Problem Set 10 Crystalline anisotropy energy and Bloch domain walls

Iron crystals have cubic symmetry. The directions of easy magnetization are the crystalline directions [100], [010], and [001]. We denote α , β , and γ the directional cosines of the magnetization with respect to these directions (the directional cosine of a vector is the cosine of the angle between the vector and the direction). The energy density of crystalline anisotropy is expanded in a power series of these cosines as

$$W(\alpha, \beta, \gamma) = \sum_{p,q,r} A_{p,q,r} \alpha^p \beta^q \gamma^r, \qquad [100] \qquad [110]$$

where the sum is running over integers $p, q, r \ge 0$. The cubic crystal symmetry allows to simplify the general expression. Including terms of order $p + q + r \le 6$, W can be written in the form

$$W(\alpha,\beta,\gamma) = K_0 + K_1 \left(\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2\right) + K_2 \alpha^2 \beta^2 \gamma^2,$$

with positive coefficients K_1 and K_2 .

We assume a simple cubic lattice with lattice constant a, and take the ferromagnetic exchange interaction energy between two magnetic moments $\vec{\mu}_i$ and $\vec{\mu}_j$ on nearest neighbor sites as $-J\cos\theta_{ij}$, with J > 0 and θ_{ij} the angle between the magnetic moments. The exchange energy between sites of larger distance is neglected.

- (a) Take the case when the magnetization is in the plane perpendicular to the direction [010], and at the angle φ with the direction [001]. Express the energy density of magnetic anisotropy $W(\varphi)$ as a function of φ and the coefficients K_0 and K_1 . Plot W as a function of φ and comment on the result.
- (b) Magnetized at saturation in the direction [001], a monocrystalline iron bar of length L and section A forms a magnetic monodomain. Calculate the crystalline anisotropy energy and the exchange energy of the bar, and give its total magnetic energy U_1 .
- (c) The iron bar now comprises two magnetic domains whose magnetizations are opposite and saturated, with an abrupt interface. Write the magnetic energy U_2 of the bar in the form $U_2 = U_1 + \Delta U$ and give the expression of ΔU .
- (d) We now have a Bloch domain wall of thickness l between the magnetic domains of opposite saturated magnetization. In the Bloch wall, the magnetization stays in the plane perpendicular to [010], and rotates by a constant angle when moving from a crystal plane to the next one in the [010]-direction. From $x = x_0 - l/2$ to $x = x_0 + l/2$, the magnetization rotates progressively by the total angle π . Show that, when $l \gg a$, the energy of the bar can be written as

$$U_{\rm DW} = \left(K_0 - \frac{3J}{a^3}\right)AL + \left(\frac{K_1l}{8} + \frac{\pi^2 J}{2al}\right)A.$$

- (e) Determine the thickness l of the Bloch domain wall that can be expected in such a bar, and deduce the energy difference $\delta U = U_{\rm DW} U_1$.
- (f) Using the values $K_1 = 4 \times 10^4 \text{ J/m}^3$, $J = 2 \times 10^{-21} \text{ J}$ and a = 2.9 Å, calculate the thickness of the wall and the energies per unit area $\Delta U/A$ and $\delta U/A$. Discuss the result.