive approximations.
The solution of & —g +u=015u= }_1? cos . This leads to a new differential equation, which 1s
an approximation of the one we want to solve

d*u 3r, 1
iz "T3 £ g o8’ P (58)

Please check that u; = 5 Rg (cos Y+ 2sin (,o) is a particular solution of (57). Therefore one can

write
! + — (COS + 2sin? ) ! (59)
U = — COS = —,
R Y 2R2 £ ?)=7




By using the cartesian coordinates (x = r cos ¢,y = rsin ) (58) can be rewritten as

o (T x? + 21
r=H (ZR)VGE:E?' (60)

The second term on the right-hand side expresses the slight deviation of the light ray from the line

x = R (see graph). We have

y>o=a=Rxtty. (61)

The angle of the asymptotes, 1.e. the total deviation of the light as it passes through the gravitational
field, is therefore . y a

a = f . (62)

Using R = solar radius=7 x 10° km, r, = 2Gm/’/c¢* with Gm//¢* ~ 1.45 km we obtain

!
o= 3G 808 1076 rad

AR Q'

~1.71" .
sun /R X




To study the trajectory of light, we can use the effective potential:

L?> GML? .
Vg (1) = — (see demonstration after)

02 o273




The photon sphere is a region near a black hole where the gravity is so strong that

light itself can orbit around the black hole. The orbits in that region are unstable; the
photons can loop around the black hole a few times, but they will not stay forever.

The effective potential has a maximum at r, such that 0, Vg (r)|,=, = 0 leading to|r, = %'rg.

dZVeﬂ'(T}

= < 0.

T=Tp

V F (T) & This means that light can orbit around a mass at one and half its Schwarzschild radius. Light
e

% This position is instable because

rays are very much distorted by the strong attraction of a mass, in the region just outside the

Schwarzschild radius.

E 0 % There are three situations to consider depending on the photon energy E (E, = Veg(7,)):

B \




F = Eﬂ The photon stays in an unstable circular orbit, which defines
the Innermost Bound Circular Orbit (IBCO) around the
black hole. As only light can orbit at this radius, it is
sometimes referred to as the photon sphere.

| ¢

“-‘ Neco




Can light go into orbit around a black hole?

» Messier 87 (also known as Virgo A or
NGC 4486, generally abbreviated to
M87) is a supergiant elliptical galaxy in
the constellation Virgo.

» M87 is about 16.4 million parsecs (53
million light-years= 5x102° km) from
Earth.

» Astronomers Reveal First Image of the
Black Hole at the Heart of Our Galaxy,
May, EHT 2022.

Direct image of a supermassive
black hole at the core of M87.
Event Horizon Telescope (EHT)
Collaboration 2019.



Can light go into orbit around a black hole?

> Messier 87 (also known as Virgo A or GR prediction ..,

NGC 4486, generally abbreviated to
M87) is a supergiant elliptical galaxy in
the constellation Virgo.

» M87 is about 16.4 million parsecs (53
million light-years= 5x102° km) from
Earth.

» Astronomers Reveal First Image of the
Black Hole at the Heart of Our Galaxy, Direct image of a supermassive
May, EHT 2022. black hole at the core of M87.
Event Horizon Telescope (EHT)
Collaboration 20109.



E=E,

A photon can have a circular Together, all possible orbital planes

orbit in any orbital plane around form a sphere of possible orbits
the black hole. , of light around the balck hole

2 197
s




E>E If the photon crosses the IBCO radius, it will inevitably
0 spiral into the black hole.

-
-- -~

3

-
-
‘‘‘‘‘‘




Our starting point will be the equation we derived earlier that describes the null geodesics of
light around a black hole (ds = 0;60 = 7/2;d*0 = 0):

2

+1ridp* =0. (65)

— (1 = T—g) dt* +

r 1— 2
T

From now on ¢ = 1. We’ll now divide both sides by an affine parameter d\?, which basically

defines the rate of change of these space-time coordinates along the trajectory of the light ray,

L) (A L () (de)
(1 r)(d,\>+1—%(d)\ o ax) = (60)

You can think of the affine parameter as playing the same role as time does in ordinary mechanics;

giving us:

it defines the rates of change of things like position, which then gives us the velocity. In relativity,

we use an affine parameter instead of time since time itself is one of our space-time coordinates
(the most commonly used affine parameter is called proper time, however, this is not defined for

particles moving at the speed of light, so we cannot use it here).



These dt/d\, dr/d)\ and dyp/dX are essentially the space-time velocities or rates of change of
our space-time coordinates. We’ll denote these by putting a dot above the coordinate in question,

so the equation then becomes:

—( ?;g)t+1lrf"2—|-r2<p2—0. 67)
So far, what we’ve done may seem a little random. The goal with this is to end up with an equation
that resembles the total energy of light in a familiar form. This will allows us to define the effec-
tive potential (since the total energy £ will be of the form £ ="radial” kinetic energy+effective
potential).



Also, we use here an extremely useful “trick” to find the Lagrangian instantly from any metric

line element ds?. We can then, using this method, instantly deduce that our Lagrangian will be:

1 e\ o 1 1 1
L:——(l——g)z L 2 2,202
5 . t+21_,,~?g'r +2?“cp (68)
Notice the similarity between this and the line element formula. Essentially, the "trick™ is that to
find the Lagrangian, you have to just replace the coordinate displacements in the line element with

these coordinate velocities (things with the dots above them) as well as divide everything by 2.

Now, using this Lagrangian we can notice two things; the Lagrangian only depends on the
coordinate 7, but not the coordinates ¢ and ¢ (the Lagrangian does depend on ¢-dot and (p-dot, but
not on ¢ and ¢ themselves).

If you’re familiar with Lagrangian mechanics, specifically Noether’s theorem, this means that

there exists conserved quantities associated with both of these coordinates (¢ and ¢).



We can derive these quantities by writing out the Euler-Lagrange equations for both of these

coordinates:
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From these equations, we get by inserting the Lagrangian (notice that the right-hand side on both

of these is automatically zero as the Lagrangian does not depend on ¢ or ¢ at all, and therefore

OL/0t = 0and OL/0p = 0):
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Now let’s think about what it means for the derivative (with respect to the affine parameter A in
this case) of something to be zero as we have here; it means that the quantity has to be a constant.

So, we then get two constants of motion from the above equations (the first one is the energy
E and the second is the orbital angular momentum L; these both arise from Noether’s theorem),

which allows us to express the coordinate velocities in terms of these constants:
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Now remember the equation for the null geodesics we had earlier:
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We can insert the expressions for ¢-dot and (-dot into this and get:
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Now we rearrange this a little bit (and also divide everything by 2):
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Here we essentially have a formula for the total energy (at least qualitatively) in the form of

“kinetic energy+potential energy” as follows:
Etor ~ Ehin (1) + Veg (1) (78)

Notice the similarity of this with the usual total energy you see in basic Newtonian mechanics
with the kinetic energy being a function of “velocity squared” and the potential being a function
of position.

We therefore define (this 1s really only a definition, however, it turns out to be an extremely

useful definition) the effective potential as:
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where M 1s the mass of the black hole.




