## Problem Set 7 Hund's rules

Consider an atom with many electrons $i$ in states characterized by the orbital angular momentum $\mathbf{l}_{i}$ and the $\operatorname{spin} \mathbf{s}_{i}$ (in units of $\hbar$ ). We define the total orbital angular momentum $\mathbf{L}=\sum_{i} \mathbf{l}_{i}$, the total spin $\mathbf{S}=\sum_{i} \mathbf{s}_{i}$, and the total angular momentum $\mathbf{J}=\mathbf{L}+\mathbf{S}$.

According to Hund's rules (1925), for the case of a partially filled shell, the lowest energy values are found in the following way:
(1) Maximize $S=|\mathbf{S}|$, respecting the Pauli exclusion principle.
(2) Maximize $L=|\mathbf{L}|$, respecting the Pauli exclusion principle and rule (1).
(3) $J=|\mathbf{J}|=L+S$ when the shell is more than half filled and $J=|L-S|$ when the shell is less than half filled.

The term symbol of the resulting configuration is ${ }^{(2 S+1)} L_{J}$, where the orbital angular momentum is usually given by a letter following the convention

| $L$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| symbol | S | P | D | F | G | H | I |

Apply Hund's rules to determine the ground state angular momenta for the following cases:
(a) O in the configuration $1 s^{2} 2 s^{2} 2 p^{4}$
(b) V in the configuration $[\mathrm{Ar}] 3 d^{3} 4 s^{2}$
(c) $\mathrm{Eu}^{2+}$ in the configuration $[\mathrm{Xe}] 4 f^{7}$
(d) $\mathrm{Dy}^{3+}$ in the configuration $[\mathrm{Xe}] 4 f^{9}$

