Problem Set 7 Hund's rules

Consider an atom with many electrons *i* in states characterized by the orbital angular momentum \mathbf{l}_i and the spin \mathbf{s}_i (in units of \hbar). We define the total orbital angular momentum $\mathbf{L} = \sum_i \mathbf{l}_i$, the total spin $\mathbf{S} = \sum_i \mathbf{s}_i$, and the total angular momentum $\mathbf{J} = \mathbf{L} + \mathbf{S}$.

According to Hund's rules (1925), for the case of a partially filled shell, the lowest energy values are found in the following way:

- (1) Maximize $S = |\mathbf{S}|$, respecting the Pauli exclusion principle.
- (2) Maximize $L = |\mathbf{L}|$, respecting the Pauli exclusion principle and rule (1).
- (3) $J = |\mathbf{J}| = L + S$ when the shell is more than half filled and J = |L S| when the shell is less than half filled.

The term symbol of the resulting configuration is ${}^{(2S+1)}L_J$, where the orbital angular momentum is usually given by a letter following the convention

Apply Hund's rules to determine the ground state angular momenta for the following cases:

- (a) O in the configuration $1s^2 2s^2 2p^4$
- (b) V in the configuration [Ar] $3d^3 4s^2$
- (c) Eu^{2+} in the configuration [Xe] $4f^7$
- (d) Dy^{3+} in the configuration [Xe] $4f^9$