Exam — Session 1

Duration: 2h.

Documents, cell phones, computers, tablets, pocket calculators, etc., are not allowed. The text contains 4 pages in total, and the 2 exercices are independent from each other.

1 Chemical potential and charge carrier concentration in a homogeneous semiconductor

We consider a two-band semiconductor with an energy gap $E_{\rm g} = E_{\rm c} - E_{\rm v}$ between the conduction (c) and valence (v) band edges. The electrons follow the Fermi–Dirac distribution

$$f(E) = \frac{1}{e^{\beta(E-\mu)} + 1},$$

with μ the chemical potential, and where $\beta = 1/k_{\rm B}T$ with $k_{\rm B}$ the Boltzmann constant and T the temperature. Similarly, holes follow the distribution 1 - f(E). The electronic density of states per unit volume in the valence and conduction bands are denoted $q_{\rm v}(E)$ and $q_{\rm c}(E)$, respectively.

1.1 Intrinsic semiconductor

We first consider an intrinsic semiconductor with, at zero temperature, a filled valence band and an empty conduction band. The electron concentration in the conduction band and the hole concentration in the valence band are denoted n_0 and p_0 , respectively.

- (a) At finite temperature, express $n_0(T)$ and $p_0(T)$ in terms of an energy integral (do not attempt to calculate explicitly the integral). Express the neutrality condition. What does this imply for the energy location of μ at T=0?
- (b) We now assume that $k_{\rm B}T \ll E_{\rm g}$. Provide a sensible approximation for f(E) and show that $n_0(T)$ and $p_0(T)$ can be rewritten in the form

$$n_0(T) \simeq N_{\rm c}(T) e^{-\beta(E_{\rm c}-\mu)},$$

 $p_0(T) \simeq N_{\rm v}(T) e^{-\beta(\mu-E_{\rm v})}.$

where $N_{\rm c}(T)$ and $N_{\rm v}(T)$ are the effective electron and hole densities of states in the conduction and valence bands, respectively.

- (c) Deduce the temperature dependent *intrinsic* chemical potential $\mu_i(T)$ in the case of an undoped semiconductor as well the *intrinsic* electron and hole concentrations $n_i(T)$ and $p_i(T)$, respectively.
- (d) Calculate the product $n_0(T)p_0(T)$ and show that it does not depend on $\mu(T)$.

1.2 Doped semiconductor

We now consider an homogeneously n-doped semiconductor with an impurity band of shallow donors with concentration $N_{\rm d}$ and energy $E_{\rm d}$ located slightly below the conduction band edge such that $E_{\rm c}-E_{\rm d}=\delta E\ll E_{\rm g}$. Due to the electrostatic energy cost to accommodate two electrons (with opposite spins) on one impurity level, the probability that the impurity level with energy $E_{\rm d}$ is occupied by an electron with either spin is given by

$$\widetilde{p}(E_{\mathrm{d}}) = \frac{1}{\frac{1}{2} e^{\beta(E_{\mathrm{d}} - \mu)} + 1}.$$

- (a) Express the concentration of electrons $n_0(T)$ in the conduction band at a temperature T and find an equation relating $N_{\rm v,c,d}$, $E_{\rm v,c,d}$ and μ .
- (b) We introduce $T_{\rm d} = \delta E/k_{\rm B}$. Find the expressions of $\mu(T)$ and $n_0(T)$ in the three following cases:
 - (i) $T \ll T_d$;
 - (ii) $T_{\rm d} \lesssim T \ll E_{\sigma}/k_{\rm B}$;
 - (iii) $T \gg T_{\rm d}$ and up to $T \sim E_{\rm g}/k_{\rm B}$.
- (c) Sketch $\ln(n_0(T))$ as a function of 1/T.

2 Antiferromagnetic simple cubic crystal with next-nearest neighbor exchange interaction

Let us consider a simple cubic lattice system of volume V, containing N atoms maintained at a temperature T. Each isolated atom has a total angular momentum (in units of \hbar) $\mathbf{J} = \mathbf{S} + \mathbf{L}$, with \mathbf{S} and \mathbf{L} the spin and orbital angular momentum, respectively. The absolute square value of the angular momentum writes $\mathbf{J}^2 = J(J+1)$, where J is the quantum number of the total angular momentum. The magnetic moment of an atom is given by $\boldsymbol{\mu} = -g\mu_{\rm B}\mathbf{J}$, where g is the Landé factor and $\mu_{\rm B}$ the Bohr magneton. An external magnetic field $\mathbf{B} = B\,\hat{z}$ is applied in the z direction corresponding to the [001] crystalline direction (and which defines the quantization axis).

In this exercice we consider an antiferromagnetic exchange interaction γ_1 between nearest neighbors on the lattice, as well as a ferromagnetic interaction γ_2 between next-nearest neighbors. The Hamiltonian of the system reads

$$H = \gamma_1 \sum_{\langle i,j \rangle} J_i^z J_j^z - \gamma_2 \sum_{\langle \langle i,j \rangle \rangle} J_i^z J_j^z + g \mu_{\rm B} B \sum_{i=1}^N J_i^z, \qquad (\gamma_1, \gamma_2 > 0)$$
 (1)

where J_i^z is the z component of the total angular momentum (with $i=1\ldots,N$ the lattice site index) while $\langle i,j \rangle$ and $\langle \langle i,j \rangle \rangle$ represent, respectively, summations over nearest neighbors and next-nearest neighbors.

2.1 Noninteracting case $(\gamma_1 = \gamma_2 = 0)$

We first consider the case where there is no exchange interaction between nearest and nextnearest neighbors, i.e., $\gamma_1 = \gamma_2 = 0$. The Hamiltonian (1) can then be expressed as a sum over N independent terms as $H = \sum_{i=1}^{N} H_i$, with

$$H_i = g\mu_{\rm B}BJ_i^z$$
.

- (a) Specify the possible values J_i^z of the projection of the angular momentum **J** of an atom on the z axis.
- (b) Write the (canonical) partition function Z of each atom. Show that it can be expressed as the ratio of two hyperbolic sines. To simplify the notation, you may want to introduce the dimensionless quantity $\alpha = \beta g \mu_{\rm B} B$, with $\beta = 1/k_{\rm B} T$.

Hint: Note that

$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}, \qquad (q \neq 1).$$

(c) The free energy (per atom) is defined as $F = -k_{\rm B}T \ln Z$. Show that the mean value of the magnetic moment of each atom is given by

$$\langle \mu^z \rangle = -\frac{\partial F}{\partial B}.$$

(d) Show that the average magnetization in z direction $\langle M^z \rangle$, defined as the mean total magnetic moment per unit volume, is linked to $\langle \mu^z \rangle$ by the relationship

$$\langle M^z \rangle = n \langle \mu^z \rangle,$$

with n = N/V the density of atoms in the crystal.

(e) Deduce from the preceding questions that the average magnetization can be expressed as

$$\langle M^z \rangle = M_{\rm s} B_J (\beta g \mu_{\rm B} J B) \tag{2}$$

where the saturation magnetization

$$M_{\rm s} = ng\mu_{\rm B}J. \tag{3}$$

Here,

$$B_J(x) = \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \coth\left(\frac{1}{2J}x\right)$$
 (4)

denotes the Brillouin function, which has for small argument $x \ll 1$ the Taylor expansion

$$B_J(x) = \frac{J+1}{3J} x + \mathcal{O}(x^3).$$

- (f) Justify why M_s is called the *saturation* magnetization?
- (g) For a given, arbitrary value of J, sketch the magnetization (2) as a function of $g\mu_{\rm B}JB/k_{\rm B}T$ and comment on your result. Is the system paramagnetic, diamagnetic, ferromagnetic, or antiferromagnetic?

2.2 Interacting case $(\gamma_1 > 0, \gamma_2 > 0)$

We now consider the full Hamiltonian of Eq. (1) including antiferromagnetic (ferromagnetic) exchange interaction between nearest (next-nearest) neighbors, i.e., $\gamma_1 > 0$ and $\gamma_2 > 0$.

- (a) Let us consider for this question that T=0 and B=0. Justify that the system splits into two sublattices A and B, such that the angular momenta take the value +J or -J depending on the sublattice to which they belong. These states are called *Néel states*. How many Néel states are there?
- (b) Let us call $\langle M^A \rangle$ ($\langle M^B \rangle$) the average magnetization of the A (B) sublattice in the z direction (from now on, we omit for simplicity the z superscript). By writing down the energy E_i^A of one lattice site i belonging to the A sublattice and within the mean (molecular) field approximation due to Pierre Weiss, argue that the effective magnetic field seen by the spin J_i^A is given by

$$B_{\text{eff}}^A = B - \lambda_1 \langle M^B \rangle + \lambda_2 \langle M^A \rangle,$$

with

$$\lambda_1 = \frac{12\gamma_1}{n(g\mu_{\rm B})^2}, \qquad \lambda_2 = \frac{16\gamma_2}{n(g\mu_{\rm B})^2}.$$

Within the same approximation, what is the effective magnetic field B_{eff}^B seen by a spin J_i^B belonging to the B sublattice?

(c) Deduce from the preceding questions that $\langle M^A \rangle$ and $\langle M^B \rangle$ obey the set of coupled self-consistent equations

$$\langle M^A \rangle = \frac{M_s}{2} B_J \left(\beta g \mu_B J \left[B - \lambda_1 \langle M^B \rangle + \lambda_2 \langle M^A \rangle \right] \right), \tag{5a}$$

$$\langle M^B \rangle = \frac{M_s}{2} B_J (\beta g \mu_B J \left[B - \lambda_1 \langle M^A \rangle + \lambda_2 \langle M^B \rangle \right]), \qquad (5b)$$

where $M_{\rm s}$ and B_J are defined in Eqs. (3) and (4), respectively.

(d) Argue that for vanishing applied magnetic field (B=0), $\langle M^A \rangle = -\langle M^B \rangle \equiv M$, so that the self-consistent equations (5) simplify to

$$m = B_J(\beta J^2 \left[6\gamma_1 + 8\gamma_2 \right] m), \qquad (6)$$

with $m = 2M/M_s$.

- (e) Solve Eq. (6) graphically and discuss its solutions. In particular, show that there is a antiferromagnetic/paramagnetic phase transition at a critical temperature T_c . Give the expression of T_c as a function of J, γ_1 , and γ_2 . Sketch |m| as a function of T/T_c . Where is the antiferromagnetic phase? The paramagnetic one?
- (f) If one neglects the ferromagnetic interaction between next-nearest neighbors [i.e., $\gamma_2 = 0$ in the Hamiltonian (1)], the result for the critical temperature T_c from the previous question is given by

$$T_{\rm c}(\gamma_2 = 0) = \frac{2J(J+1)\gamma_1}{k_{\rm Pl}}.$$

Your result from the previous question should indicate a *larger* critical temperature. Using physical arguments, justify why is that the case.

- (g) Still for B = 0, sketch the total magnetization $M_{\text{tot}} = \langle M^A \rangle + \langle M^B \rangle$ and the staggered magnetization $M_{\text{sta}} = \langle M^A \rangle \langle M^B \rangle$ as a function of T.
- (h) We now consider a finite applied magnetic field. Using Eqs. (5), determine the zero-field magnetic susceptibility

$$\chi = \mu_0 \left. \frac{\partial M_{\text{tot}}}{\partial B} \right|_{B=0}$$

for $T \gtrsim T_{\rm c}$ and show that it can be expressed as

$$\chi = \frac{C}{T+\theta},\tag{7}$$

with

$$\theta = \frac{6\gamma_1 - 8\gamma_2}{6\gamma_1 + 8\gamma_2} T_{\rm c},\tag{8}$$

where C is a constant. What is the expression of C as a function of the parameters of the problem?

(i) Using physical arguments, discuss why in general, the quantity θ from Eq. (8) is positive. Sketch then for $\theta > 0$ the magnetic susceptibility (7) as a function of temperature.