Problem Set 8 Orbital magnetism

1 Landau levels

Let us consider a two-dimensional gas of free, noninteracting electrons confined to the x-y plane in the presence of an external magnetic field perpendicular to the gas, *i.e.*, $\mathbf{B} = B \hat{z}$. In what follows, we do not take into account the electronic spin, and consider electrons as particles with charge -e < 0 and (effective) mass m_* .

- (a) Write the classical equations of motion for an electron in the x-y plane and show that the solutions are circular orbits. Determine the angular velocity ω_c (*i.e.*, the cyclotron frequency) and the cyclotron radius R_c of the classical motion in these orbits.
- (b) Let us use Landau's gauge $\mathbf{A} = A \hat{x}$ for the vector potential. Determine A.
- (c) Write the time-independent Schrödinger equation for an electron in the x-y plane.
- (d) Use the product ansatz $\psi_{n,k_x}(x,y) = \varphi_n^{(k_x)}(y) e^{ik_x x}$ to relate the Schrödinger equation to the (quantum) harmonic oscillator problem. Express $\varphi_n^{(k_x)}(y)$ in terms of shifted harmonic oscillator eigenfunctions. Argue that the corresponding energy levels are given by $\varepsilon_n = \hbar\omega_c(n+1/2)$ with $n \in \mathbb{N}$ and independent of k_x . Such levels are called *Landau levels*. What is the group velocity corresponding to the planewave component in the x direction?
- (e) Consider a rectangular system of size $\mathcal{A} = L_x \times L_y$ with periodic boundary conditions. Discuss the allowed values for k_x and show that the degeneracy of each Landau level is given by $\mathcal{N}_{LL} = m_* \omega_c \mathcal{A}/2\pi\hbar$. Give an estimation of \mathcal{N}_{LL} for a sample with area $\mathcal{A} = 1 \text{ cm}^2$ in a magnetic field B = 0.1 T. Give a physical interpretation of the degeneracy.
- (f) Calculate the magnetic flux through the system and express it in units of the flux quantum $\phi_0 = h/e$. Comment the result in the context of the degeneracy of the Landau levels.
- (g) Compare the average density of states (per unit surface) to the density of states in the absence of a magnetic field.

2 Landau diamagnetism

We now consider electrons in three dimensions in an external magnetic field $\mathbf{B} = B\hat{z}$ oriented along the z axis, and continue to ignore the spin degree of freedom.

(a) Extend the product ansatz of Exercise 1 towards the three-dimensional case in a large rectangular cuboid of size $\mathcal{V} = L_x \times L_y \times L_z$ and show that, when $B \neq 0$, the energy of an electron depends on the quantum number n and on the wavenumber k_z in the z direction as

$$\varepsilon_{n,k_z} = \hbar\omega_{\rm c} \left(n + \frac{1}{2} \right) + \frac{\hbar^2 k_z^2}{2m_*}.$$

(b) Let us treat the problem within the grand-canonical ensemble. Write the grand partition function Ξ as a sum over many-body microstates l characterized by the total particle number N_l and energy E_l . Show that in the case of noninteracting fermions one can write the grand-potential $\Omega = -k_{\rm B}T \ln \Xi$ in the form

$$\Omega = -k_{\rm B}T \sum_{\lambda} \ln\left(1 + e^{-\beta(\epsilon_{\lambda} - \mu)}\right)$$

as a sum over one-body states λ .

(c) Write the grand-potential as a sum over the Landau level index n and k_z . Replace the sum over k_z by an integral and show that Ω can be written as

$$\Omega = \hbar\omega_{\rm c} \sum_{n=0}^{\infty} f(\mu - \hbar\omega_{\rm c}[n+1/2]).$$
(1)

Determine the function f(E).

(d) Apply the variant of the Euler-MacLaurin formula

$$\sum_{n=0}^{\infty} F(n+1/2) \simeq \int_0^{\infty} \mathrm{d}x \, F(x) + \frac{1}{24} F'(0)$$

to the sum over n in Eq. (1). In which limit is this formula a good approximation? Show that the result can be expressed as

$$\Omega \simeq \Omega_0(\mu) - \frac{(\hbar\omega_{\rm c})^2}{24} \frac{\partial^2 \Omega_0(\mu)}{\partial \mu^2},$$

with Ω_0 the grand potential in the absence of a magnetic field.

(e) Use the result for Ω to relate the magnetic susceptibility per volume

$$\chi = -\frac{\mu_0}{V} \frac{\partial^2 \Omega}{\partial B^2}$$

to the density of states (including the spin degeneracy) per unit volume at the chemical potential $g(\mu)$. Show that the resulting Landau susceptibility corresponds to a diamagnetic behavior and is given by

$$\chi_{\rm L} = -\frac{1}{3} \left(\frac{m_{\rm e}}{m_*}\right)^2 \chi_{\rm P},$$

with $m_{\rm e}$ the bare electron mass and where $\chi_{\rm P} = \mu_0 \mu_{\rm B}^2 g(\mu)$ is the paramagnetic Pauli susceptibility (which is due to the spin of the electron), with $\mu_{\rm B} = e\hbar/2m_{\rm e}$ Bohr's magneton.

(f) Discuss your result for the total magnetic susceptibility (including orbital and spin degrees of freedom) of the free electron gas $\chi = \chi_{\rm L} + \chi_{\rm P}$.