Problem Set 2 Energy bands in solids

1 Monatomic tight-binding chain

Let us consider a very simple model of a one-dimensional crystal consisting of N sites, each separated by a distance a. On such a lattice, a single electron can sit only on the locations of the ions (and is thus tightly bound to each lattice site, hence the name tight-binding approximation). However, the electron has some small probability to hop to a neighboring site due to quantum tunneling.

When the electron sits on the $n^{\text {th }}$ site of the chain $(n=1, \ldots, N)$, we denote its quantum eigenstate by $|n\rangle$, with corresponding onsite energy ε. We assume that these states are orthogonal to one another, i.e., $\langle n \mid m\rangle=\delta_{n m}$.

The tight-binding Hamiltonian corresponding to the present model reads

$$
\begin{equation*}
H=\varepsilon \sum_{n=1}^{N}|n\rangle\langle n|-t \sum_{n=1}^{N}(|n\rangle\langle n+1|+|n+1\rangle\langle n|), \tag{1}
\end{equation*}
$$

where t (assumed for simplicity to be real and positive, i.e., $t \in \mathbb{R}^{+}$) denotes the hopping parameter that characterizes the probability amplitude for the electron to hop to a nearestneighbor lattice site. We further consider periodic boundary conditions (by putting the lattice on a circle) and set $|N+1\rangle=|1\rangle$.

1.1 Solving the tight-binding model

We first aim at finding the eigenenergies E corresponding to the (exactly-solvable) Hamiltonian (1). To this end, we expand an eigenstate $|\psi\rangle$ of the tight-binding Hamiltonian H on the basis of the eigenstates $|n\rangle$ of H when the hopping amplitude $t=0$ as $|\psi\rangle=\sum_{n=1}^{N} c_{n}|n\rangle$, with $c_{n} \in \mathbb{C}$.
(a) With the help of the stationnary Schrödinger equation $H|\psi\rangle=E|\psi\rangle$, show that the coefficients c_{n} obey the following equation:

$$
\begin{equation*}
(E-\varepsilon) c_{n}+t\left(c_{n+1}+c_{n-1}\right)=0 . \tag{2}
\end{equation*}
$$

(b) Let us now make the ansatz

$$
\begin{equation*}
c_{n}=\frac{1}{\sqrt{N}} \mathrm{e}^{\mathrm{i} k n a} \tag{3}
\end{equation*}
$$

with k some wavenumber.
(i) Convince yourself that the set of solutions to the Schrödinger equation remains the same if we shift $k \rightarrow k+2 \pi / a$, so that the wavenumber takes values $k \in]-\pi / a,+\pi / a]$ in the so-called (first) Brillouin zone.
(ii) Show that the wavenumber k is quantized in units of $2 \pi / N a$, so that there are exactly N states of the form (3).
(iii) Finally, demonstrate that the eigenenergies of the Hamiltonian (1) are given by

$$
\begin{equation*}
E_{k}=\varepsilon-2 t \cos (k a) . \tag{4}
\end{equation*}
$$

(c) Plot the energy band (4) as a function of k.
(d) Compute the electron group velocity corresponding to the dispersion (4). In which direction travels an electron with $k>0(k<0)$?
(e) Show that for small wavenumber (long wavelength $\lambda=2 \pi / k$), the dispersion relation is quadratic and takes the form

$$
E_{k} \simeq(\varepsilon-2 t)+\frac{\hbar^{2} k^{2}}{2 m_{*}},
$$

with the effective mass $m_{*}=\hbar^{2} / 2 t a^{2}$.

1.2 Metals vs. insulators

We now fill the energy band with many electrons.
(a) Remembering that electrons are spin $1 / 2$ elementary particles and obey the Pauli exclusion principle, how many electrons at most can you put on the energy band (4)?
(b) Imagine putting N electrons on the energy band. What is then the Fermi wavenumber k_{F} and the corresponding Fermi energy E_{F}. Argue that the system is in a metallic phase.
(c) Consider now having $2 N$ electrons on the lattice. Argue that the system is then in an insulating phase.

2 Two orbitals per atom

We now consider that each atom of the chain has two orbitals, which we call A and B, having eigenergies ε_{A} and ε_{B}, respectively. We denote by $|n, A\rangle(|n, B\rangle)$ the eigenstate of the electron if it sits on site n and resides on the $A(B)$ orbital. We assume there is a hopping amplitude $t_{A A}$ $\left(t_{B B}\right)$ which allows an electron on orbital $A(B)$ to hop to orbital $A(B)$ of a nearest-neighbor atom. We suppose in addition that there is a hopping amplitude $t_{A B}=t_{B A}$ that allows an electron on orbital A to hop to the orbital B of the neighboring atom, and vice versa. For simplicity, we consider $t_{A A}, t_{B B}$, and $t_{A B}=t_{B A}$ to be real and positive.

2.1 Tight-binding Hamiltonian

Inspired by Eq. (1), construct a tight-binding Hamiltonian for the two-orbital model at hand.

$2.2 \quad t_{A B}=0$

(a) Consider first the case $t_{A B}=0$. Using your results of Part 1, give the dispersion relation of the resulting two enery bands.
(b) Sketch these two energy bands.
(c) If each atom is divalent (i.e., the atomic chain has $2 N$ valence electrons), derive a condition on the quantities $\varepsilon_{A}-\varepsilon_{B}$, as well as $t_{A A}$ and $t_{B B}$, that determines whether the system is a metal or an insulator.

$2.3 \quad t_{A B} \neq 0$

We now consider the case in which $t_{A B}$ is nonzero. Using what you have learned from Part 1 of this Problem Set, derive and discuss the bandstructure of the corresponding Hamiltonian.

