Exam - Session 1

Duration: 2 h .
Documents, cell phones, computers, tablets, pocket calculators, etc., are not allowed.
The text contains 4 pages in total, and the 2 exercices are independent from each other.

1 Chemical potential and charge carrier concentration in a homogeneous semiconductor

We consider a two-band semiconductor with an energy gap $E_{\mathrm{g}}=E_{\mathrm{c}}-E_{\mathrm{v}}$ between the conduction (c) and valence (v) band edges. The electrons follow the Fermi-Dirac distribution

$$
f(E)=\frac{1}{\mathrm{e}^{\beta(E-\mu)}+1}
$$

with μ the chemical potential, and where $\beta=1 / k_{\mathrm{B}} T$ with k_{B} the Boltzmann constant and T the temperature. Similarly, holes follow the distribution $1-f(E)$. The electronic density of states per unit volume in the valence and conduction bands are denoted $g_{\mathrm{v}}(E)$ and $g_{\mathrm{c}}(E)$, respectively.

1.1 Intrinsic semiconductor

We first consider an intrinsic semiconductor with, at zero temperature, a filled valence band and an empty conduction band. The electron concentration in the conduction band and the hole concentration in the valence band are denoted n_{0} and p_{0}, respectively.
(a) At finite temperature, express $n_{0}(T)$ and $p_{0}(T)$ in terms of an energy integral (do not attempt to calculate explicitely the integral). Express the neutrality condition. What does this imply for the energy location of μ at $T=0$?
(b) We now assume that $k_{\mathrm{B}} T \ll E_{\mathrm{g}}$. Provide a sensible approximation for $f(E)$ and show that $n_{0}(T)$ and $p_{0}(T)$ can be rewritten in the form

$$
\begin{aligned}
n_{0}(T) & \simeq N_{\mathrm{c}}(T) \mathrm{e}^{-\beta\left(E_{\mathrm{c}}-\mu\right)}, \\
p_{0}(T) & \simeq N_{\mathrm{v}}(T) \mathrm{e}^{-\beta\left(\mu-E_{\mathrm{v}}\right)},
\end{aligned}
$$

where $N_{\mathrm{c}}(T)$ and $N_{\mathrm{v}}(T)$ are the effective electron and hole densities of states in the conduction and valence bands, respectively.
(c) Deduce the temperature dependent intrinsic chemical potential $\mu_{\mathrm{i}}(T)$ in the case of an undoped semiconductor as well the intrinsic electron and hole concentrations $n_{\mathrm{i}}(T)$ and $p_{\mathrm{i}}(T)$, respectively.
(d) Calculate the product $n_{0}(T) p_{0}(T)$ and show that it does not depend on $\mu(T)$.

1.2 Doped semiconductor

We now consider an homogeneously n-doped semiconductor with an impurity band of shallow donors with concentration N_{d} and energy E_{d} located slightly below the conduction band edge such that $E_{\mathrm{c}}-E_{\mathrm{d}}=\delta E \ll E_{\mathrm{g}}$. Due to the electrostatic energy cost to accommodate two electrons (with opposite spins) on one impurity level, the probability that the impurity level with energy E_{d} is occupied by an electron with either spin is given by

$$
\widetilde{p}\left(E_{\mathrm{d}}\right)=\frac{1}{\frac{1}{2} \mathrm{e}^{\beta\left(E_{\mathrm{d}}-\mu\right)}+1} .
$$

(a) Express the concentration of electrons $n_{0}(T)$ in the conduction band at a temperature T and find an equation relating $N_{\mathrm{v}, \mathrm{c}, \mathrm{d}}, E_{\mathrm{v}, \mathrm{c}, \mathrm{d}}$ and μ.
(b) We introduce $T_{\mathrm{d}}=\delta E / k_{\mathrm{B}}$. Find the expressions of $\mu(T)$ and $n_{0}(T)$ in the three following cases:
(i) $T \ll T_{\mathrm{d}}$;
(ii) $T_{\mathrm{d}} \lesssim T \ll E_{\mathrm{g}} / k_{\mathrm{B}}$;
(iii) $T \gg T_{\mathrm{d}}$ and up to $T \sim E_{\mathrm{g}} / k_{\mathrm{B}}$.
(c) Sketch $\ln \left(n_{0}(T)\right)$ as a function of $1 / T$.

2 Antiferromagnetic simple cubic crystal with next-nearest neighbor exchange interaction

Let us consider a simple cubic lattice system of volume V, containing N atoms maintained at a temperature T. Each isolated atom has a total angular momentum (in units of \hbar) $\mathbf{J}=\mathbf{S}+\mathbf{L}$, with \mathbf{S} and \mathbf{L} the spin and orbital angular momentum, respectively. The absolute square value of the angular momentum writes $\mathbf{J}^{2}=J(J+1)$, where J is the quantum number of the total angular momentum. The magnetic moment of an atom is given by $\boldsymbol{\mu}=-g \mu_{\mathrm{B}} \mathbf{J}$, where g is the Landé factor and μ_{B} the Bohr magneton. An external magnetic field $\mathbf{B}=B \hat{z}$ is applied in the z direction corresponding to the [001] crystalline direction (and which defines the quantization axis).

In this exercice we consider an antiferromagnetic exchange interaction γ_{1} between nearest neighbors on the lattice, as well as a ferromagnetic interaction γ_{2} between next-nearest neighbors. The Hamiltonian of the system reads

$$
\begin{equation*}
H=\gamma_{1} \sum_{\langle i, j\rangle} J_{i}^{z} J_{j}^{z}-\gamma_{2} \sum_{\langle\langle i, j\rangle\rangle} J_{i}^{z} J_{j}^{z}+g \mu_{\mathrm{B}} B \sum_{i=1}^{N} J_{i}^{z}, \quad\left(\gamma_{1}, \gamma_{2}>0\right) \tag{1}
\end{equation*}
$$

where J_{i}^{z} is the z component of the total angular momentum (with $i=1 \ldots, N$ the lattice site index) while $\langle i, j\rangle$ and $\langle\langle i, j\rangle\rangle$ represent, respectively, summations over nearest neighbors and next-nearest neighbors.

2.1 Noninteracting case $\left(\gamma_{1}=\gamma_{2}=0\right)$

We first consider the case where there is no exchange interaction between nearest and nextnearest neighbors, i.e., $\gamma_{1}=\gamma_{2}=0$. The Hamiltonian (1) can then be expressed as a sum over N independent terms as $H=\sum_{i=1}^{N} H_{i}$, with

$$
H_{i}=g \mu_{\mathrm{B}} B J_{i}^{z} .
$$

(a) Specify the possible values J_{i}^{z} of the projection of the angular momentum \mathbf{J} of an atom on the z axis.
(b) Write the (canonical) partition function Z of each atom. Show that it can be expressed as the ratio of two hyperbolic sines. To simplify the notation, you may want to introduce the dimensionless quantity $\alpha=\beta g \mu_{\mathrm{B}} B$, with $\beta=1 / k_{\mathrm{B}} T$.
Hint: Note that

$$
\sum_{k=0}^{n} q^{k}=\frac{1-q^{n+1}}{1-q}, \quad(q \neq 1)
$$

(c) The free energy (per atom) is defined as $F=-k_{\mathrm{B}} T \ln Z$. Show that the mean value of the magnetic moment of each atom is given by

$$
\left\langle\mu^{z}\right\rangle=-\frac{\partial F}{\partial B}
$$

(d) Show that the average magnetization in z direction $\left\langle M^{z}\right\rangle$, defined as the mean total magnetic moment per unit volume, is linked to $\left\langle\mu^{z}\right\rangle$ by the relationship

$$
\left\langle M^{z}\right\rangle=n\left\langle\mu^{z}\right\rangle
$$

with $n=N / V$ the density of atoms in the crystal.
(e) Deduce from the preceding questions that the average magnetization can be expressed as

$$
\begin{equation*}
\left\langle M^{z}\right\rangle=M_{\mathrm{s}} B_{J}\left(\beta g \mu_{\mathrm{B}} J B\right) \tag{2}
\end{equation*}
$$

where the saturation magnetization

$$
\begin{equation*}
M_{\mathrm{s}}=n g \mu_{\mathrm{B}} J \tag{3}
\end{equation*}
$$

Here,

$$
\begin{equation*}
B_{J}(x)=\frac{2 J+1}{2 J} \operatorname{coth}\left(\frac{2 J+1}{2 J} x\right)-\frac{1}{2 J} \operatorname{coth}\left(\frac{1}{2 J} x\right) \tag{4}
\end{equation*}
$$

denotes the Brillouin function, which has for small argument $x \ll 1$ the Taylor expansion

$$
B_{J}(x)=\frac{J+1}{3 J} x+\mathcal{O}\left(x^{3}\right)
$$

(f) Justify why M_{s} is called the saturation magnetization?
(g) For a given, arbitrary value of J, sketch the magnetization (2) as a function of $g \mu_{\mathrm{B}} J B / k_{\mathrm{B}} T$ and comment on your result. Is the system paramagnetic, diamagnetic, ferromagnetic, or antiferromagnetic?

2.2 Interacting case $\left(\gamma_{1}>0, \gamma_{2}>0\right)$

We now consider the full Hamiltonian of Eq. (1) including antiferromagnetic (ferromagnetic) exchange interaction between nearest (next-nearest) neighbors, i.e., $\gamma_{1}>0$ and $\gamma_{2}>0$.
(a) Let us consider for this question that $T=0$ and $B=0$. Justify that the system splits into two sublattices A and B, such that the angular momenta take the value $+J$ or $-J$ depending on the sublattice to which they belong. These states are called Néel states. How many Néel states are there?
(b) Let us call $\left\langle M^{A}\right\rangle\left(\left\langle M^{B}\right\rangle\right)$ the average magnetization of the $A(B)$ sublattice in the z direction (from now on, we omit for simplicity the z superscript). By writing down the energy E_{i}^{A} of one lattice site i belonging to the A sublattice and within the mean (molecular) field approximation due to Pierre Weiss, argue that the effective magnetic field seen by the spin J_{i}^{A} is given by

$$
B_{\mathrm{eff}}^{A}=B-\lambda_{1}\left\langle M^{B}\right\rangle+\lambda_{2}\left\langle M^{A}\right\rangle
$$

with

$$
\lambda_{1}=\frac{12 \gamma_{1}}{n\left(g \mu_{\mathrm{B}}\right)^{2}}, \quad \lambda_{2}=\frac{16 \gamma_{2}}{n\left(g \mu_{\mathrm{B}}\right)^{2}}
$$

Within the same approximation, what is the effective magnetic field $B_{\text {eff }}^{B}$ seen by a spin J_{i}^{B} belonging to the B sublattice?
(c) Deduce from the preceding questions that $\left\langle M^{A}\right\rangle$ and $\left\langle M^{B}\right\rangle$ obey the set of coupled selfconsistent equations

$$
\begin{align*}
& \left\langle M^{A}\right\rangle=\frac{M_{\mathrm{s}}}{2} B_{J}\left(\beta g \mu_{\mathrm{B}} J\left[B-\lambda_{1}\left\langle M^{B}\right\rangle+\lambda_{2}\left\langle M^{A}\right\rangle\right]\right), \tag{5a}\\
& \left\langle M^{B}\right\rangle=\frac{M_{\mathrm{s}}}{2} B_{J}\left(\beta g \mu_{\mathrm{B}} J\left[B-\lambda_{1}\left\langle M^{A}\right\rangle+\lambda_{2}\left\langle M^{B}\right\rangle\right]\right) \tag{5b}
\end{align*}
$$

where M_{s} and B_{J} are defined in Eqs. (3) and (4), respectively.
(d) Argue that for vanishing applied magnetic field $(B=0),\left\langle M^{A}\right\rangle=-\left\langle M^{B}\right\rangle \equiv M$, so that the self-consistent equations (5) simplify to

$$
\begin{equation*}
m=B_{J}\left(\beta J^{2}\left[6 \gamma_{1}+8 \gamma_{2}\right] m\right) \tag{6}
\end{equation*}
$$

with $m=2 M / M_{\mathrm{s}}$.
(e) Solve Eq. (6) graphically and discuss its solutions. In particular, show that there is a antiferromagnetic/paramagnetic phase transition at a critical temperature T_{c}. Give the expression of T_{c} as a function of J, γ_{1}, and γ_{2}. Sketch $|m|$ as a function of T / T_{c}. Where is the antiferromagnetic phase? The paramagnetic one?
(f) If one neglects the ferromagnetic interaction between next-nearest neighbors [i.e., $\gamma_{2}=0$ in the Hamiltonian (1)], the result for the critical temperature T_{c} from the previous question is given by

$$
T_{\mathrm{c}}\left(\gamma_{2}=0\right)=\frac{2 J(J+1) \gamma_{1}}{k_{\mathrm{B}}}
$$

Your result from the previous question should indicate a larger critical temperature. Using physical arguments, justify why is that the case.
(g) Still for $B=0$, sketch the total magnetization $M_{\text {tot }}=\left\langle M^{A}\right\rangle+\left\langle M^{B}\right\rangle$ and the staggered magnetization $M_{\text {sta }}=\left\langle M^{A}\right\rangle-\left\langle M^{B}\right\rangle$ as a function of T.
(h) We now consider a finite applied magnetic field. Using Eqs. (5), determine the zero-field magnetic susceptibility

$$
\chi=\left.\mu_{0} \frac{\partial M_{\mathrm{tot}}}{\partial B}\right|_{B=0}
$$

for $T \gtrsim T_{\mathrm{c}}$ and show that it can be expressed as

$$
\begin{equation*}
\chi=\frac{C}{T+\theta} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\theta=\frac{6 \gamma_{1}-8 \gamma_{2}}{6 \gamma_{1}+8 \gamma_{2}} T_{\mathrm{c}} \tag{8}
\end{equation*}
$$

where C is a constant. What is the expression of C as a function of the parameters of the problem?
(i) Using physical arguments, discuss why in general, the quantity θ from Eq. (8) is positive. Sketch then for $\theta>0$ the magnetic susceptiblity (7) as a function of temperature.

