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Problem Set 6
Paramagnetism of localized magnetic moments

1 Classical treatment

In this first exercise we aim at calculating the contribution of localized magnetic moments to
the magnetic susceptibility χ. We consider that the magnetic moments are fixed at the lattice
sites of the crystal and take them as distinguishable and independent (i.e., one given magnetic
moment does not interact with the others).

(a) To check the validity of the assumption of independence of magnetic moments, one can
compare the potential energy (i.e., the Zeeman energy)

EZ = −µ ·B
∼ µBB

of a magnetic moment µ (which is of the order of the Bohr magneton µB) in a magnetic
field B = B ẑ to the dipole interaction energy. The latter is given by

Edip =
µ0

4πr3ij

[
µi · µj − 3(µi · r̂ij)(µj · r̂ij)

]
∼
µ0µ

2
B

4πr3ij

where µi and µj correspond to two magnetic moments located at the lattice sites ri and rj ,
respectively, with rij = ri − rj .

Estimate the order of magnitude of these two energy scales (in eV) when rij is of the order
of the typical distance between atoms in a solid and for a magnetic field B = 1 T. Compare
also the Zeeman energy to the energy of thermal fluctuations at room temperature.

Values: µ0 = 4π × 10−7 Tm/A, µB = 9.3× 10−24 J/T, 1 eV = 1.6× 10−19 J.

(b) We now treat each (independent) magnetic moment classically and allow for arbitrary ori-
entation of µ with respect to the magnetic field B. Express the Zeeman energy EZ in terms
of the absolute values of these vectors and the angle θ between them.

(c) The probability density for a given orientation of the magnetic moment µ in an external
magnetic field is determined by its energy through

P (µ) =
1
Z

e−βEZ(θ),

with β = 1/kBT the inverse temperature, and where Z is the (canonical) partition function
given by the integral over all orientations

Z =
∫

dΩ e−βEZ(θ).

Calculate Z.

(d) The mean magnetization 〈M〉 of a material that contains a density n = N/V of N magnetic
moments (with V the sample volume), under the influence of an external magnetic field, is
defined as the total average magnetic moment per unit volume. Show that 〈M〉 = n〈µ〉.
Calculate explicitely the average magnetization and show that 〈M〉 = 〈Mz〉ẑ with 〈Mz〉 =
nµL(βµB), where

L(x) = cothx− 1
x

(1.1)

is the Langevin function.
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(e) Discuss the dependence of the magnetization in the limits of low field/high temperature
µB/kBT � 1 and strong field/low temperature µB/kBT � 1. Sketch 〈Mz〉 as a function of
µB/kBT .

(f) The zero-field magnetic susceptibility is defined as

χ =
∂〈Mz〉
∂H

∣∣∣∣
H=0

,

where H = B/µ0 −M. Argue that

χ ' µ0
∂〈Mz〉
∂B

∣∣∣∣
B=0

.

(g) Calculate the magnetic susceptibility using the low-field limit from Question (e) and show
that it is always paramagnetic and follows the Curie law χ = C/T , where C is a constant
to be specified.

2 Quantum treatment

In this second exercise, we still consider a system of N independent atoms in a volume V , each
of which has a total angular momentum (in units of ~) J = S + L, with S and L the spin and
orbital angular momentum, respectively. The absolute square value J2 = J(J + 1), where J
is the quantum number of the total angular momentum. The magnetic moment of an atom is
µ = −gµBJ, where g is the Landé factor of the considered atoms.

(a) Write the Hamiltonian describing the Zeeman energy of an atom in an external magnetic
field B parallel to the z axis. Specify the possible values Jz of the projection of the angular
momentum J of an atom on the z axis.

(b) Write the (canonical) partition function Z of each atom. Show that it can be expressed as
the ratio of two hyperbolic sines.1

(c) The free energy (per atom) is defined as F = −kBT lnZ. Show that the mean value of the
magnetic moment is given by 〈µz〉 = −∂F/∂B.

(d) Show that the average magnetization in z direction 〈Mz〉 defined as the mean total magnetic
moment per unit volume can be expressed as

〈Mz〉 = MsBJ(βgµBJB), (2.1)

where

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
(2.2)

denotes the Brillouin function. What is the expression of the saturation magnetization Ms?

(e) Let us first consider the case of vanishing orbital moment and spin 1/2, i.e., J = 1/2. Show
that B1/2(x) = tanhx and discuss then the result of Eq. (2.1).

(f) We now consider the classical limit, in which ~ → 0, which amounts to consider J → ∞.
Demonstrate that B∞(x) = L(x), where L(x) is the Langevin function from Eq. (1.1).

(g) We finally consider the case of an arbitrary, finite J . Sketch the Brioullin function (2.2) as
a function of the parameter x for various values of J .

(h) Still for finite J , deduce the value of the zero-field susceptibility χ. Is the system paramag-
netic?

1Note that
nX

k=0

qk =
1− qn+1

1− q
, (q 6= 1).
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