
SURFACE DIFFUSION 
NUCLEATION AND GROWTH 



 Adsorption and diffusion of atoms 
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Once adsorbed on a surface, the adatom diffuses by overcoming an 
activation barrier Ed i.e. the saddle point between two dsorption sites. 



 The Einstein formula 

The Einstein relation describes well the movement of atoms on a substrate: 

Dtx =Δ 2

2xΔ :  root mean square 

Diffusivity: ( )kTEDD d−= exp0
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D0 is the preexponential factor: 
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Surface diffusion and island density 
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Density of islands 



 Island densities and shapes 

A simple case study:  

Ag on Pt(111) as a function of 
substrate temperature 

Coverage 0.1 ML 

 

 
Two points: 

Island density decreases with T 

Island size increases with T 

H. Roeder, H. Brune, J.P. Bucher, and K. Kern, Surf. Sci. 298, 121 (1993).  



Density of islands from STM images 
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Venables et al. Rep. Prog. Phys. 47, 399 (1984)  

η(θ) : slowly varying function of θ 
i : size of the critical nucleus 
Ei : binding energy of critical nucleus     

The density of islands can be established by considering an 
adatom diffusing by Λd on the average during its life time τ: D
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The rate of dimer formation can then be determined and thus for i=1, the average 
density of islands N defined by the Voronoi polygons of capture area Λd

2 (see 
course). 

The density of adatoms « n » is the product of 
the deposition rate R by the lifetime: 

Generalization to 1D, 2D and 3D systems: A. Pimpinelli et al. Phys. Rev. Lett. 69, 985 (1992). 



Diffusion barriers from STM images 

Arrhenius plot of N as a function of 1/T for T≤110K, i = 1 and R = 1.1 × 10-3 ML/s 

   →  Ed= 157 ±10 meV 

 

 Assuming η(θ) ≈ 1 →     1 × 1013 ≤ν0 ≤ 4 × 1014 Hz 

 The dimer (i=2) becomes the critical nucleus for T>120K 

For i=1 we retrieve the 
simple expression for N with 
the exponent 1/3 
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Island shapes 

Such structures are called self-similar 

Low temperature (130 K) grown 
Ag islands on Pt(111)  

Itteration of Koch’s snow flake 

H. Roeder, E. Hahn, H. Brune, J.P. Bucher, and K. Kern, Nature, 366, 141 (1993). 



Fractal growth 
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Le volume d’un objet arbitraire peut être mesuré en le remplissant avec des balles de 
dimension l et de volume ld il nous faut N(l) balles pour le remplir: 

dllNV )(=

On s’attend à ce que : dllN −∝)( puisque le volume d’un objet ne change pas si 
on change l’unité de mesure l. 

Normalement, d=1, 2, 3, … Si l’objet est fractal, d ne sera pas entier 
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Exemple: 



Co islands grown on Ag(111) at low temperature 

D=1.78 

T=110 K 

R=1.6 10-5 ML/s 

θ = 0.12 ML 

log r 

Fractal analysis  



Original stage of growth 

STM images of small AgN clusters 
grown on Pt(111) at 80 K 

Average cluster size N=13 
60 nm x 47 nm 

Average cluster size N=2 
60 nm x 19 nm 

Two possible Y-shaped clusters  



Why three branch dendrites? 

J. Norskov et al. Surf. Sci. 349, L115 (1996).  

x,y-Position (nm)  
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Total energy calculation of 
Ag adatom diffusing around 
a Ag7 cluster on Pt(111) 

Growth scenari of dendrites in the A-direction 
for frozen corner diffusion towards B-steps 



Island shape: compact islands 

Pt islands shapes on Pt(111) after deposition 
at various substrate temperature : 

T. Michely et al. Phys. Rev. Lett. 70, 3943 (1993).  

450 K 640 K 710 K 

425 K ann. 710 K 

100 nm!

Article de vulgarisation: « Fabriquer des objets à l’échelle atomique » 
Pablo Jensen, La Recherche N°283, Janvier 1996. 



Island shape: wires 

How do we make a 1D system out of a 2D system ? 

For example : use a fcc(110) surface 



265 K                     300 K 
 

320 K 350 K 

J.P. Bucher et al. Europhys. Lett. 27, 473 (1994)  

Cu wires grown on Pd(110) 



GROWTH AND STRAIN 



Growth modes 

0.5 ML 

1 ML 

1.5 ML 

2 ML 

Frank-van der Merve 
(FM) growth 

Stranski-Krastanov 
(SK) growth 

Volmer-Weber 
(VW) growth 

subfilm γγγγ −+=Δ int

γfilm= surf. free energy of the film 

γsub= surf. free energy of substrate 

γint= interface energy 

Δγ > 0   3D (VW) growth 

Δγ ≤ 0   for every additionnal layer → 2D growth (FM) 

Δγ ≤ 0   for a limited number of layers  → 2D growth followed by 3D islands growth 

γint ≈ 0  if substrate & film similar 

γint ≠ 0  if there is strain 



Case study: Ag on Pt(111) 
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Θ ≤ 1 ML 

STM 



Molecular beam epitaxy 



Growth and RHEED signal 

Layer by layer growth of the Frank-van der Merve type and corresponding RHEED signal 

 



Molecular dynamics 

Snapshots of the molecular 
dynamics calculation of a 
melting crystal 



Molecular dynamics 

Relative strength of the f-s potential:  W = εfs / εff  

Misfit: η = (cff / css ) -1 

Lennard-Jones potential 

Φab(rij) = 4 εab [(cab/rij)12 - [(cab/rij)6] 

 

cab : equilibrium distance;  εff : depth of the film-film potential ;εss : depth of 
the substrate-substrate potential  

The potential Φ is acting between type “a” atom and type “b” atom through a 
distance rij. The potentials are troncated for rij ≥ 2.5 cab 

 

Substrate Film 



Molecular dynamics 
Grabow and Gilmer, Surf. Sci. 194, 333 (1988) 
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Plotted quantity :   

(FN - N µB )/ N0 versus N / N0  

FN change of free energy on adding N 
atoms to the film 

µB chemical potential of the bulk 

N0 number of available substrate sites 

 

 

µ = ∂F/∂N 



Strain and growth modes 

Molecular dynamics predicts that a uniform film with a thickness exceeding 
of a few ML cannot be an equilibrium state for any finite misfit η>0  

In the previous example, µ>µB after the first two MLs implies that a uniform 
film does not lead to an absolute equilibrium state. The system can lower 
its chemical potential by forming 3D clusters → SK mode 

 

● When the interaction f-s<f-f → Volmer-Weber is favorable 

● A strong f-s interaction is not sufficient to guarantee a Frank van der 
Merve growth in the presence of strain 

● There is a third possibility in which one to a few monolayers (ML) grow 
layer-by-layer, followed by a cluster growth (Stranski-Krastanov growth). 



Strain and growth modes 

● FvdM or layer by layer is only 
stable for η=0 and W>1 

● It is the strain in the film which 
provides the driving force ∆F for 
the cluster nucleation. It is the 
difference between the energy 
per atom of an additional ML 
and that of the bulk : 

 

VW 

W  

0.05    0.10    0.15    0.2     
η  

SK 

FM 
FCC(100) 

DC(111) 

  ∆F = F(Nn+1)- F(Nn)- µB [Nn+1-Nn]  
this is nothing but the difference between two successive minima in the figure 
(molecular dynamics). Estimate based on the elasticity theory: 
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INCOMMENSURATE PHASES 



STM images of the domain wall network obtained after annealing a Ag-bilayer 
deposited on Pt(111) 

H. Brune, M. Giovannini, K. Bromann, K. Kern, Nature, 394, 451 (1998) 

 Nucleation on a network of discommensuration line 

Ag island nucleation at 110K. Each super-
structure unit cell contains one Ag island.   



Incommensurate modulated layer 

•  Soliton solution of the 1D Frenkel-Kontorova model. The ground state 
satisfies the static sine Gordon equation:     

•    d2ϕ /d n2  =  pA  sin (pϕ)        xn → continuous function ϕ(n) 
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xn is the position of the n’th atom 

a, is the distance of nearest neighbour atoms of the chain in the absence of substrate 
potential, with a≠b. 

Frank and van der Merve solved this model analytically by replacing the index “n” by a 
continuous variable and xn by a continuous function φn the phase shift of an atom of 
the chain with respect of the potential minimum : 

We consider a chain of atoms connected by springs of constant k subjected to a 
harmonic potential of amplitude V and period b. The total energy of this model is given 
by : 

1D Frenkel-Kontorova model 

In the continuum approximation, the energy can  be written : 

( )
2

12

2
2

1 22
82

2)/2()(

⎟
⎠

⎞
⎜
⎝

⎛ +−−=−−

→−=

++ ππϕϕ
π

ππϕ

b
akbaxxk

nbxn

nnnn

with 



1D Frenkel-Kontorova model 
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Where δ=(a-b)/b is the lattice mismatch and p is the commensurability. The hamiltonian 
can be minimized exactly. The ground state satisfies the time-independent sine Gordon 
equation: 

This equation has the form : 
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One solution of this equation is the solitary lattice distortion, the so-called soliton : 



1D Frenkel-Kontorova model 
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For slightly differing lattice parameters of chain and substrate potential, the lowest 
energy state of the system consists of large commensurate domains separated by 
regularly spaced domain walls (discommensurations). The soliton solution is shown 
in the figure below for the domain wall located at n=0 

The width of the domain wall in this model is 

On a surface (2D), the domain walls become domain lines that form a regular network 
of lines that may cross each others as shown in the next example. 

  

( )Ap/1=λ



Zigzag reconstruction of Au(111)!

STM image 100 nm x 100 nm!

 Nucleation on surface reconstructions 

S. Padovani, I. Chado, F. Scheurer, and J.P. Bucher,  Phys. Rev. B 59, 11887 (1999). 



0.2 ML of Fe grown on the free Cu 
surface in between the N-islands   

Periodic arrays of islands consisting of atomic nitrogen (0.2 ML) induced 
reconstruction of the Cu(100) surface obtained after annealing 

T.M. Parker, L.K. Wilson, N.G. Condon, F.M. Leibsle, Phys. Rev. B 56, 6458 (1997). 

 Nitrogen induced reconstructions 

60 nm × 60 nm 

120 nm × 120 nm 



 Reconstruction et commensurabilité 
La maille élémentaire d’une structure reconstruite est différente de la maille “idéale” 
obtenue par la projection de la maille volumique à la surface. 

Décrivons mathématiquement les relations possibles entre maille de la structure 
reconstruite et maille “idéale”. 
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( )12111 , SSS aaa =


; ( )22212 , SSS aaa =


Les vecteurs de base du réseau superficiel, 

et ( )12111 , VVV aaa =
 ( )22212 , VVV aaa =



ceux du réseau du substrat. 

La relation entre ces deux vecteurs 
s’écrit: 

; 



 Reconstruction et commensurabilité 

Avec 21 SSS aaA 
∧= VS AMA =

Les structures superficielles peuvent être classifiées selon la valeur de det M. 

21122211det MMMMMM −==

1) det M= entier  

La structure superficielle possède la classe de symétrie du substrat. La maille 
superficielle coïncide avec les points du réseau du substrat. La supersructure est 
commensurable. 

2) det M=p/q, fraction rationnelle (p,q entiers) 

La superstructure est commensurable mais seule une fraction des atomes superficiels 
est localisées dans des sites à haute symétrie. Il existe un réseau de coïncidence. 

3) det M= nombre irrationnel 

Il n’y a pas de réseau de coïncidence, le superréseau est incommensurable  

Les aires élémentaires sont: 

21 VVV aaA 
∧=



By Gerhard Ertl, Nobel Lecture, December 8, 2007 

Target patterns in catalytic oxidation of CO 
on a Pt(110) surface as imaged by 
photoemission electron microscopy (PEEM) 

The structure of the Pt(110) surface  a) The 1x2-
structure of the clean surface, b) the 1x1-structure 
representing termination of the bulk structure 

 Reactions at surfaces: from atoms to complexity 

Missing row: Instead of the termination by the corresponding bulk crystal plane (1x1 structure), every 
second row along the [1-10] direction is missing, giving rise to as 1x2-structure. In this way small facets with 
(111)-orientation are exposed, leading to a lower energy than with the 1x1-phase.  

The two phases differ also with respect to their adsorption properties: Chemisorption of CO is accompanied 
by a higher adsorption energy on the 1x1-phase than on the 1x2-structure, so that local 1x2 →1x1 
transformation takes place as soon as the CO coverage exceeds a value of 0.2 ML. On the other hand, the 
sticking coefficient for dissociative oxygen coverage on the 1x1-phase exceeds that on the 1x2-phase by 
about 50% .  



The occurrence of temporal oscillations in the rate of CO2 can now be rationalized as follows: If a clean Pt(110) surface 
(1x2) is exposed to a proper mixture of CO+O2, adsorption of CO will suffice to cause local 1x2 → 1x1 transformation. 
On the newly created 1x1-patches, the oxygen sticking coefficient will be higher, so that a higher O coverage will be built 
up, giving rise to an enhanced production of CO2. By this latter process the excess CO will be consumed so that the 
surface structure transforms back from 1x1 → 1x2, and one cycle is completed.  

Mathematical modeling requires in this case three variables, the coverages of O and CO, and the fraction of the surface 
being present as 1x1-phase. Solution of the resulting 3 coupled nonlinear differential equations for properly chosen 
parameters is shown above and reproduces the experimental findings. 

 Oscillatory kinetics in catalytic oxidation of CO on Pt(110) 



EVOLUTION WITH 
TEMPERATURE 



 The roughening transition (two level system)  

● Suppose a surface with N available sites that are occupied by N1 atoms 
(N1 <N).  Burton, Cabrera and Frank were the first to realize that such a two 
level problem is analogous to the 2D Ising model of ferromagnetism. 

● such a system shows a critical behavior since above a given temperature 
Tc, the spins are oriented randomly 

● analogy with the 2D Ising model:        Occupied site : spin ↑ 

     Vacant site     : spin ↓ 

∆E between a disordered 2D Ising system at finite T and a ferromagnetic 
one at T=0 is: 
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i,j nearest neighbors and  Si=+1/2 : spin ↑ 
   Si= -1/2 : spin ↓ 

The probablity pi of occupation of site “i” is: 
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 The roughening transition (cont)  
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pi =1  occupied 
pi= 0  vacant 

ε: energy involved in 
the formation of one 
bond between n.n. 

z is the coordination number of the 2D network. In this model the energy 
difference between the disordered surface and the smooth surface is given 
by: 
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Approximate solution (effective field). In this approximation the atoms are 
distributed randomly  and are not correlated. We get: 
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Θ is the coverage 



 The roughening transition (effective field)  
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For α>2 the surface is disordered and rough. The roughening temperature is 

is Onsager’s 
solution 
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The free energy is: and 
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