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1 Ferromagnetism and antiferromagnetism

Let us consider a d-dimensional Ising model, consisting of N � 1 Ising spins si = ±1 at the
temperature T , located at the sites i of a hypercubic lattice and subject to a magnetic field h
(in energy units). We denote β = 1/kBT , with kB the Boltzmann constant. In what follows, we
only consider interactions between nearest neighbors. The Hamiltonian of the system is written
as

H = −J
∑
〈i,j〉

sisj − h
N∑
i=1

si, (1.1)

where 〈i, j〉 denotes a summation over nearest neighbors i and j.

1.1 Ferromagnetism and mean-field approximation

In this first part of the problem, the coupling constant J is positive and we denote it J = JF,
with JF > 0.

(a) Justify that within the mean field approximation,

sisj ' (si + sj)m−m2 for i 6= j,

where m = 〈si〉 is the average magnetization per site.

(b) Deduce that within the above-mentioned approximation, the Hamiltonian (1.1) takes the
form

H ' − (h+ zJFm)

N∑
i=1

si +
1

2
NzJFm

2, (1.2)

with z the number of nearest neighbors of a given lattice site i.

(c) What is the physical meaning of the term h+ zJFm in the mean-field Hamiltonian (1.2)?

(d) Calculate the canonical partition function Z and the free energy F of the system within the
mean-field approximation.

(e) Show that the average magnetization m per site is the solution of a self-consistent equation
that you will explicitly determine. (Do not discuss the general possible solutions.)

(f) Let us consider for this question that h = 0. Show that there exists a phase transition
(paramagnetic-ferromagnetic) for a critical temperature Tc. Determine Tc as a function of
the different parameters of the problem. What does the mean-field approximation predict
for the case d = 1? Compare to your knowledge of the exact solution of the one-dimensional
Ising model.

1.2 Antiferromagnetism

In this second part of the problem, the coupling constant is negative, and we denote it J = −JAF

with JAF > 0.
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1.2.1 General results

(a) Describe the effect of the first term of the Hamiltonian (1.1) on the spin orientations.

(b) Let us consider for this question that T = 0 and h = 0. Justify that the system splits into
two sublattices A and B, such that the spins take the value +1 or −1 depending on the
sublattice to which they belong. These states are called Néel states. How many Néel states
are there? Give the expressions of the magnetization and the average energy of the Néel
states.

(c) Still at T = 0, what is the qualitative effect of a positive uniform magnetic field h? By
comparing the energy of a Néel state subject to a finite magnetic field and that of a ferro-
magnetic state (where all the spins are orientated in the same direction), deduce the critical
value hc (T = 0) for which it is possible for the system to go from the antiferromagnetic
phase to the ferromagnetic one.

1.2.2 Mean-field approximation

We call mA = 〈si〉 (i ∈ A) the average magnetization of the spins belonging to the sublattice A
and mB = 〈sj〉 (j ∈ B) the average magnetization of the spins belonging to the sublattice B.

(a) Justify that
sisj ' simB + sjmA −mAmB (i ∈ A, j ∈ B)

in the mean-field approximation.

(b) Deduce from the preceding question that one can approximate the Hamiltonian (1.1) by

H ' − (h− zJAFmB)
∑
i∈A

si − (h− zJAFmA)
∑
j∈B

sj −
1

2
NzJAFmAmB.

(c) Using your answers to questions 1.1(c) and 1.1(e), argue that mA and mB verify the following
system of self-consistent equations:

mA = tanh (β [h− λmB]),

mB = tanh (β [h− λmA]).

What is the expression of the constant λ?

(d) Let us first consider the zero magnetic field case (h = 0).

(i) Assuming that mA = −mB, show that there exists a phase transition for a temperature
TN (called the Néel temperature) between a phase where mA = −mB = 0 and a phase
where mA(T ) = −mB(T ) = m0(T ). Give an expression for TN. Sketch mA(T ) as a
function of temperature.

(ii) Sketch m+ = (mA+mB)/2 and m− = (mA−mB)/2 as a function of T . Which quantity
is the order parameter of the antiferromagnetic-paramagnetic phase transition? What
would you find if you would measure the average magnetization of the sample?

(e) We now seek to characterize the effect of the magnetic field on mA and mB by calculating
the magnetic susceptibility of the crystal defined by

χ =
∂m+

∂h

∣∣∣∣
h=0

.

(i) We first consider that T > TN and we assume that the magnetic field is weak (with
respect to what?). Linearize the self-consistent equations and show that

χ (T ) =
C

kBT + kBTN
, (1.3)

where C is a dimensionless constant that you will determine.
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(ii) We now move to the case T < TN. We assume that the magnetic field h is weak
and we write the magnetizations on the sites A and B as mA = m0 + ∆mA and
mB = −m0 + ∆mB, with ∆mA � m0 and ∆mB � m0. By performing a Taylor
expansion of the self-consistent equations, show that the susceptibility takes the form1

χ (T ) =
1

kBT cosh2
(
TN
T m0 (T )

)
+ kBTN

.

Show that for T > TN one finds the previous result of Eq. (1.3). How does χ behave at
low temperature? Sketch the graph of χ (T ) and compare it to that of a ferromagnet.

2 Landau diamagnetism of a two-dimensional electron gas

The magnetic properties of a noninteracting electron gas are controlled by two phenomena:
the Pauli paramagnetism due to the alignment of the electronic magnetic moments with the
applied magnetic field, and the Landau diamagnetism induced by the orbital motion of the
electronic charges. In this problem we aim at describing the second of these phenomena, using
the one-electron Hamiltonian (in cgs units)

H =
1

2m

[
p +

e

c
A(r)

]2
, (2.1)

where A(r) is the vector potential, −e the electronic charge (e > 0), and c the speed of light in
vacuum. In Eq. (2.1), m is the (effective) mass of the charge carriers (i.e., the electrons).

In what follows, we consider a homogeneous magnetic field B parallel to the z axis (B =
∂xAy − ∂yAx = constant), and we assume that electrons are confined to a two-dimensional
rectangular surface with area A = LxLy, where Lx and Ly are the lateral dimensions of the
electron gas in the x and y directions, respectively.

2.1 General results for noninteracting fermions

(a) Carefully demonstrate that the grand-canonical partition function for noninteracting fermions
is given by

Ξ =
∏
λ

[
1 + e−β(ελ−µ)

]
,

where the product runs over quantum states λ with energy ελ. Here, β = 1/kBT with T the
temperature and µ is the chemical potential.

(b) Deduce from the previous result that the general expression of the grand potential for
noninteracting fermionic particles is given by

Ω = −kBT
∑
λ

ln
(

1 + e−β(ελ−µ)
)
. (2.2)

2.2 Landau susceptibility

The energy spectrum of the Hamiltonian (2.1) corresponds to the one of a harmonic oscillator
with (cyclotron) frequency ωc = eB/mc (we assume B > 0 from now on):

εn = ~ωc

(
n+

1

2

)
, n ∈ N,

defining so-called Landau levels. Each Landau level is highly degenerate, with degeneracy factor
(including the spin degeneracy)

gn = ρ0~ωc,

where ρ0 = mA/π~2 is the density of states of the two-dimensional electron gas at zero magnetic
field.2

1We recall that tanh (a+ x) ' tanh a+ x/ cosh2 a for x� 1.
2Note that the degeneracy factor is in fact independent on n.
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(a) Give an expression of the grand-potential (2.2) in terms of a summation over Landau levels
n and as a function of ρ0.

(b) The Euler–MacLaurin formula allows one to approximate a discrete summation by the fol-
lowing expression:

a
∞∑
n=0

f
(
a(n+ 1/2)

)
=

(a�1)

∫ ∞
0

dx f(x) +
a2

24
f ′(0) +O

(
a3
)
,

where f(x) is a function that decreases sufficiently fast when x → ∞, where f ′(x) is its
derivative with respect to x, and where a is some dimensionless parameter. Use the above
formula to show, in the limits β~ωc � 1 and βµ� 1, that

Ω(B) ' Ω(B = 0) +
ρ0
24

(~ωc)
2 ,

where the expression for Ω(B = 0) involves an integral not to be calculated.

(c) Let us define the Landau susceptibility as

χL = − 1

A
lim
B→0

∂2Ω

∂B2
.

Show that

χL = − e2

12πmc2
.
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