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Problem Set 9
Magnetic ordering

1 Ferromagnetism

We consider a cubic lattice system (with coordination number z = 6) of volume V and containing
N atoms. Each atom has a total angular momentum (in units of ~) J = S + L, with S and L
the spin and orbital angular momentum, respectively. The absolute square value J2 = J(J + 1),
where J is the quantum number of the total angular momentum. The magnetic moment of
an atom is given by µ = −gµBJ, where g is the Landé factor and µB the Bohr magneton.
An external magnetic field in the z direction (which defines the quantization axis) B = B ẑ is
applied, and we consider a ferromagnetic exchange interaction γ > 0 between nearest neighbor
atoms. The Hamiltonian of the system reads

H = −γ
∑
〈i,j〉

Jz
i J

z
j + gµBB

N∑
i=1

Jz
i , (1.1)

where Jz
i is the z component of the total angular momentum, while 〈i, j〉 represents a summation

over nearest neighbors.
For γ = 0, the average magnetization of the sample is given by (cf. Problem Set 6, Exercice 2)

〈M z〉 = MsBJ(βgµBJB),

with Ms = ngµBJ the saturation magnetization (n = N/V is the density), β = 1/kBT the
inverse temperature, and where

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
denotes the Brillouin function. Note that for x� 1, the latter reads

BJ(x) =
J + 1

3J
x− ζJ x3 +O

(
x5
)
, with ζJ =

(J + 1)[2J(J + 1) + 1]

90J3
.

(a) At zero temperature (T = 0) and vanishing magnetic field (B = 0), what are the two
degenerate ground states of the system?

(b) By writing down the energy of one lattice site and within the mean (molecular) field ap-
proximation due to Pierre Weiss (1907), argue that the effective magnetic field seen by the
spin Jz

i is given by Beff = B + Bm, where Bm = λ〈M z〉. Determine the expression of the
constant λ.

(c) Deduce from the preceding question that the magnetization obeys the self-consistent equa-
tion

〈M z〉 = MsBJ(βgµBJ [B + λ〈M z〉])

(d) Let us first consider the case B = 0. Show that the system presents a spontaneous magne-
tization below the critical temperature1

kBTc =
J(J + 1)

3
zγ. (1.2)

Sketch 〈M z〉 as a function of temperature.

1To simplify the notation, you may want to introduce the dimensionless quantity m = 〈Mz〉/Ms.
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(e) Show that the critical temperature (1.2) can be re-expressed as

kBTc =
J + 1

3
gµBλMs

and estimate the molecular field Bm for a ferromagnet with J = 1/2 and Tc = 103 K. How
does this value compare to typical applied magnetic fields that can be found in the lab?

(f) Still for B = 0, determine an approximate expression of 〈M z〉 for temperatures in the
vicinity of Tc.

(g) Determine the zero-field magnetic susceptibility χ in the vicinity of the phase transition, for
T & Tc.

2 Antiferromagnetism

We now consider a similar system as in Exercice 1, but with an anti ferromagnetic exchange
interaction γ < 0, so that we rewrite the Hamiltonian (1.1) as

H = |γ|
∑
〈i,j〉

Jz
i J

z
j + gµBB

N∑
i=1

Jz
i , (2.1)

(a) Let us consider for this question that T = 0 and B = 0. Justify that the system splits
into two sublattices A and B, such that the angular momenta take the value +J or −J
depending on the sublattice to which they belong. These states are called Néel states. How
many Néel states are there?

(b) Let us call 〈M z
A〉 (〈M z

B〉) the average magnetization of the A (B) sublattice. Using the Weiss
molecular field approximation, show that these two quantities are determined by the two
self-consistent coupled equations

〈M z
A〉 =

Ms

2
BJ(βgµBJ [B − 2|λ|〈M z

B〉]) , (2.2a)

〈M z
B〉 =

Ms

2
BJ(βgµBJ [B − 2|λ|〈M z

A〉]) , (2.2b)

where the notation is the same as in the first exercice.

(c) For B = 0, assuming that 〈M z
A〉 = −〈M z

B〉, show that there exists a phase transition for a
temperature TN (called the Néel temperature) between a phase where 〈M z

A〉 = −〈M z
B〉 = 0

and a phase where 〈M z
A〉 = −〈M z

B〉 = M0(T ). Give an expression for TN. Sketch M0(T ) as
a function of temperature.

(d) Still for B = 0, sketch the total magnetization Mtot = 〈M z
A〉 + 〈M z

B〉 and the staggered
magnetization Msta = 〈M z

A〉 − 〈M z
B〉 as a function of T . Which quantity is the order

parameter of the antiferromagnetic-paramagnetic phase transition?

(e) Using Eqs. (2.2), determine the zero-field magnetic susceptibility χ for T & TN.

3 Experimental considerations

As we have seen in the previous exercices, in both the ferromagnetic and antiferromagnetic cases,
the susceptibility is given, above the critical temperature of the phase transition, by

χ ∼ 1

T − θ
,

where θ = Tc in the ferromagnetic case, while θ = −TN in the antiferromagnetic one. What
is the value of θ for a paramagnet, i.e., γ = 0 in Eq. (1.1) or (2.1)? Sketch χ−1 as a function
of temperature in all three cases, and discuss how experimentalists determine that a sample is
para-, ferro-, or antiferromagnetic.

2


	Ferromagnetism
	Antiferromagnetism
	Experimental considerations

