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Problem Set 2
Energy bands in solids

1 Monatomic tight-binding chain

Let us consider a very simple model of a one-dimensional crystal consisting of N sites, each
separated by a distance a. On such a lattice, a single electron can sit only on the locations of the
ions (and is thus tightly bound to each lattice site, hence the name tight-binding approximation).
However, the electron has some small probability to hop to a neighboring site due to quantum
tunneling.

When the electron sits on the nth site of the chain (n = 1, . . . , N), we denote its quantum
eigenstate by |n〉, with corresponding onsite energy ε. We assume that these states are orthogonal
to one another, i.e., 〈n|m〉 = δnm.

The tight-binding Hamiltonian corresponding to the present model reads

H = ε
N∑

n=1

|n〉〈n| − t
N∑

n=1

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)
, (1)

where t (assumed for simplicity to be real and positive, i.e., t ∈ R+) denotes the hopping
parameter that characterizes the probability amplitude for the electron to hop to a nearest-
neighbor lattice site. We further consider periodic boundary conditions (by putting the lattice
on a circle) and set |N + 1〉 = |1〉.

1.1 Solving the tight-binding model

We first aim at finding the eigenenergies E corresponding to the (exactly-solvable) Hamiltonian
(1). To this end, we expand an eigenstate |ψ〉 of the tight-binding Hamiltonian H on the basis
of the eigenstates |n〉 of H when the hopping amplitude t = 0 as |ψ〉 =

∑N
n=1 cn|n〉, with cn ∈ C.

(a) With the help of the stationnary Schrödinger equation H|ψ〉 = E|ψ〉, show that the coeffi-
cients cn obey the following equation:

(E − ε)cn + t(cn+1 + cn−1) = 0. (2)

(b) Let us now make the ansatz

cn =
1√
N

eikna, (3)

with k some wavenumber.

(i) Convince yourself that the set of solutions to the Schrödinger equation remains the
same if we shift k → k+2π/a, so that the wavenumber takes values k ∈ ]−π/a,+π/a]
in the so-called (first) Brillouin zone.

(ii) Show that the wavenumber k is quantized in units of 2π/Na, so that there are exactly
N states of the form (3).

(iii) Finally, demonstrate that the eigenenergies of the Hamiltonian (1) are given by

Ek = ε− 2t cos (ka). (4)

(c) Plot the energy band (4) as a function of k.

(d) Compute the electron group velocity corresponding to the dispersion (4). In which direction
travels an electron with k > 0 (k < 0)?

1



(e) Show that for small wavenumber (long wavelength λ = 2π/k), the dispersion relation is
quadratic and takes the form

Ek ' (ε− 2t) +
~2k2

2m∗
,

with the effective mass m∗ = ~2/2ta2.

1.2 Metals vs. insulators

We now fill the energy band with many electrons.

(a) Remembering that electrons are spin 1/2 elementary particles and obey the Pauli exclusion
principle, how many electrons at most can you put on the energy band (4)?

(b) Imagine putting N electrons on the energy band. What is then the Fermi wavenumber kF
and the corresponding Fermi energy EF. Argue that the system is in a metallic phase.

(c) Consider now having 2N electrons on the lattice. Argue that the system is then in an
insulating phase.

2 Two orbitals per atom

We now consider that each atom of the chain has two orbitals, which we call A and B, having
eigenergies εA and εB, respectively. We denote by |n,A〉 (|n,B〉) the eigenstate of the electron
if it sits on site n and resides on the A (B) orbital. We assume there is a hopping amplitude tAA

(tBB) which allows an electron on orbital A (B) to hop to orbital A (B) of a nearest-neighbor
atom. We suppose in addition that there is a hopping amplitude tAB = tBA that allows an
electron on orbital A to hop to the orbital B of the neighboring atom, and vice versa. For
simplicity, we consider tAA, tBB, and tAB = tBA to be real and positive.

2.1 Tight-binding Hamiltonian

Inspired by Eq. (1), construct a tight-binding Hamiltonian for the two-orbital model at hand.

2.2 tAB = 0

(a) Consider first the case tAB = 0. Using your results of Part 1, give the dispersion relation of
the resulting two enery bands.

(b) Sketch these two energy bands.

(c) If each atom is divalent (i.e., the atomic chain has 2N valence electrons), derive a condition
on the quantities εA − εB, as well as tAA and tBB, that determines whether the system is a
metal or an insulator.

2.3 tAB 6= 0

We now consider the case in which tAB is nonzero. Using what you have learned from Part 1 of
this Problem Set, derive and discuss the bandstructure of the corresponding Hamiltonian.
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