Exam - Session 1

Duration: 2h

Documents, cell phones, computers, tablets, pocket calculators, etc., are not allowed The text contains 4 pages in total

1 Ferromagnetism and antiferromagnetism

Let us consider a *d*-dimensional Ising model, consisting of $N \gg 1$ Ising spins $s_i = \pm 1$ at the temperature T, located at the sites i of a hypercubic lattice and subject to a magnetic field h (in energy units). We denote $\beta = 1/k_{\rm B}T$, with $k_{\rm B}$ the Boltzmann constant. In what follows, we only consider interactions between nearest neighbors. The Hamiltonian of the system is written as

$$H = -J\sum_{\langle i,j\rangle} s_i s_j - h\sum_{i=1}^N s_i, \qquad (1.1)$$

where $\langle i, j \rangle$ denotes a summation over nearest neighbors *i* and *j*.

1.1 Ferromagnetism and mean-field approximation

In this first part of the problem, the coupling constant J is positive and we denote it $J = J_F$, with $J_F > 0$.

(a) Justify that within the mean field approximation,

$$s_i s_j \simeq (s_i + s_j)m - m^2$$
 for $i \neq j$,

where $m = \langle s_i \rangle$ is the average magnetization per site.

(b) Deduce that within the above-mentioned approximation, the Hamiltonian (1.1) takes the form

$$H \simeq -(h + zJ_{\rm F}m)\sum_{i=1}^{N} s_i + \frac{1}{2}NzJ_{\rm F}m^2, \qquad (1.2)$$

with z the number of nearest neighbors of a given lattice site i.

- (c) What is the physical meaning of the term $h + zJ_{\rm F}m$ in the mean-field Hamiltonian (1.2)?
- (d) Calculate the canonical partition function Z and the free energy F of the system within the mean-field approximation.
- (e) Show that the average magnetization m per site is the solution of a self-consistent equation that you will explicitly determine. (Do not discuss the general possible solutions.)
- (f) Let us consider for this question that h = 0. Show that there exists a phase transition (paramagnetic-ferromagnetic) for a critical temperature T_c . Determine T_c as a function of the different parameters of the problem. What does the mean-field approximation predict for the case d = 1? Compare to your knowledge of the exact solution of the one-dimensional Ising model.

1.2 Antiferromagnetism

In this second part of the problem, the coupling constant is negative, and we denote it $J = -J_{AF}$ with $J_{AF} > 0$.

1.2.1 General results

- (a) Describe the effect of the first term of the Hamiltonian (1.1) on the spin orientations.
- (b) Let us consider for this question that T = 0 and h = 0. Justify that the system splits into two sublattices A and B, such that the spins take the value +1 or -1 depending on the sublattice to which they belong. These states are called *Néel states*. How many Néel states are there? Give the expressions of the magnetization and the average energy of the Néel states.
- (c) Still at T = 0, what is the qualitative effect of a positive uniform magnetic field h? By comparing the energy of a Néel state subject to a finite magnetic field and that of a ferro-magnetic state (where all the spins are orientated in the same direction), deduce the critical value $h_c (T = 0)$ for which it is possible for the system to go from the antiferromagnetic phase to the ferromagnetic one.

1.2.2 Mean-field approximation

We call $m_A = \langle s_i \rangle$ $(i \in A)$ the average magnetization of the spins belonging to the sublattice A and $m_B = \langle s_j \rangle$ $(j \in B)$ the average magnetization of the spins belonging to the sublattice B.

(a) Justify that

$$s_i s_j \simeq s_i m_B + s_j m_A - m_A m_B \qquad (i \in A, j \in B)$$

in the mean-field approximation.

(b) Deduce from the preceding question that one can approximate the Hamiltonian (1.1) by

$$H \simeq -(h - zJ_{AF}m_B)\sum_{i \in A} s_i - (h - zJ_{AF}m_A)\sum_{j \in B} s_j - \frac{1}{2}NzJ_{AF}m_Am_B.$$

(c) Using your answers to questions 1.1(c) and 1.1(e), argue that m_A and m_B verify the following system of self-consistent equations:

$$m_A = \tanh \left(\beta \left[h - \lambda m_B\right]\right),$$

$$m_B = \tanh \left(\beta \left[h - \lambda m_A\right]\right).$$

What is the expression of the constant λ ?

- (d) Let us first consider the zero magnetic field case (h = 0).
 - (i) Assuming that $m_A = -m_B$, show that there exists a phase transition for a temperature T_N (called the Néel temperature) between a phase where $m_A = -m_B = 0$ and a phase where $m_A(T) = -m_B(T) = m_0(T)$. Give an expression for T_N . Sketch $m_A(T)$ as a function of temperature.
 - (ii) Sketch $m_{+} = (m_A + m_B)/2$ and $m_{-} = (m_A m_B)/2$ as a function of T. Which quantity is the order parameter of the antiferromagnetic-paramagnetic phase transition? What would you find if you would measure the average magnetization of the sample?
- (e) We now seek to characterize the effect of the magnetic field on m_A and m_B by calculating the magnetic susceptibility of the crystal defined by

$$\chi = \left. \frac{\partial m_+}{\partial h} \right|_{h=0}$$

(i) We first consider that $T > T_N$ and we assume that the magnetic field is weak (with respect to what?). Linearize the self-consistent equations and show that

$$\chi\left(T\right) = \frac{C}{k_{\rm B}T + k_{\rm B}T_{\rm N}},\tag{1.3}$$

where C is a dimensionless constant that you will determine.

(ii) We now move to the case $T < T_N$. We assume that the magnetic field h is weak and we write the magnetizations on the sites A and B as $m_A = m_0 + \Delta m_A$ and $m_B = -m_0 + \Delta m_B$, with $\Delta m_A \ll m_0$ and $\Delta m_B \ll m_0$. By performing a Taylor expansion of the self-consistent equations, show that the susceptibility takes the form¹

$$\chi\left(T\right) = \frac{1}{k_{\rm B}T\cosh^2\left(\frac{T_{\rm N}}{T}m_0\left(T\right)\right) + k_{\rm B}T_{\rm N}}.$$

Show that for $T > T_N$ one finds the previous result of Eq. (1.3). How does χ behave at low temperature? Sketch the graph of $\chi(T)$ and compare it to that of a ferromagnet.

2 Landau diamagnetism of a two-dimensional electron gas

The magnetic properties of a noninteracting electron gas are controlled by two phenomena: the Pauli *paramagnetism* due to the alignment of the electronic magnetic moments with the applied magnetic field, and the Landau *diamagnetism* induced by the orbital motion of the electronic charges. In this problem we aim at describing the second of these phenomena, using the one-electron Hamiltonian (in cgs units)

$$H = \frac{1}{2m} \left[\mathbf{p} + \frac{e}{c} \mathbf{A}(\mathbf{r}) \right]^2, \qquad (2.1)$$

where $\mathbf{A}(\mathbf{r})$ is the vector potential, -e the electronic charge (e > 0), and c the speed of light in vacuum. In Eq. (2.1), m is the (effective) mass of the charge carriers (i.e., the electrons).

In what follows, we consider a homogeneous magnetic field B parallel to the z axis ($B = \partial_x A_y - \partial_y A_x = \text{constant}$), and we assume that electrons are confined to a two-dimensional rectangular surface with area $\mathcal{A} = L_x L_y$, where L_x and L_y are the lateral dimensions of the electron gas in the x and y directions, respectively.

2.1 General results for noninteracting fermions

(a) Carefully demonstrate that the grand-canonical partition function for noninteracting fermions is given by

$$\Xi = \prod_{\lambda} \left[1 + e^{-\beta(\epsilon_{\lambda} - \mu)} \right]$$

where the product runs over quantum states λ with energy ϵ_{λ} . Here, $\beta = 1/k_{\rm B}T$ with T the temperature and μ is the chemical potential.

(b) Deduce from the previous result that the general expression of the grand potential for noninteracting fermionic particles is given by

$$\Omega = -k_{\rm B}T \sum_{\lambda} \ln\left(1 + e^{-\beta(\epsilon_{\lambda} - \mu)}\right).$$
(2.2)

2.2 Landau susceptibility

The energy spectrum of the Hamiltonian (2.1) corresponds to the one of a harmonic oscillator with (cyclotron) frequency $\omega_c = eB/mc$ (we assume B > 0 from now on):

$$\epsilon_n = \hbar\omega_{\rm c}\left(n+\frac{1}{2}\right), \qquad n \in \mathbb{N},$$

defining so-called *Landau levels*. Each Landau level is highly degenerate, with degeneracy factor (including the spin degeneracy)

$$g_n = \rho_0 \hbar \omega_c,$$

where $\rho_0 = m \mathcal{A} / \pi \hbar^2$ is the density of states of the two-dimensional electron gas at zero magnetic field.²

¹We recall that $\tanh(a+x) \simeq \tanh a + x/\cosh^2 a$ for $x \ll 1$.

²Note that the degeneracy factor is in fact independent on n.

- (a) Give an expression of the grand-potential (2.2) in terms of a summation over Landau levels n and as a function of ρ_0 .
- (b) The Euler–MacLaurin formula allows one to approximate a discrete summation by the following expression:

$$a\sum_{n=0}^{\infty} f(a(n+1/2)) = \int_{0}^{\infty} \mathrm{d}x \ f(x) + \frac{a^2}{24} f'(0) + \mathcal{O}(a^3),$$

where f(x) is a function that decreases sufficiently fast when $x \to \infty$, where f'(x) is its derivative with respect to x, and where a is some dimensionless parameter. Use the above formula to show, in the limits $\beta \hbar \omega_c \ll 1$ and $\beta \mu \gg 1$, that

$$\Omega(B) \simeq \Omega(B=0) + \frac{\rho_0}{24} \left(\hbar\omega_{\rm c}\right)^2,$$

where the expression for $\Omega(B=0)$ involves an integral not to be calculated.

(c) Let us define the Landau susceptibility as

$$\chi_{\rm L} = -\frac{1}{\mathcal{A}} \lim_{B \to 0} \frac{\partial^2 \Omega}{\partial B^2}.$$

Show that

$$\chi_{\rm L} = -\frac{e^2}{12\pi mc^2}.$$