Problem Set 9 Magnetic ordering

1 Ferromagnetism

We consider a cubic lattice system (with coordination number z = 6) of volume V and containing N atoms. Each atom has a total angular momentum (in units of \hbar) $\mathbf{J} = \mathbf{S} + \mathbf{L}$, with \mathbf{S} and \mathbf{L} the spin and orbital angular momentum, respectively. The absolute square value $\mathbf{J}^2 = J(J+1)$, where J is the quantum number of the total angular momentum. The magnetic moment of an atom is given by $\boldsymbol{\mu} = -g\mu_{\rm B}\mathbf{J}$, where g is the Landé factor and $\mu_{\rm B}$ the Bohr magneton. An external magnetic field in the z direction (which defines the quantization axis) $\mathbf{B} = B \hat{z}$ is applied, and we consider a ferromagnetic exchange interaction $\gamma > 0$ between nearest neighbor atoms. The Hamiltonian of the system reads

$$H = -\gamma \sum_{\langle i,j \rangle} J_i^z J_j^z + g\mu_{\rm B} B \sum_{i=1}^N J_i^z, \qquad (1.1)$$

where J_i^z is the z component of the total angular momentum, while $\langle i, j \rangle$ represents a summation over nearest neighbors.

For $\gamma = 0$, the average magnetization of the sample is given by (*cf.* Problem Set 6, Exercice 2)

$$\langle M^z \rangle = M_{\rm s} B_J(\beta g \mu_{\rm B} J B),$$

with $M_{\rm s} = ng\mu_{\rm B}J$ the saturation magnetization (n = N/V is the density), $\beta = 1/k_{\rm B}T$ the inverse temperature, and where

$$B_J(x) = \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \coth\left(\frac{1}{2J}x\right)$$

denotes the Brillouin function. Note that for $x \ll 1$, the latter reads

$$B_J(x) = \frac{J+1}{3J} x - \zeta_J x^3 + \mathcal{O}(x^5), \quad \text{with} \quad \zeta_J = \frac{(J+1)[2J(J+1)+1]}{90J^3}.$$

- (a) At zero temperature (T = 0) and vanishing magnetic field (B = 0), what are the two degenerate ground states of the system?
- (b) By writing down the energy of one lattice site and within the mean (molecular) field approximation due to Pierre Weiss (1907), argue that the effective magnetic field seen by the spin J_i^z is given by $B_{\text{eff}} = B + B_{\text{m}}$, where $B_{\text{m}} = \lambda \langle M^z \rangle$. Determine the expression of the constant λ .
- (c) Deduce from the preceding question that the magnetization obeys the self-consistent equation

$$\langle M^z \rangle = M_{\rm s} B_J (\beta g \mu_{\rm B} J [B + \lambda \langle M^z \rangle])$$

(d) Let us first consider the case B = 0. Show that the system presents a spontaneous magnetization below the critical temperature¹

$$k_{\rm B}T_{\rm c} = \frac{J(J+1)}{3} z\gamma.$$
 (1.2)

Sketch $\langle M^z \rangle$ as a function of temperature.

¹To simplify the notation, you may want to introduce the dimensionless quantity $m = \langle M^z \rangle / M_s$.

(e) Show that the critical temperature (1.2) can be re-expressed as

$$k_{\rm B}T_{\rm c} = \frac{J+1}{3} g\mu_{\rm B}\lambda M_{\rm s}$$

and estimate the molecular field $B_{\rm m}$ for a ferromagnet with J = 1/2 and $T_{\rm c} = 10^3$ K. How does this value compare to typical applied magnetic fields that can be found in the lab?

- (f) Still for B = 0, determine an approximate expression of $\langle M^z \rangle$ for temperatures in the vicinity of T_c .
- (g) Determine the zero-field magnetic susceptibility χ in the vicinity of the phase transition, for $T \gtrsim T_{\rm c}$.

2 Antiferromagnetism

We now consider a similar system as in Exercice 1, but with an *anti* ferromagnetic exchange interaction $\gamma < 0$, so that we rewrite the Hamiltonian (1.1) as

$$H = |\gamma| \sum_{\langle i,j \rangle} J_i^z J_j^z + g\mu_{\rm B} B \sum_{i=1}^N J_i^z, \qquad (2.1)$$

- (a) Let us consider for this question that T = 0 and B = 0. Justify that the system splits into two sublattices A and B, such that the angular momenta take the value +J or -Jdepending on the sublattice to which they belong. These states are called *Néel states*. How many Néel states are there?
- (b) Let us call $\langle M_A^z \rangle$ ($\langle M_B^z \rangle$) the average magnetization of the A(B) sublattice. Using the Weiss molecular field approximation, show that these two quantities are determined by the two self-consistent coupled equations

$$\langle M_A^z \rangle = \frac{M_s}{2} B_J (\beta g \mu_B J [B - 2|\lambda| \langle M_B^z \rangle]), \qquad (2.2a)$$

$$\langle M_B^z \rangle = \frac{M_s}{2} B_J (\beta g \mu_B J [B - 2|\lambda| \langle M_A^z \rangle]), \qquad (2.2b)$$

where the notation is the same as in the first exercice.

- (c) For B = 0, assuming that $\langle M_A^z \rangle = -\langle M_B^z \rangle$, show that there exists a phase transition for a temperature T_N (called the Néel temperature) between a phase where $\langle M_A^z \rangle = -\langle M_B^z \rangle = 0$ and a phase where $\langle M_A^z \rangle = -\langle M_B^z \rangle = M_0(T)$. Give an expression for T_N . Sketch $M_0(T)$ as a function of temperature.
- (d) Still for B = 0, sketch the total magnetization $M_{\text{tot}} = \langle M_A^z \rangle + \langle M_B^z \rangle$ and the staggered magnetization $M_{\text{sta}} = \langle M_A^z \rangle \langle M_B^z \rangle$ as a function of T. Which quantity is the order parameter of the antiferromagnetic-paramagnetic phase transition?
- (e) Using Eqs. (2.2), determine the zero-field magnetic susceptibility χ for $T \gtrsim T_N$.

3 Experimental considerations

As we have seen in the previous exercices, in both the ferromagnetic and antiferromagnetic cases, the susceptibility is given, above the critical temperature of the phase transition, by

$$\chi \sim \frac{1}{T-\theta},$$

where $\theta = T_c$ in the ferromagnetic case, while $\theta = -T_N$ in the antiferromagnetic one. What is the value of θ for a paramagnet, *i.e.*, $\gamma = 0$ in Eq. (1.1) or (2.1)? Sketch χ^{-1} as a function of temperature in all three cases, and discuss how experimentalists determine that a sample is para-, ferro-, or antiferromagnetic.