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Résumé xv

1 Introduction 19
1.1 Surface plasmon excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.1 Mie theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.2 Spill-out effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Surface plasmon linewidth and quantum size effects . . . . . . . . . . . . 28
1.2.1 Free path effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.3 Random phase approximation . . . . . . . . . . . . . . . . . . . . 31
1.2.4 Time-dependent local density approximation . . . . . . . . . . . . 32
1.2.5 Approach of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3 Time-resolved pump-probe spectroscopy . . . . . . . . . . . . . . . . . . 35
1.4 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Metallic nanoparticles: A model system 43
2.1 Electronic Hamiltonian within the jellium model . . . . . . . . . . . . . . 43

2.1.1 Single-particle confinement . . . . . . . . . . . . . . . . . . . . . . 44
2.1.2 Separation into collective and relative coordinates . . . . . . . . . 45
2.1.3 Alternative derivation of the coupling Hamiltonian . . . . . . . . 47

2.2 Mean-field approximation and second quantization procedure . . . . . . . 50
2.2.1 Center-of-mass Hamiltonian . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 Hamiltonian of the relative coordinates . . . . . . . . . . . . . . . 50
2.2.3 Coupling between center-of-mass and relative-coordinate systems 52

2.3 External driving field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4 Conclusion for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Dynamics of the surface plasmon excitation 55
3.1 Reduced density-matrix description of the electronic center of mass . . . 55

3.1.1 Free evolution of the center of mass . . . . . . . . . . . . . . . . . 56
3.1.2 Effect of the external driving field . . . . . . . . . . . . . . . . . . 64

3.2 Two-level system approach . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.1 Analytical solutions of the Bloch equations without detuning . . . 69

v



Contents

3.2.2 Numerical solutions of the Bloch equations in presence of detuning 73

3.2.3 Estimation of the saturation parameter in typical experiments . . 74

3.3 Conclusion for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Lifetime of the surface plasmon excitation 77

4.1 Dipole matrix element from single-particle self-consistent states . . . . . 78

4.2 Semiclassical low-temperature expansion . . . . . . . . . . . . . . . . . . 81

4.3 Shell effects and nonmonotonic behavior of the plasmon linewidth . . . . 91

4.4 Conclusion for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Frequency of the surface plasmon excitation 95

5.1 Spill-out-induced frequency shift . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Mean-field approximation . . . . . . . . . . . . . . . . . . . . . . 96

5.1.2 Semiclassical low-temperature expansion for the number of spill-
out electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.3 Number of spill-out electrons: semiclassics vs. LDA . . . . . . . . 101

5.1.4 Redshift of the surface plasmon resonance . . . . . . . . . . . . . 102

5.2 Environment-induced frequency shift . . . . . . . . . . . . . . . . . . . . 105

5.3 Conclusion for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Time evolution of the optical transmission in a pump-probe configuration 111

7 Double plasmon excitation and ionization in metallic clusters 115

7.1 Second plasmon decay: Landau damping . . . . . . . . . . . . . . . . . . 116

7.2 Second plasmon decay and ionization . . . . . . . . . . . . . . . . . . . . 121

7.3 Conclusion for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Surface plasmon linewidth with an inhomogeneous dielectric environment 129

8.1 Surface plasmon linewidth with a soft self-consistent potential . . . . . . 133

8.1.1 Semiclassical dipole matrix element with spherical symmetry . . . 135

8.1.2 Surface plasmon rate with a slope for the self-consistent field . . . 138

8.2 Steepness of the self-consistent potential with a dielectric mismatch . . . 140

8.2.1 First case: εd = εm = ε = 1 . . . . . . . . . . . . . . . . . . . . . . 141

8.2.2 Second case: εd = εm = ε 6= 1 . . . . . . . . . . . . . . . . . . . . 142

8.2.3 Third case: εd 6= εm . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Surface plasmon linewidth with a dielectric mismatch . . . . . . . . . . . 143

8.4 Conclusion for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 Concluding remarks and outlook 147

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2 Outlook and future perspectives . . . . . . . . . . . . . . . . . . . . . . . 151

vi



Contents

A Three-level system 155
A.1 Rabi oscillations of a three-level system . . . . . . . . . . . . . . . . . . . 157
A.2 Three-level system with additional damping mechanisms . . . . . . . . . 159

A.2.1 Stationary solutions for the case γ1 = γ2 = 0 (no additional damp-
ing constants) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2.2 Stationary solutions for the three-level system with additional
dampings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B Semiclassical physics 163
B.1 Quantum propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.2 Feynman’s path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.3 Semiclassical approximation of the propagator and of the Green function 165

B.3.1 Free propagator and van Vleck’s approximation . . . . . . . . . . 165
B.3.2 Gutzwiller’s approximation to the propagator and the Green func-

tion — Semiclassical expansions . . . . . . . . . . . . . . . . . . . 166
B.4 Semiclassical density of states: Gutzwiller’s trace formula . . . . . . . . . 170

C Semiclassics with radial symmetry 173
C.1 Langer modification and partial density of states . . . . . . . . . . . . . . 174
C.2 Total density of states and Berry-Tabor formula for systems with radial

symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2.1 Spherical billiard . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2.2 Disk billiard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
C.2.3 Isotropic spherical harmonic oscillator . . . . . . . . . . . . . . . 183

D Second-order perturbation theory: Fermi’s golden rule 187

Bibliography 191

vii





Remerciements (acknowledgments in French)

Je souhaite tout d’abord, et comme il se doit, remercier les membres du jury qui ont
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dans mes recherches. Cela a été un grand plaisir de discuter avec eux de physique,
mais également de bien d’autres choses. Merci à Rodolfo entre autres de m’avoir initié
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Merci à Rafael Molina pour notre collaboration fructueuse, pour son aide avec le code
numérique TDLDA, et pour notre quête sans relâche du désormais fameux « facteur
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Summary

Metallic nanoparticles are an ideal laboratory for the study of electronic correlations in
the transition regime between microscopic and macroscopic systems. Consequently, their
optical properties which depend on those correlations are currently intensively studied.
Furthermore, the proposed applications of metallic nanoparticles (electro-optical devices,
biological markers, nonvolatile memories, etc.) render crucial the comprehension of the
optical properties of those objects. Pump-probe experiments permit to address directly
the electronic degrees of freedom and to study the dynamics of the relaxation after a
strong excitation in those mesoscopic systems.

The excitation of a nanoparticle by a laser pulse creates a collective mode of the
electrons, the so-called surface plasmon. It decays because of surface effects and electron-
electron interactions, creating particle-hole excitations (Landau damping). The thermal
equilibrium of the electronic system is reached after about hundred femtoseconds, and
only on a much larger time scale, the electron-phonon interactions permit the relaxation
of the electronic energy to the ionic lattice.

The treatment of the surface plasmon as a quantum particle provides a model system
for the study of decoherence and quantum dissipation in confined nanoscopic systems,
where the role of the electronic correlations is preponderant.

Throughout this work we treat the metallic nanoparticle in the jellium approxima-
tion where the ionic structure is replaced by a continuous and homogeneous positive
charge. Such an approximation allows to decompose the electronic Hamiltonian into a
part associated with the electronic center of mass, a part describing the relative coor-
dinates (treated here in the mean-field approximation), and finally a coupling between
the two subsystems. The external laser field puts the center of mass into a coherent
superposition of its ground and first excited state and thus creates a surface plasmon.
The coupling between the center of mass and the relative coordinates causes decoherence
and dissipation of this collective excitation.

We have developed a theoretical formalism well adapted to the study of this dis-
sipation, which is the reduced-density-matrix formalism. Indeed, writing the general
evolution of the density matrix of the total system, one can, by eliminating the environ-
mental degrees of freedom (the relative coordinates in our case), deduce the equations of
the temporal evolution of the center-of-mass system. Within the Markovian approxima-
tion (where the memory effects are neglected), one is then able to solve analytically or
numerically these equations. There are mainly two parameters which govern the surface
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Summary

plasmon dynamics: the decay rate of the plasmon (its inverse giving the lifetime of the
collective excitation), and the resonance frequency.

An experimentally accessible quantity is the photoabsorption cross section of the
metallic cluster, where the surface plasmon excitation appears as a broad resonance
spectrum. The width of the plasmon resonance peak (the decay rate) is a quantity that
one can determine in different manners. A numerical approach consists of the resolu-
tion of the time-dependent Kohn-Sham equations in the local density approximation
(TDLDA).1 This yields the absorption spectrum for a given nanoparticle size, and one
can then deduce the lifetime of the surface plasmon excitation. For nanoparticle sizes
larger than approximately 1 nm, the width γ of the peak follows Kawabata and Kubo’s
law which predicts that γ is proportional to the inverse size of the nanoparticle. For
sizes smaller than 1 nm, γ presents oscillations as a function of the size, consistently with
existing experimental data. By means of a semiclassical formalism using Gutzwiller’s
trace formula for the density of states, we have shown that those oscillations are due to
the correlations of the density of states of the particles and holes in the nanoparticle.
The semiclassical theory reproduces quantitatively the numerical calculations.

If one considers a noble-metal nanoparticle (where one has to take into account the
screening of the s-electrons by the d-electrons) in an inert matrix (for example a glass
matrix), we have shown that a naive application of the Kubo formula for the surface
plasmon linewidth fails to reproduce the TDLDA numerical results, which are however
consistent with experimental results. We have modified the Kubo theory in order to
solve this discrepancy. Indeed, it is necessary to take into account the details of the
mean-field potential (that one can obtain from the LDA calculations), especially its
slope at the nanoparticle-matrix interface.

If the intensity of the exciting laser field is sufficiently strong, one can ask the question
if it is possible to have an excitation of the second quantum level of the center of mass,
that we call double plasmon. This is possible if this second excited state is well defined,
i.e., its width is sufficiently small compared to the other energy scales of the system.
Up to now it has not been possible to answer this question from the experimental point
of view, although indirect observations could render imaginable the existence of such a
collective state. We have shown, by extending our semiclassical theory to the nonlinear
case, that the double plasmon is indeed well defined. In certain cases, the electronic
ionization can result from the excitation of the double plasmon, and this is observed
in experiments. We have calculated the lifetime of the double plasmon associated to
this second-order effect, and the obtained values are in qualitative agreement with the
existing experiments.

In addition to the width, we have also addressed the value of the resonance frequency.
The classical electromagnetic Mie theory gives for the resonance frequency of the sur-
face plasmon the plasma frequency of the considered metal, divided by a geometrical
factor

√
3. However, the experimentally observed frequency is redshifted relative to the

classical frequency. One usually attributes this shift to the spill-out effect that we have
calculated semiclassically. The electronic density of the ground state extends outside

1TDLDA: Time-Dependent Local Density Approximation.
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of the nanoparticle, resulting in the decrease of the electronic density inside the cluster
compared to its bulk value. This has the consequence to redshift the resonance fre-
quency. We have shown by means of perturbative calculations that the coupling to the
electronic environment produces an additional redshift of the surface plasmon resonance.
This phenomenon is analogous to the Lamb shift in atomic systems. Both effects, spill-
out and Lamb shift, have to be taken into account in the description of the numerical
and experimental results.

Furthermore, we have extended our semiclassical calculations of the linewidth of the
surface plasmon peak, of the spill-out, and of the environment-induced shift to the case
of finite temperatures. We have shown that when the temperature increases, there is
a broadening of the lineshape of the surface plasmon, as well as an additional redshift
of the resonance frequency compared to the zero-temperature case. Even though the
effect of the temperature is weak, it is essential for the comprehension of the electronic
thermalization in pump-probe experiments. The study of the effect of the temperature
has allowed us to qualitatively explain the differential transmission curves measured in
time-resolved experiments.
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Résumé

Les nanoparticules métalliques sont un laboratoire idéal pour l’étude des corrélations
électroniques dans la transition entre les systèmes microscopiques et macroscopiques.
En conséquence, leurs propriétés optiques, qui relèvent de ces corrélations, sont étudiées
intensivement à l’heure actuelle. De plus, les applications proposées des nanoparti-
cules métalliques (dispositifs électro-optiques, marqueurs biologiques, mémoires non-
volatiles, etc.) rendent la compréhension des propriétés optiques de ces objets cruciale.
Les expériences de type pompe-sonde permettent d’adresser directement les degrés de
liberté électroniques et d’étudier la dynamique de relaxation après une forte excitation
dans ces systèmes mésoscopiques.

L’excitation d’une nanoparticule par une impulsion laser résulte en un mode collectif
des électrons, le plasmon de surface. Celui-ci décrôıt à cause des effets de surface et des in-
teractions électron-électron, donnant lieu à des excitations du type particule-trou (amor-
tissement de Landau). L’équilibre thermique du système électronique est atteint après
environ une centaine de femtosecondes, et seulement sur des échelles de temps beau-
coup plus longues, les interactions électron-phonon permettent la relaxation de l’énergie
électronique vers le réseau ionique.

Le traitement du plasmon de surface comme une particule quantique fournit un
système modèle pour l’étude de la décohérence et de la dissipation quantique dans les
systèmes nanoscopiques confinés, où le rôle des corrélations électroniques est prépondérant.

Tout au long de ce travail, nous traitons la nanoparticule métallique dans l’approxima-
tion du jellium où la structure ionique est remplacée par une charge positive continue et
homogène. Une telle approximation permet de décomposer le hamiltonien électronique
en une partie associée au centre de masse électronique, une partie décrivant les coor-
données relatives (traitées ici dans l’approximation du champ moyen), et enfin une partie
de couplage entre les deux sous-systèmes. Le champ laser extérieur place le centre de
masse dans une superposition cohérente de son état de base et de son premier état excité,
et créé de la sorte un plasmon de surface. Le couplage entre le centre de masse et les
coordonnées relatives cause la décohérence et la dissipation de cette excitation collective.

Nous avons développé un formalisme théorique bien adapté à l’étude de cette dissi-
pation, qui est le formalisme de la matrice densité réduite. En effet, écrivant l’évolution
générale de la matrice densité du système total, on peut, en éliminant les degrés de liberté
de l’environnement (les coordonnées relatives dans notre cas), en déduire les équations
d’évolution temporelle du système centre de masse. Dans le cadre de l’approximation
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Résumé

markovienne (où les effets de mémoires sont négligés), on est alors capable de résoudre
analytiquement ou numériquement ces équations. Il y a principalement deux paramètres
qui régissent la dynamique du plasmon de surface : le taux d’amortissement du plasmon
(son inverse donnant le temps de vie de l’excitation collective), et la fréquence de la
résonance.

Une quantité accessible expérimentalement est la section efficace de photo-absorption
de la nanoparticule métallique, où le plasmon de surface apparâıt comme un large spectre
de résonance. La largeur du pic de résonance plasmon (le taux d’amortissement) est une
quantité que l’on peut extraire microscopiquement de différentes manières. Une approche
numérique consiste à résoudre les équations de Kohn-Sham dépendantes du temps dans
l’approximation locale (TDLDA).2 Ceci donne alors le spectre d’absorption pour une
taille de nanoparticule donnée, et l’on peut alors en déduire le temps de vie associé au
plasmon de surface. Pour des tailles de nanoparticules supérieures à environ 1 nm, la
largeur γ du pic suit la loi de Kawabata et Kubo, qui prédit que γ est proportionnel à
l’inverse de la taille de la particule. Pour des tailles plus petites que 1 nm, γ présente des
oscillations en fonction de la taille, en accord avec les données expérimentales existantes.
Grâce à un formalisme semiclassique utilisant la formule de trace de Gutzwiller pour
la densité d’états, nous avons montré que ces oscillations sont dues aux corrélations
de densité d’états entre les particules et les trous dans la nanoparticule. La théorie
semiclassique reproduit quantitativement les calculs numériques.

Si l’on considère une nanoparticule de métal noble (où l’on doit prendre en compte
l’écrantage des électrons s par les électrons d) dans une matrice inerte (par exemple en
verre), nous avons montré qu’une application näıve de la formule de Kubo pour la largeur
de raie du plasmon de surface ne permet pas de reproduire les résultats numériques
TDLDA, qui sont eux-mêmes en accord avec les résultats expérimentaux. Nous avons
modifié la théorie de Kubo afin de résoudre ce désaccord. En effet, il faut prendre en
compte les détails du potentiel de champ moyen (que l’on peut obtenir numériquement
grâce aux calculs de type Kohn-Sham), notamment la pente de celui-ci à l’interface
nanoparticule-matrice environnante.

Si l’intensité du laser excitateur est suffisament forte, on est en droit de se demander
s’il est possible d’avoir une excitation du deuxième niveau quantique du centre de masse
électronique, que l’on appelle double plasmon. Ceci est possible si ce deuxième niveau
excité est bien défini, c’est-à-dire s’il a une largeur suffisamment faible par rapport aux
autres échelles d’énergie du système. Jusqu’à présent, il n’a pas été possible de répondre
à cette question d’un point de vue expérimental, bien que des observations indirectes
pourraient rendre envisageable l’existence d’un tel état. Nous avons montré, en étendant
notre théorie semiclassique au cas non linéaire, que le double plasmon est en effet bien
défini. Dans certains cas, la ionisation électronique peut résulter de l’excitation du double
plasmon, et ceci est observé expérimentalement. Nous avons calculé le temps de vie du
double plasmon associé à cet effet du second ordre, et obtenu des valeurs en accord
qualitatif avec les expériences existantes.

En plus de la largeur, nous avons également analysé la valeur de la fréquence de

2TDLDA : Time-Dependent Local Density Approximation.
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résonance. La théorie électromagnétique classique de Mie donne pour la fréquence de
résonance du plasmon de surface la fréquence plasma du métal considéré, que divise un
facteur géométrique

√
3. Or, la fréquence observée expérimentalement est décalée vers

le rouge par rapport à la fréquence classique. On attribue généralement ce décalage à
l’effet de « spill-out » que nous avons calculé semiclassiquement. La densité électronique
de l’état de base s’étend à l’extérieur de la nanoparticule, ce qui a pour conséquence
de diminuer la densité électronique à l’intérieur de la particule par rapport à sa valeur
du massif. La fréquence de résonance est alors décalée vers le rouge par l’effet de spill-
out. Nous avons montré grâce à des calculs pertubatifs que l’environnement électronique
produit un décalage vers le rouge supplémentaire de la résonance du plasmon de surface.
Ce phénomène est analogue au décalage de Lamb dans les systèmes atomiques. Les deux
effets, spill-out et décalage de Lamb, doivent être pris en compte pour la description des
résultats numériques et expérimentaux.

De plus, nous avons étendu nos calculs semiclassiques de la largeur de raie du pic
plasmon, du spill-out et du décalage de Lamb, au cas de températures finies. Nous avons
montré que lorsque la température augmente, le pic du plasmon de surface s’élargit
et la fréquence du plasmon est encore plus décalée vers le rouge par rapport au cas à
température nulle. Bien que l’effet de la température soit faible, celui-ci est indispen-
sable à la compréhension de la thermalisation électronique dans les expériences de type
pompe-sonde. L’étude de l’effet de la température nous a de la sorte permis d’expliquer
qualitativement les courbes de transmission différentielle observées dans les expériences
résolues en temps de type pompe-sonde.
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Chapter 1

Introduction

La liberté est pour la Science ce
que l’air est à l’animal.

(Henri Poincaré, 1854-1912, in
Dernières Pensées)

The understanding of electronic and optical properties of artificial structures at the
nanometer scale is one of the great challenges of contemporary physics. In this age of
miniaturization of electronic devices, a need for the comprehension of their properties
has emerged, both on the fundamental and practical levels. Metallic nanoparticles are
aggregates composed of a relatively small number of atoms, starting with clusters con-
sisting of a few atoms to large nanoparticles with more than 105 atoms (see Fig. 1.1).
Thus, these objects are intermediate in size between the domain of atoms and small
molecules, which require a full quantum mechanical treatment, and the bulk, where the
standard tools of solid-state and statistical physics can be applied. Metallic nanoparti-
cles could therefore answer the old question: “How many atoms does it take to make a
solid?”

At the mesoscopic scale between the microscopic and macroscopic worlds, matter
exhibits a wide number of new and interesting phenomena. This is due to two main
elements. Firstly, the spectrum of the electronic states at this scale is discrete, although
the interaction of the system with the environment may broaden the energy levels.
Secondly, the motion of the electrons is coherent: An electron can propagate through
the whole system without experiencing inelastic or phase-breaking scattering. Thus,
the phase of its wave function remains well-defined, opening the possibility to observe
interferences and coherent behavior.1

In metallic nanoparticles, the most striking evidence of the quantization of the elec-
tronic states in the confinement created by the ions and the remaining electrons is the
so-called electronic shell structure which was observed by Knight et al. in 1984 [5]. In
Fig. 1.2, we reproduce the experimental results of Ref. 5. The top panel shows a contin-
uous mass spectrum of sodium clusters with number of atoms N = 4–75, and a separate

1For a review of mesoscopic phenomena, see, e.g., Refs. 1–4.
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Metallic nanoparticles

Metallic cluster (alkalin, noble metals):

∼ 10 − 1000 atoms

radius a ∼ 0.5 − 10 nm

Single Au nanoparticle (TEM)

[J.-Y. Bigot and coll.]

Model system:
! many-body physics
! excited confined systems
! collective excitations

Hamburg, 20.9.2004 – p.2/14

Figure 1.1: Image of a single gold nanoparticle (dark central spot) of size ∼ 30 nm
obtained by transmission electron microscopy (courtesy of J.-Y. Bigot and
collaborators).

mass scan for N = 75–100. Each peak represents the number of clusters of fixed size
N detected during a fixed time interval in a molecular beam of sodium seeded in argon.
Large steps or peaks appear for certain masses, corresponding to N = 8, 20, 40, 58, and
92. The authors explained the stability of these special clusters by means of a model
similar to the well-known nuclear shell model [6, 7]. They assumed that the valence
electrons are confined in a spherically symmetric effective (or mean-field) one-electron
potential of the Woods-Saxon form [8]

V (r) = − V0

exp [(r − a)/α] + 1
, (1.1)

where V0 = εF + W is the sum of the Fermi energy εF and the work function W . We
denote by a = rsN

1/3 the effective radius of the cluster sphere, where rs = (3/4πne)
1/3 is

the mean distance between electrons [9],2 and ne being the bulk electronic density. The
parameter α accounts for the variation of the potential at the edge of the sphere. Solving
numerically the Schrödinger equation for this potential, they obtained the electronic
energy E(N) for each cluster withN atoms by summing the eigenenergies of the occupied
states. Defining ∆(N) = E(N)−E(N−1) as the difference in electronic energy between
adjacent states, they obtained the result depicted in Fig. 1.2b. They concluded that the
peaks or steps at some special numbers of atomsN are related to the electronic properties
of the clusters: The most stable clusters have filled angular-momentum shells. One calls

2The parameter rs is sometimes also called the Wigner-Seitz radius.
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Figure 1.2: (a) Mass spectrum of sodium clusters with number of atoms N between 4
and 75 (inset: N = 75–100). (b) Calculated change in the energy difference
∆(N + 1) − ∆(N) as a function of N (see text). The labels of the peaks
correspond to the closed angular-momentum shells (in spectroscopic nota-
tion, where s, p, d, . . . correspond to l = 0, 1, 2, . . . ). (Reproduced from
Ref. 5.)

those special numbers “magic numbers” because of the analogy with atomic physics.
It turns out that a sphere is a reasonable approximation for electronically closed-shell
nanoparticles [10,11]. However, for open-shell structures, the spherical shape is unstable
since distortions occur due to the Jahn-Teller effect [10,12]. In this thesis, we will restrict
ourselves to the study of spherical nanoparticles.

A powerful technique, both experimentally and theoretically, to analyze some of the
electronic properties of a metallic nanoparticle, is to study the response of the system
to an external perturbation. Electromagnetic fields provide one of the most impor-
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Chapter 1 Introduction

tant methods for probing such many-particle systems. In this context, we will restrict
ourselves in this thesis to the optical properties of metallic clusters.

1.1 Surface plasmon excitation

One of the most prominent features of a metallic nanoparticle subject to an external
driving field is a collective electronic excitation, the so-called surface plasmon [10,11,13–
16]. From a fundamental point of view, surface plasmons appear as interesting resonances
to study given the various languages that we can use for their description, which are
associated with different physical images. In Fig. 1.3, we schematize such a collective
effect. An external electrical field, whose wavelength is much larger than the size of the
nanoparticle, exerts a force on the valence electrons and on the ions which constitute
the metallic cluster. Since the mass of the ions is three orders of magnitude larger than
the one of the electrons, the ions remain fixed while the electrons are displaced from
their equilibrium positions. This creates uncompensated charges at the surface of the
nanoparticle as depicted in Fig. 1.3, and due to the restoring force felt by the electrons,
the electronic cloud oscillates around its equilibrium position. The origin of the term
surface plasmon stems from the fact that, although all the electrons are oscillating with
respect to the positive ionic background, the main effect producing the restoring force is
the polarization of the surface. As we will see, the collective surface plasmon excitation
has a finite lifetime, as well as a well-defined resonance frequency.

A very similar collective effect exists in nuclei. There, the external electromagnetic
field produces a force acting on the positively charged protons, thus separating them from
the neutrons. The nuclear restoring force results in an oscillation of the protons with
respect to the neutrons. This is the so-called giant dipole resonance of nuclei [6,7,16,17].
This resonance is quite sharp in nuclei like the one of oxygen [7], even if its energy appears
in the continuum of unbound single-particle states [16].

An experimentally accessible quantity is the photoabsorption cross section. It is the
probability that the system absorbs a photon multiplied by the area illuminated by the
photon beam. From the electronic shell structure of metallic nanoparticles depicted
above, one could expect, in analogy with atoms, that the optical spectral features relate
to transitions between the single-particle states of the shell model. However, it turns out
that the absorption spectra are dominated by the collective surface plasmon resonance.
The experimental photoabsorption cross section of singly-charged lithium clusters of
various sizes [18] is shown in Fig. 1.4. In this typical experiment on alkaline metals,
the clusters are formed in beams and probed with photons while still in the beam.
This condition is needed since alkaline clusters are quite fragile and chemically reactive,
and thus would disappear on contact with a surface or with another particle. The
photoabsorption cross section appears as a broad spectrum centered around a resonance
frequency of several eV corresponding to the visible range. The same kind of feature
appears in experiments on noble-metal clusters made for instance of gold or silver. In
those experiments, the clusters are embedded in an inert matrix (e.g., a glass matrix) [13].
This is possible since noble metals are much more stable than alkaline metals. Unlike
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1.1 Surface plasmon excitation

2a! λ

E(t) = E0 cos (ωt)

Figure 1.3: Schematic representation of the surface plasmon resonance in small metallic
nanoparticles. The wavelength λ of the exciting electrical field E(t) is much
larger than the diameter 2a of the cluster. Thus, the electrical field pene-
trating the nanoparticle is nearly uniform. The gray regions symbolize the
ionic background, while the dashed circles represent the electronic cloud.
The “−” and “+” signs account for the negative and positive charges which
are not compensated. The electrical field exerts a force on the positively
charged ions and an equal force on the electrons in the opposite direction.
Since the mass of the ions is three orders of magnitude larger than the one of
the electrons, the ions are almost at rest while the electronic cloud oscillates
around the equilibrium position, due to the restoring force exerted by the
uncompensated charges.

the case of giant dipole resonances of nuclei, surface plasmons in metallic nanoparticles
are generally in the energy range corresponding to bound single-particle states [16].
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Figure 1.4: Experimental photoabsorption cross section σ for singly-charged lithium
clusters Li+N as a function of the photon energy. The solid line shows a fit
to the experimental data. (Reproduced from Ref. 18.)

1.1.1 Mie theory

At a classical level, the photoabsorption spectrum can be understood by means of the
Mie theory [13, 19, 20]. Already in 1908, Mie applied Maxwell’s equations to the case
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1.1 Surface plasmon excitation

of a dielectric metal sphere with appropriate boundary conditions. His result can be
applied to an ensemble of nanoparticles in a dielectric matrix provided that the clusters
are well separated so that one can neglect interparticle electromagnetic interactions and
multiple scattering. In the case where the sphere of radius a is very small compared to
the wavelength of the external electrical field, the photoabsorption cross section is given
within this theory by [13]

σ(ω) =
9ωε

3/2
m V
c

ε2(ω)

[ε1(ω) + 2εm]2 + ε2(ω)2
, (1.2)

where ω is the frequency of the external field, c the speed of light, and V = 4πa3/3
the volume of the nanoparticle.3 εm is the dielectric function of the embedding medium
(assumed to be independent of ω in the optical range), while ε(ω) = ε1(ω)+ iε2(ω) is the
complex dielectric function of the metal. Note that the expression (1.2) yields normally
the extinction cross section σext = σ + σsca, where σsca is the scattering cross section.
However, σsca is proportional to V2, such that for small metallic particles, the extinction
is dominated by the absorption, and σext ' σ [13].

We see on the denominator of (1.2) that a resonance appears in the photoabsorption
cross section when [ε1(ω) + 2εm]2 + ε2(ω)2 takes its minimum value. An estimate of
the resonance frequency can be obtained by considering a simple free-electron Drude
model [9] for the dielectric constant describing the metal. Within this approximation,

ε(ω) = εd −
ω2

p

ω(ω + iγi)
, (1.3)

where ωp =
√

4πnee2/me is the plasma frequency, γ−1
i the relaxation or collision time,

while e, me and ne stand for the electron charge, mass and bulk density, respectively. εd
is the dielectric constant of the metal without the free-carrier contribution. It accounts
for example in the case of noble-metal clusters for the screening of the s-electrons by
the d-electrons. In a Drude approach, the relaxation constant γi can be related to the
mean free path ` via the Fermi velocity vF by γi = vF/`. For example in sodium, we
have ` ' 34 nm,4 and thus ~γi ' 20 meV. Therefore, for frequencies ω � γi, the real
and imaginary parts of the dielectric function read

ε1(ω) = εd −
ω2

p

ω2
, (1.4a)

ε2(ω) =
γiω

2
p

ω3
. (1.4b)

Then, the resonance condition is simplified to ε1(ω) ' −2εm since ε2(ω) is small, and
one obtains with (1.4a) the Mie frequency

ωM =
ωp√

εd + 2εm
(1.5)

3In the remaining of this thesis, we will use c.g.s. units.
4This value is extracted from the electrical resistivity of sodium at 273 K [9].
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at which the resonance occurs. In the case of an alkaline-metal nanoparticle in vacuum,
εd = εm = 1, and the Mie frequency reduces to ωM = ωp/

√
3. For example, in the case

of free sodium nanoparticles, the Mie frequency is ~ωM = 3.48 eV. The Mie frequency
then provides the classical value at which the electronic cloud oscillates with respect to
the ionic background (see Fig. 1.3).

Inserting (1.4) into (1.2), one obtains for the photoabsorption cross section near the
resonance

σ(ω) =
9ω2

pV
2c

ε
3/2
m

(εd + 2εm)2

γi/2

(ω − ωM)2 + (γi/2)2 . (1.6)

The Mie theory, together with the Drude model for free electrons, therefore predicts that
the photoabsorption cross section is a Lorentzian peaked at the frequency ωM and with
a full width at half maximum γi. The inverse of the linewidth γi yields normally the
lifetime of the collective surface plasmon excitation depicted in Fig. 1.3. The prediction
of (1.6) qualitatively reproduces the experimental results (see Fig. 1.4). However, the
measured resonance frequency appears to be smaller than the Mie value (1.5), while
the measured linewidth γt is much larger than γi. As we will see in the sequel, this is
due to the classical treatment that we have briefly presented here. To obtain further
insight into the relaxation process of the surface plasmon excitation, one has to appeal
to quantum mechanical effects, which turn out to be preponderant in metallic clusters.

Since the first spectroscopic measurement of the surface plasmon resonance in the
absorption cross section of free sodium clusters [21], much progress has been made in
the characterization of this collective resonance, both experimentally [10,18,22–25] and
theoretically [11, 16, 26–31]. The proposed application of metallic nanoparticles [32, 33]
or nanocrystals [34] as markers in biological systems such as cells or neurons renders
crucial the understanding of their optical properties.

The first experiments have been made on ensembles of nanoparticles, where the in-
homogeneous broadening of the resonance resulting from the size dependence of the
resonance frequency (see below) masks the homogeneous linewidth [35–37]. In order to
gain detailed information on the collective resonance, considerable effort has lately been
devoted to the measurement of single-cluster optical properties [38–44]. The possibil-
ity of overcoming the inhomogeneous broadening resulted in a renewed interest in the
theory of the optical response of metallic clusters.

1.1.2 Spill-out effect

As mentioned above, the experimentally obtained surface plasmon frequency is smaller
than the frequency predicted by the Mie theory (1.5) (see Fig. 1.5). This redshift
with respect to the classical Mie value is usually attributed to the so-called spill-out
effect [10,11,13]. In the small metallic particles we are considering, the zero-temperature
electronic density is determined quantum-mechanically by the ground-state many-body
wave function. However, this wave function extends outside of the geometrical boundary
of the nanoparticle defined by the radius a. Therefore, there is a non-negligible num-
ber Nout of electrons outside the cluster, and the average electronic density inside the
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Figure 1.5: Measured resonance energy ~ωsp of the surface plasmon excitation in singly-
charged lithium clusters Li+N as a function of N−1/3 = rs/a (open circles). It
corresponds to the maximum of the photoabsorption curve shown in Fig. 1.4.
The square shows the experimental Mie energy ~ωM = 3.55 ± 0.1 eV. It is
obtained by measuring the dielectric constant of bulk lithium. The data are
taken from Ref. 18. The straight line is a linear fit ~ωsp = ~ωM − CN−1/3.

nanoparticle is lowered. The surface plasmon frequency can therefore be expected to
change according to [11]

ω̃M = ωM

√
1− Nout

N
. (1.7)

We will see in Chapter 2 how this expression can be obtained rigorously.
As we can see in Fig. 1.5, the measured surface plasmon frequency increases as the

size of the cluster increases, and attains the asymptotic value ωM in the limit N →∞.
This can be understood with the following simple argument: If the fraction Nout/N of
spill-out electrons is small, we have according to (1.7)

ω̃M ' ωM −
ωM

2

Nout

N
. (1.8)

Now, Nout/N is equal to the fraction Vout/(V + Vout) where Vout is the volume of the
shell where the spill-out electrons are located. Denoting by ls the depth of this spill-out
layer, we obtain Nout/N ' 3ls/a. Assuming that the spill-out length is independent of
the size, inserting this result in (1.8) shows that the surface plasmon frequency decreases
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linearly with the inverse size of the nanoparticle. This feature is observed in experiments
(see Fig. 1.5).

The spill-out will be analyzed by means of a semiclassical expansion in Chapter 5.
However, as we show in this thesis, the spill-out is not quantitatively sufficient to ex-
plain the redshift of the surface plasmon frequency. This is why we do not identify ω̃M,
the surface plasmon frequency redshifted by the spill-out effect from (1.7), with ωsp,
the measured surface plasmon resonance frequency. There is indeed an additional red-
shift which comes from the coupling of the surface plasmon excitation to the electronic
environment (see Chapters 3 and 5).

1.2 Surface plasmon linewidth and quantum size effects

1.2.1 Free path effect

In the framework of classical electrical conductivity [9], the relaxation time γ−1
i entering

(1.6) accounts for the various processes which lead to elastic or inelastic scattering in
bulk metals, such as interactions with phonons, electrons, impurities, etc. For this
reason, we call γi the intrinsic linewidth since it takes into account processes present
in a bulk material. From Mathiessen’s rule [9], we have γi = 1/τi =

∑
α 1/τα where

τα is the relaxation time associated with each processes mentioned above. The elastic
mean free path is related to the corresponding relaxation time by `el = vFτel, while in
the diffusive regime the inelastic mean free path is given by `in =

√
Dτin, where the

diffusion constant is given by D = v2
Fτel/3. For sodium and silver, one has for the mean

free path at room temperature ` = 34 nm and ` = 52 nm, respectively [9]. When the
size of the nanoparticle is such that 2a . `, we can think of an effective mean free
path of the order of the size of the nanoparticle since we have an additional scattering
process for the conduction electrons, namely the collisions with the surface. Extending
the above arguments, we can write a size-dependent linewidth γ(a) ∼ vF/a. According
to Mathiessen’s rule, the surface plasmon resonance should exhibit a total linewidth

γt(a) = γi + γ(a) (1.9)

which is increased by the size-dependent contribution γ(a). This is the so-called free
path effect [13]. Such an estimation of the surface plasmon linewidth is in qualitative
agreement with the experiments for nanoparticles of sizes 0.5 nm . a . 10 nm (see, e.g.,
Refs. 10,13,45–47 and Fig. 1.6). As an example, if we consider a sodium nanoparticle of
radius a = 2.5 nm, we have ~vF/a ' 280 meV, such that ~γi ' 20 meV can be neglected.
However, as we discuss in the following section, the interpretation of the size-dependent
surface plasmon linewidth in terms of the free path effect is not conceptually correct,
even if it yields valuable results as compared to the experimental results.

1.2.2 Linear response theory

As pointed out by Kawabata and Kubo in 1966 [48], the interpretation of the surface
plasmon linewidth in terms of the free path effect is “too naive, if not entirely incorrect,
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Figure 1.6: Measurement of the inverse surface plasmon linewidth for silver nanoparti-
cles embedded in a glass matrix. The quantity represented on the abscissa is
proportional to the radius a of the nanoparticles (between ∼ 4 and 10 nm),
while the vertical axis shows the inverse of the linewidth, γ−1

t . It clearly
demonstrates the relevance of the linear size-scaling of the surface plasmon
lifetime. The circles and triangles correspond to two different samples. (Re-
produced from Ref. 47.)

because in such a small particle the electron states are quantized into discrete levels
which are determined by the boundary conditions at the surface.” Indeed, in the small
nanoparticles we are considering, the electronic states are quantized, and the classical
interpretation of the free path effect is fallacious. The authors of Ref. 48 adopted a
mean-field approach to treat the electron-electron interaction, which turns out to be a
reasonable approximation for clusters containing more than a hundred of atoms.5 Using
linear response theory [49] and the fluctuation-dissipation theorem [50], they showed
that one has to add to the size-independent imaginary part of the dielectric function
ε2(ω) entering (1.2) and given within the Drude model by (1.4b), the size-dependent

5Even for clusters containing only 8 valence electrons, the mean-field approach gives valuable results,
as it has been shown by comparing mean-field self-consistent calculations with quantum chemistry
calculations [11].
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contribution

ε2(ω, a) =
4π2~
ω3V

∑
α,β

[1− f(εα)] f(εβ)

εα − εβ

∣∣∣〈α|J̇z|β〉
∣∣∣2 δ(~ω − εα + εβ). (1.10)

In the above expression, |α〉 denotes a single-particle state of energy εα in the electronic
mean-field, while f(εα) is the related occupation number of the state |α〉 (Fermi-Dirac
distribution). J̇z is the rate of change of the current operator and is essentially related
to the dipole operator z [48]. The damping of the collective surface plasmon excitation
then results in particle-hole excitations, similarly to the Landau damping in bulk metals
[16,51]. Assuming that the single-particle states are confined within the metallic particle
by a spherically-symmetric hard-wall potential which simulates the mean field, Kawabata
and Kubo obtained at zero temperature

ε2(ω, a) =
4

π

e2

~ωa
gKK(ν)

ν2
, (1.11)

where

gKK(ν) =
1

ν

∫ 1

ν0

dx
√
x3(x+ ν) (1.12)

is a decreasing function of the parameter ν = ~ω/εF with gKK(0) = 1.6 In (1.12),
ν0 = 1 − ν if ν < 1, while ν0 = 0 if ν > 1. According to (1.2), the full width at half
maximum is given by γ = 2ε2/|dε1/dω| evaluated at the resonance frequency ω = ωM,
and using (1.4a) and (1.11), one obtains

γ(a) =
3vF

4a
gKK

(
~ωM

εF

)
(1.13)

for the size-dependent linewidth entering (1.9). Thus, although the interpretation in
terms of the free path effect is not correct, the size dependence of the resulting linewidth
remains 1/a in the quantum theory of Kawabata and Kubo.

Linear response theory was later applied by Barma and Subrahmanyam [29]. Their
evaluation confirmed the 1/a-law of (1.13). However they obtained a slightly different
frequency dependence and showed that the function gKK has to be replaced by the
function g0 that will be given in (4.57). Their result

γ(a) =
3vF

4a
g0

(
εF

~ωM

)
(1.14)

implies an increase of the surface plasmon linewidth as compared to the result of Kawa-
bata and Kubo. The difference between the two results can be understood in the follow-
ing way. The single-particle eigenenergies are crucial to evaluate (1.10). In a spherical
hard-wall potential, these are given by the zeros of a spherical Bessel function. However,

6The result presented in the original paper of Kawabata and Kubo [48] has some computational errors.
We present here the corrected result which is quoted in Ref. 52.
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1.2 Surface plasmon linewidth and quantum size effects

the location of the zeros are not known analytically, and thus one has to consider appro-
priate asymptotic limits to find it. The difference between the two results comes from
the fact that the authors of Ref. 29 used a more accurate expression for the location of
the eigenenergies.

The size-dependent linewidth γ(a) results from the decay of the surface plasmon into
particle-hole pairs by a Landau damping mechanism, which is the dominant decay chan-
nel for nanoparticle sizes 0.5 nm . a . 10 nm considered in this work. For larger clusters,
the interaction of the surface plasmon with the external electromagnetic field becomes
the preponderant source of damping [13]. This is the so-called radiation damping. One
can show that the damping constant corresponding to the radiation damping scales as
γrad ∼ a3 (see, e.g., Ref. 48). This shows that for small metallic clusters, γrad can be
neglected as compared to the Landau damping linewidth (1.14). For nanoparticle sizes
smaller than 0.5 nm, there is not enough appropriate particle-hole excitations for the
surface plasmon to decay. For such sizes, the coupling of the surface plasmon to the
ionic lattice can lead to the damping of the collective excitation.

1.2.3 Random phase approximation

In principle, the Landau damping linewidth γ can be directly extracted from the pho-
toabsorption cross section, which according to Fermi’s golden rule reads [53]

σ(ω) =
4πe2ω

3c

∑
f

|〈f |z|0〉|2 δ(~ω − Ef + E0). (1.15)

In the above expression, |f〉 and Ef are, respectively, the many-body excited states and
eigenenergies of the electronic system. The ground state is noted as |0〉 and its energy is
E0. From the knowledge of the many-particle eigenstates of the electronic system, one
could then construct the cross section (1.15) and extract from it the full width at half
maximum of the absorption curve which yields γ. However, to obtain the many-body
eigenstates is exceedingly difficult, even for clusters consisting of only few atoms.

An alternative derivation of the Landau damping linewidth γ has been carried out
by Yannouleas and Broglia in Ref. 30. In analogy with nuclear many-body studies, the
discrete-matrix random phase approximation (RPA) was used to describe the photoab-
sorption of metallic clusters. In this section, we briefly review the main ingredients of
their approach.

Within the RPA, the many-body eigenstates of the system entering (1.15) are approx-
imated with the solutions of the linearized equations of motion inside a particle-hole
subspace S of finite dimension [7,54]. The RPA many-body eigenstates in this subspace
are given by |ν〉 = Q†ν |0〉, while the RPA creation operator is a linear superposition of
particle-hole excitations, i.e.,

Q†ν =
∑
ph

[
Xph(ων)c

†
pch − Yph(ων)c

†
hcp

]
. (1.16)

In the above equation, p and h denote particle and hole states, with energies above
and below the Fermi energy, respectively. ων are the eigenenergies determining the
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many-body states |ν〉, while c† and c are the usual fermionic creation and annihilation
operators, respectively. The amplitudes Xph(ων) and Yph(ων), and the eigenenergies ων ,
can be obtained from the RPA equations of motion which are usually solved numerically.
From those solutions, one can deduce the strength function [16]

S(ω) =
∑

ν

|〈ν|z|RPA〉|2δ(~ω − ~ων + ERPA) (1.17)

which characterizes the excitation of the system by the dipole operator z. In the above
expression, |RPA〉 denotes the approximate RPA ground state of energy ERPA.7 From
the strength function, one can readily obtain an approximation for the photoabsorption
cross section (1.15).

However, when among the states |ν〉 there exists a prominent collective state |c〉
carrying most of the oscillator strength in (1.17), it is helpful to divide the full problem
into two steps. The authors of Ref. 30 divided the full particle-hole space S in two parts:
S = SR + SA. The “restricted subspace” SR at low energy is responsible for building up
the collective state |c〉, while the “additional subspace” SA at high energy is responsible
for the broadening of the collective resonance peak. Even though |c〉 is a superposition
of low-energy states, its energy lies in the range of the subspace SA. While the collective
state |c〉 is an eigenstate of SR and therefore is a sharp line without any broadening, the
additional subspace SA forms a quasi-continuum of states degenerate with the collective
state. Due to the coupling between the two subspaces, the collective state broadens and
acquires a finite width γ. From these considerations, the RPA equations of motion can
be simplified, and a closed formula for the linewidth γ has been obtained, namely

γ ∝
∑

ph∈SA

|〈p|z|h〉|2 δ(~ωc − εp + εh). (1.18)

In this expression, ph is a particle-hole excitation belonging to the additional subspace
SA. The particle-hole pair is composed of a particle with energy εp and of a hole with
energy εh, while ~ωc is the energy of the collective state. Identifying ωc with the Mie
frequency ωM, and following a calculation of the particle and hole eigenstates similar to
Ref. 29, the authors of Ref. 30 finally arrived to the result of (1.14).

1.2.4 Time-dependent local density approximation

An alternative to the previous approaches is given by numerical calculations using the
time-dependent local density approximation (TDLDA). This method was developed by
Zangwill and Soven [55] and by Stott and Zaremba [56] for the calculation of atomic
polarizabilities. It was later adapted by Ekardt [26–28] to the case of metallic clusters
in the context of the spherical jellium approximation, where the ionic structure of the

7The RPA ground state can be obtained requiring that Qν |RPA〉 = 0, where Qν is the hermitic
conjugate of the operator defined in (1.16). Unlike the Hartree-Fock ground state, it contains
correlations.
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1.2 Surface plasmon linewidth and quantum size effects

nanoparticle is disregarded and replaced by a homogeneous positively charged spherical
background.

The local-density approximation for spherical clusters follows the ideas of Lang and
Kohn developed for metallic planar surfaces [57]. Within this approximation, the Cou-
lomb and exchange-correlation interactions of the electrons are added to the background
potential to obtain an effective potential in which the delocalized electrons move inde-
pendently from each other. Since the above interactions depend on the electronic density,
the eigenfunctions and thus the effective potential have to be found self-consistently by
solving iteratively the Kohn-Sham equation [11]. Note that this approximation is justi-
fied for the ground state properties. The excited self-consistent states however are used
within the TDLDA without any justification.

The photoabsorption cross section (1.15) is related to the frequency-dependent dipole
polarizability α(ω) via

σ(ω) =
4πω

c
=α(ω). (1.19)

The polarizability can be found according to [55,58]

α(ω) ∝ −
∫

d3r zδne(r, ω). (1.20)

Within linear-response theory, the change of the electronic density induced by the ex-
ternal field is given by

δne(r, ω) =

∫
d3r′χ(r, r′;ω)Vext(r

′, ω), (1.21)

where Vext(r, ω) is the Fourier transform (with respect to time) of the external potential
associated with the electrical field. In the long-wavelength limit, it is proportional to the
dipole operator z. In (1.21), χ(r, r′;ω) is the density-density correlation function [55].
However, an exact determination of this correlation function is impossible, and within
the TDLDA, it is determined by the following integral equation:

χ(r, r′;ω) = χ0(r, r′;ω) +

∫
d3r′′

∫
d3r′′′χ0(r, r′′;ω)K(r′′, r′′′)χ(r′′′, r′;ω). (1.22)

In the above expression, χ0(r, r′;ω) is the mean-field density-density correlation function.
It can be obtained from the single-particle wavefunctions which are determined by solving
the Kohn-Sham equation. The so-called residual interaction K(r, r′) is given by [27]

K(r, r′) = VC(r, r′) +
dvxc

dne

∣∣∣∣
gs

δ(r− r′), (1.23)

where VC(r, r′) is the Coulomb interaction, and vxc[ne] is the local exchange-correlation
functional. In the above expression, gs means that the derivative is evaluated for the
ground-state electronic density. Usually, vxc[ne] is approximated by the parametrized
form of Gunnarsson and Lundqvist [59]. The Dyson-type equation (1.22) is then solved
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Chapter 1 Introduction

Figure 1.7: Imaginary part of the complex polarizability α(ω), in units of a3, as a func-
tion of ω/ωM. Dashed line: TDLDA calculations. Solid line: Result of the
classical Mie theory. The results shown are for a spherical nanoparticle with
N = 198 valence electrons, and for rs = 4 a0 corresponding (approximately)
to sodium, with a0 = 0.53 Å the Bohr radius. (Reproduced from Ref. 26.
In Ekardt’s notations, R is the radius of the nanoparticle, and ωcl

s is the
classical Mie frequency.)

by standard matrix manipulations, and the induced density (1.21) can be found. From
it, one deduces the polarizability according to (1.20), and thus one has access to the
photoabsorption cross section (see Eq. 1.19). A numerical estimate of the size-dependent
linewidth γ(a) can then be extracted from the knowledge of the photoabsorption cross
section.

As an example for the application of the TDLDA calculations, we reproduce in Fig. 1.7
the results obtained by Ekardt [26] for a neutral spherical nanoparticle consisting of N =
198 atoms. The dashed line represents the imaginary part of the complex polarizability
(1.20) proportional to the photoabsorption cross section according to (1.19), as a function
of the frequency ω scaled by the classical Mie frequency ωM. The solid line represents the
same quantity as deduced from the classical Mie theory. The TDLDA result shown in the
figure reproduce the main features of the experimentally obtained photoabsorption cross
section (see Fig. 1.4). The surface plasmon appears indeed as a well-defined resonance
(notice the logarithmic scale in Fig. 1.7). The resonance frequency is slightly below the
one predicted by Mie’s theory, while the absorption curve is broader than the classical
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1.3 Time-resolved pump-probe spectroscopy

case which yields the linewidth γi. Furthermore, the TDLDA result presents much
more structures than the classical prediction of Mie’s theory. These structures reveal
the electron-hole transitions that occur in the nanoparticle when the surface plasmon
excitation decays.

1.2.5 Approach of this thesis

In this thesis, we will use the separation in center-of-mass and relative coordinates for the
electron system [60] within a mean-field approach which allows to describe the surface
plasmon as the oscillation of a collective coordinate, which is damped by the interaction
with an environment constituted by a large number of electronic degrees of freedom.
Within such a decomposition, the effects of finite size, a dielectric material, or the finite
temperature of the electron gas are readily incorporated. Since the excitation by a laser
field in the optical range only couples to the electronic center of mass, this approach is
particularly useful.

Furthermore, throughout this thesis we will make use of semiclassical expansions.
Even if this analytical approach cannot compete with the accuracy of numerical cal-
culations like the TDLDA, we do believe that it yields further physical insight into
the relaxation process of the surface plasmon excitation. Moreover, the semiclassical
approach allows us to obtain the parametric dependence (in size, temperature, Fermi
energy, etc.) of the quantities we address like the surface plasmon lifetime or its reso-
nance frequency. This technique permits to compute the optical properties of arbitrarily
large clusters, while extensions of this analytical scheme allows also for the description
of smaller nanoparticles. It can as well be extended to nonlinear processes such as the
ionization of an electron by an intense laser field, and constitute therefore a power-
ful method. Whenever it is possible, we will verify our semiclassical calculations by
comparing them to the results of TDLDA numerical calculations.

1.3 Time-resolved pump-probe spectroscopy

In femtosecond time-resolved pump-probe experiments on metallic nanoparticles [61–65]
the surface plasmon plays a key role. In this type of experiments, a very intense and
ultrashort laser pulse of typically a hundred femtoseconds (the pump laser) heats the
electron system via an excitation of the surface plasmon collective mode. After a certain
time delay, the probe laser whose intensity is much weaker than the pump pulse then tests
the absorption spectrum of the hot electron gas in the nanoparticle, and therefore it is
important to understand the temperature dependences of the surface plasmon linewidth
and of the frequency of the resonance. By tuning the delay time between the pump and
probe pulses, one is then able to scan the relaxation process of the electronic system at
various timescales.

Often, pump-probe experiments are done with an ensemble of noble-metal nanopar-
ticles embedded in an inert matrix (e.g., made of glass). The concentration of clusters
in the matrix is sufficiently low to suppress the possible effects of interactions between
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the nanoparticles.
The energy relaxation following the strong excitation by the femtosecond pump pulse

involves different timescales. This is schematize in Fig. 1.8. Initially, the energy is
transferred to the electrons by absorption of photons and the corresponding electronic
distribution is nonthermal (symbolized by the uppermost image in Fig. 1.8). On the
timescale of a few femtoseconds, the electronic system is highly correlated and the col-
lective surface plasmon mode is excited. After the excitation of the surface plasmon,
its energy is transferred on the femtosecond timescale to the electronic environment,
resulting in the heating of the latter.8 As the electronic distribution becomes thermal,
the temperature of the electron system can reach several hundreds of degrees, depending
on the intensity of the pump laser field. The collective mode has decayed at that point
into quasiparticle excitations, resulting from electron-electron and electron-surface scat-
tering. On a much longer timescale, of the order of a picosecond, the energy transfer
from the electron system to the lattice (phonons) results in the decrease of the elec-
tronic temperature with time and in the cooling of the electronic distribution. Finally,
on the timescale of several picoseconds, the energy is transferred to the matrix where
the nanoparticles are embedded.

An experimentally accessible quantity which reflects the relaxation process following
the excitation of the system by the pump pulse is the differential transmission ∆T /T .
It is defined as the normalized difference of transmission of the sample with and without
the pump laser field, ∆T /T = (Ton − Toff)/Toff . This quantity can be measured as a
function of the probe frequency and as a function of the delay time between the pump
and the probe pulses.

In Fig. 1.9, we show an experimental differential transmission curve [62]. It is plotted
as a function of the probe energy for a time delay between the pump and the probe
pulses of 3 ps. The experiment of Ref. 62 is on an ensemble of silver nanoparticles with
an average diameter of 6.3 nm embedded in a glass matrix. Those nanoparticles present
a broad surface plasmon resonance located at 2.85 eV which corresponds to a wavelength
of 434.5 nm. In the case of silver, the surface plasmon resonance is situated well below
the interband transition thresholds d→p (3.99 eV) and p→s (3.85 eV) from the occupied
p states to the unoccupied s states [63]. The surface plasmon resonance is therefore
well defined. As we will see in Chapter 6, the shape of the differential transmission
curve is directly related to the photoabsorption cross section and to its temperature
dependence. This is why it is important to analyze the temperature dependences of the
surface plasmon linewidth and frequency.

Fig. 1.10 shows the differential transmission as a function of the time delay between
the pump and the probe pulses, for different probe energies in the vicinity of the sur-
face plasmon resonance. Here, the nanoparticles are made of copper and have a mean
diameter of 10 nm. They are embedded in a glass matrix. In the case of copper, the
surface plasmon resonance is located near the interband transition d→p (2.17 eV) from

8On such a timescale, the phonons are effectively “frozen” since the typical frequency of phonons in
metals is of the order of 1012 Hz [9], while the frequency of the surface plasmon excitation ωM is of the
order of 1015 Hz. This is the reason why coherent effects not only appear at very low temperatures,
as it is the case for usual experiments in mesoscopic physics [1, 2].
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Figure 1.8: Sketch of the relaxation processes in a metallic nanoparticle after an exci-
tation by a strong and ultrashort femtosecond laser pump pulse. f(ε) is a
sketch of the electronic distribution, while µ is the chemical potential. The
arrow in the uppermost image symbolizes the effect of the pump laser on
the electronic system. (Figure inspired by Ref. 63.)
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via the damping !ee . This mechanism strongly affects "2(t),
via the population dynamics, for photon energies corre-

sponding to resonant interband transitions to #or from$ the
Fermi level. It is at the origin of a power broadening of the

plasmon mode reported in copper nanoparticles.5 In this sec-

tion, we will show that it also affects the real part of the

dielectric function "1(t) leading to a shift of the plasmon
resonance in the case of silver nanoparticles. We also show

that the bulk dielectric function, as described in Sec. III with

the RPA model and including a surface scattering, is not

adequate to explain the details of the dynamics at the plas-

mon resonance. We first describe the experimental results in

Sec. IV A and then discuss, in Sec. IV B, the RPA model of

Sec. III applied to the case of Ag clusters. Finally, in Sec.

IV C, we report experimental results associated to the non-

thermal regime in the nanoparticles.

A. Experimental study of the static and dynamic absorption

of nanoparticles

In the blue spectral region, the optical response of Ag

clusters embedded in a glass matrix is dominated by the

surface plasmon resonance.29 Figure 3 shows the experimen-

tal absorption spectrum of a sample containing nanoparticles

with an average diameter of 6.3 nm #open circles$. The par-
ticle concentration in volume is 1.5!10"5. The plasmon

resonance is situated at 2.85 eV #434.5 nm$. The increase of
absorption on the high-energy side is due to the glass matrix.

As mentioned in Sec. II, two types of measurements have

been made on the nanoparticles. Figure 4 shows the differ-

ential transmission %T/T(&) of the nanoparticles, obtained
with the nondegenerate pump-probe configuration. The

pump-probe delay is set at t0#3 ps and the energy density of
the pump is 450 'J/cm2. The spectral shape of %T/T in the
region 400–500 nm is mostly the result of a redshift of the

surface plasmon resonance, which is at the origin of the posi-

tive and negative signals aside the plasmon resonance.

In Fig. 5, the time-dependent signal %T/T(t), obtained in
the degenerate configuration, is represented for two different

energy densities of the pump. The laser wavelength is set at

430 nm. The electron-lattice relaxation is longer for the high-

est density of energy absorbed in the nanoparticles. Like in

the bulk metal, this effect corresponds to the temperature-

dependent electronic specific heat Ce#!(e , which in the

‘‘high-temperature regime’’ leads to Eq. #8$. The behavior of
)1 as a function of wavelength is less trivial. Figure 6#a$
shows the variation of )1 with the pump-energy density for
different probe wavelengths #&#430, 425, 410, and 400
nm$. As expected, for a fixed wavelength the relaxation time
increases with the density of energy. However, for a given

energy density, Fig. 6#a$ shows that )1 increases when the
wavelength is tuned to the surface plasmon. This effect is

nonlinear with respect to the absorbed density of energy, as

can be seen in Fig. 6#b$, where an extended view of )1 over
three orders of magnitude is represented for the two wave-

lengths: at the plasmon resonance 430 nm #open circles$ and
off resonance 410 nm #plain circles$. The measurements be-
low an absorbed density of energy of 10 'J/cm2 have been
obtained with the nonamplified laser system. The dotted lines

connect the two types of measurements #i.e., with amplified
and nonamplified pulses in the degenerate pump-probe con-

FIG. 3. Optical density of Ag nanoparticles with an average

diameter of 6.3 nm and a concentration in volume of 1.5!10"5:

experimental curve #open circles$, model without surface scattering
#dashed line$ and model including the surface scattering #solid line$.

FIG. 4. Spectral variation of %T/T of the nanoparticles with a
diameter 6.3 nm for a pump-probe delay of 3 ps.

FIG. 5. Time-dependent differential transmission %T/T of the
nanoparticles for two density of energy of the pump. The probe is

on resonance with the surface plasmon (&#430 nm).

11 742 PRB 60HALTÉ, GUILLE, MERLE, PERAKIS, AND BIGOT

Figure 1.9: Experimentally observed differential transmission ∆T /T as a function of
the probe laser energy for a delay time between the pump and probe pulses
of 3 ps. The result shown is for an ensemble of silver nanoparticles with an
average diameter of 6.3 nm, embedded in a glass matrix. (Reproduced from
Ref. 62.)

the d band to the unoccupied states in the p conduction band [63]. Therefore, contrarily
to the case of silver, the surface plasmon resonance is degenerate with the interband
transitions, making the interpretation of the experiment more involved. As it can be
seen on Fig. 1.10, the differential transmission decreases as a function of time, reflect-
ing the relaxation of the electronic energy to the lattice. Note that a slowing of the
relaxation process has been observed near the surface plasmon resonance [61–63] (see
dots in Fig. 1.10). This is in contrast to time-resolved spectroscopy studies of copper
thin films, where the dynamics is identical over the entire energy range around the d→p
transition [61–63].

Various theoretical models have been investigated to study the relaxation process in
pump-probe experiments. In Refs. 61–63, a two-temperature model has been adopted to
account for the cooling of the electron system. In this model, the metal is described by
two subsystems that exchange energy, corresponding to the electrons and the phonons,
with appropriate specific heats. These two subsystems are coupled and their dynamics
as a function of time is described by heat equations. Together with a description of
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1.3 Time-resolved pump-probe spectroscopy

Figure 1.10: Experimental differential transmission ∆T /T as a function of the delay
time between the pump and probe pulses, for different probe photon en-
ergies. The nanoparticles in this experiment are made of copper and em-
bedded in a glass matrix. They have an average diameter of 10 nm. The
plasmon resonance is located close to ~ωsp ' 2.2 eV. (Reproduced from
Ref. 61.)

the dielectric constant of the metal which includes intra- and interband processes by
means of an effective medium, this allows to qualitatively reproduce the experimental
results. Self-consistent numerical calculations [66, 67] have also been carried out in the
linear regime. By means of temperature-dependent TDLDA calculations, together with
the two-temperature model, the authors of Refs. 66 and 67 were able to qualitatively
reproduce the experimental results. Nonlinear effects on the electronic dynamics in the
case of a strong laser excitation have also been investigated using the nonlinearized
TDLDA or the semiclassical Vlasov equation [68,69].

The effects of correlations in the case of strong excitations has been considered by
studying the semiclassical electron dynamics beyond mean-field [70]. The inclusion of a
collision term was shown to be important in the case of excitations longer than a few
femtoseconds, as well as for the description of the resulting heating of the electron gas.
Most of these numerical results have been obtained in very small clusters (typically Na+

9 ).
Since the nanoparticles that we treat are considerably larger, we expect the correlation
effects to be less important.

In this thesis, we adopt a theoretical scheme which allows us to obtain an analytical
description of the differential transmission curve profile. As we will show, the obtained
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low-temperature features of the surface plasmon linewidth and resonance frequency qual-
itatively reproduce the experimentally observed results.

1.4 Outline of this thesis

In this thesis we consider the problem of the surface plasmon excitation in spherical
metallic nanoparticles and of its quantum dissipation and decoherence. We adopt a de-
scription of the system using methods from quantum optics, and elaborate an analytical
scheme which allows us to give a simplified description of the surface plasmon dynamics.
This approach allows us to characterize not only the dissipation of the surface plasmon
excitation, but also its decoherence. Semiclassical expansions will be used to determine
the main parameters describing the dynamical evolution of the system, namely the sur-
face plasmon linewidth and the resonance frequency of the collective excitation. The
manuscript is organized as follows:

In Chapter 2, we present our model and the separation of the electronic degrees of
freedom into the center of mass and the relative coordinates (Sec. 2.1). The center-of-
mass coordinate provides a natural description of the spatial collective oscillations of
the electronic cloud around its equilibrium position resulting from a laser excitation. In
Sec. 2.2, we present our mean-field approximation for the electronic correlations which
provides a route to the analytical description of the surface plasmon dynamics. The
interaction of an external driving field with the system is briefly described in Sec. 2.3.

In Chapter 3, we describe the dynamics of the surface plasmon excitation in presence of
an external driving field. To this end, we develop in Sec. 3.1 a density-matrix description
of the center-of-mass degree of freedom. Within a two-level system approach, we solve
the resulting master equation in Sec. 3.2 and discuss the temporal evolution of the system
in different physical situations.

The coupling between the center of mass and the relative coordinates is responsible
for the broadening of the surface plasmon resonance that we evaluate in Chapter 4. In
Sec. 4.1, we present an approximate determination of the single-particle mean-field states
that are determinant for the calculation of the surface plasmon linewidth. We determine
in Sec. 4.2 the dominant dependence of the surface plasmon linewidth on the size of the
nanoparticle and explore its low-temperature properties. In Sec. 4.3, we demonstrate
that, in addition to its smooth size dependence, the surface plasmon linewidth exhibits
a nonmonotonic behavior as a function of the size of the nanoparticle.

In Chapter 5, we concentrate on the resonance frequency of the surface plasmon
excitation. We evaluate in Sec. 5.1 the spill-out effect, focusing on its dependence on size
and temperature of the nanoparticle. We show by means of time-dependent local density
approximation calculations that the spill-out effect is not sufficient to quantitatively
describe the redshift of the surface plasmon frequency as compared to the classical Mie
value. In Sec. 5.2, we propose an estimation of the environment-induced redshift of the
surface plasmon resonance which adds to the spill-out effect. Both effects together, spill-
out and frequency shift due to the electronic environment, could explain the observed
redshift of the resonance frequency.
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1.4 Outline of this thesis

In Chapter 6, we draw the consequences of our findings for pump-probe experiments.
The temperature dependences of the linewidth and frequency of the surface plasmon
resonance peak permit to qualitatively explain the time dependence of the measured
optical transmission as a function of the delay between the pump and the probe laser
field.

Under a weak initial optical excitation, only the first surface plasmon (that we simply
refer to as “surface plasmon” when there is no possibility of confusions) is excited. With
sufficiently strong initial excitations, we can also reach the second quantum level of the
center-of-mass motion, known as the second (or double) plasmon. Such a resonance will
be experimentally relevant provided its lifetime is sufficiently large (on the scale of ω−1

M ).
The lifetime is limited by the anharmonicities of the center-of-mass system and by its
interaction with other degrees of freedom. Like in the case of the single plasmon, the
Landau damping is an important channel for the decay of the second plasmon, but a new
channel appears when 2~ωM is larger than the ionization energy so the cluster loses an
electron into the continuum [71]. Such a process was discussed in order to interpret the
ionization of charged Na+

93 clusters observed by Schlipper and collaborators [72,73]. The
relevance and the existence of the double plasmon in metallic nanoparticles is therefore
debated in Chapter 7. We present a semiclassical description of the two main channels
contributing to the decay of the double plasmon: Landau damping (Sec. 7.1) and particle
ionization (Sec. 7.2).

In Chapter 8 we study the experimentally relevant case of noble-metal nanoparticles
embedded in a dielectric medium and present the need to improve the existing theory for
the surface plasmon linewidth in this case. It is shown that one has to consider the details
of the mean-field potential near the boundary of the nanoparticle to solve a qualitative
discrepancy between the analytical and numerical results. This is done semiclassically
in Sec. 8.1, while in Sec. 8.2 we estimate the shape of the mean-field potential from a
simple Thomas-Fermi model. This yields a qualitative agreement between the numerical
and analytical approaches, as shown in Sec. 8.3.

We finally conclude and discuss the perspectives of this work in Chapter 9.
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Chapter 2

Metallic nanoparticles: A model
system for the study of quantum
dissipation and decoherence

J’aimais et j’aime encore les
mathématiques pour
elles-mêmes comme n’admettant
pas l’hypocrisie et le vague, mes
deux bêtes d’aversion.

(Stendhal, 1783-1842, in Vie de
Henry Brulard)

In this chapter, we present the model that will serve us to study the dynamics of the
surface plasmon excitation in metallic nanoparticles. Within the spherical jellium model,
the electronic Hamiltonian will be separated into a part associated with the electronic
center of mass, a part which describes the relative coordinates (the electronic environ-
ment or “heat bath” in our case), and a coupling between the two subsystems which
causes decoherence and dissipation of the collective surface plasmon excitation.

2.1 Electronic Hamiltonian within the jellium model

We consider a neutral metallic nanoparticle containing N valence electrons. Further-
more, we restrict ourselves to spherical nanoparticles of radius a. As mentioned in
the introduction of this thesis, spherical nanoparticles have closed angular momentum
shells, the first closed-shell sizes being N = 8, 20, 40, 58, . . . [11]. In analogy with atomic
physics, one calls those specific numbers of valence electrons “magic numbers”. Neglect-
ing the ionic dynamics (adiabatic Born-Oppenheimer approximation [9]), the electronic
Hamiltonian for an alkaline-metal nanoparticle in vacuum is given within the so-called
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jellium model by

H =
N∑

i=1

[
p2

i

2me

+ U(ri)

]
+
e2

2

N∑
i,j=1
(i6=j)

1

|ri − rj|
, (2.1)

where e and me are the electronic charge and mass, respectively. In (2.1), ri is the
position of the ith conduction electron, ri = |ri|, and pi is the associated momentum.
The spherically symmetric single-particle potential U(r) represents the electrostatic in-
teraction between the electrons and the ionic background. Within the spherical jellium
model, the ions are treated as a continuous, homogeneous positively charged sphere of
total charge +Ne, which produces a charge density

ρi(r) =
Ne

V
Θ(a− r), (2.2)

Θ(x) being the Heaviside step function and V = 4πa3/3 the volume of the nanoparticle.1

For large metallic clusters, it is convenient to use the jellium approximation which
neglects the ionic structure of the cluster. This model is simple enough to be applied to
spherical nanoparticles containing up to several thousands of atoms, and is still accurate
enough to describe the essential physical properties of such objects. Even for the smallest
sizes where the ionic structure could presumably play an important role, the spherical
jellium model gives valuable results [11].

Note that in the case of a noble-metal nanoparticle embedded in a dielectric medium,
the electron-electron interaction is modified in (2.1) by a dielectric constant εd which
takes into account the screening of the conduction electrons by the d-electrons, as well as
by the dielectric constant εm of the matrix. In this case, the expression for the Coulomb
potential is much more complicated since it is not any more translationally invariant,
due to the dielectric discontinuity at the interface between the cluster and the matrix.

2.1.1 Single-particle confinement

We now detail the determination of the single-particle confinement U(r) appearing in
the electronic Hamiltonian H (2.1). Considering the homogeneously charged sphere
of radius a and of total charge +Ne, Gauss’s theorem yields the radial electrical field
E(r) = E(r)r/r produced by the charge distribution (2.2), with

E(r) =
Ne

a2

[
r

a
Θ(a− r) +

(a
r

)2

Θ(r − a)

]
. (2.3)

The single-particle confinement U(r) is given by the electrostatic potential φ(r) mul-
tiplied by the electronic charge,

U(r) = −e
∫ r

0

dr′E(r′) + constant. (2.4)

1Note that we consider monovalent metals for which the number of valence electrons equals the number
of ions.

44



2.1 Electronic Hamiltonian within the jellium model

−3/2

−1

0

a
U

(r
)/

N
e
2

a
U

(r
)/

N
e
2

1 r/ar/a

∼ r2

∼ −1/r

Figure 2.1: Single-particle confinement potential U as a function of the radial coordi-
nate r, scaled by the nanoparticle radius a. It is harmonic for r < a, and
Coulomb-like for r > a, so we refer to it as “Harlomb”.

Imposing that limr→∞ U(r) = 0 and the continuity of φ(r) at the interface a, we find
the “Harlomb” potential

U(r) =
Ne2

2a3

(
r2 − 3a2

)
Θ(a− r)− Ne2

r
Θ(r − a) (2.5)

which is harmonic with the Mie frequency ωM =
√
Ne2/mea3 inside the nanoparticle

and Coulomb-like outside (see Fig. 2.1).

2.1.2 Separation into collective and relative coordinates

In principle, the photoabsorption cross section (1.15) can be determined from the knowl-
edge of the eigenstates of H. The linewidth and the resonance frequency of the surface
plasmon excitation could then be obtained from the analysis of the cross section. How-
ever, except for clusters containing only few conduction electrons, this procedure is
exceedingly difficult even if we are already within the jellium model, and one has to
treat this problem using suitable approximation schemes.

A particularly useful decomposition [60] of the Hamiltonian (2.1) can be achieved
by introducing the coordinate of the electronic center of mass R =

∑
i ri/N and its

conjugated momentum P =
∑

i pi. The relative coordinates are denoted by r′i = ri−R
and p′i = pi − P/N . Then, using

∑
i r
′
i = 0 and

∑
i p

′
i = 0, the Hamiltonian (2.1) can

be written as

H =
P2

2Nme

+Hrel +
N∑

i=1

[U(|r′i + R|)− U(r′i)] . (2.6)
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Chapter 2 Metallic nanoparticles: A model system

We have defined

Hrel =
N∑

i=1

[
p′i

2

2me

+ U(r′i)

]
+
e2

2

N∑
i,j=1
(i6=j)

1∣∣r′i − r′j
∣∣ (2.7)

as the Hamiltonian for the relative-coordinate system.
Assuming that the displacement R of the center of mass is small compared to the size

of the nanoparticle, we can expand the last term on the r.h.s. of (2.6). To second order,
we obtain

U(|r′ + R|)− U(r′) ' R ·∇U(r′) +
1

2
(R ·∇)2 U(r′), (2.8)

where the derivatives are taken at r = r′ (R = 0). With this expansion, the dependence
on the relative coordinates in the last term of (2.6) has dropped out, thus justifying our
definition (2.7). Choosing the oscillation axis of the center of mass in the z-direction,
R = Zez, we obtain with (2.5)

R ·∇U(r′) = Zmeω
2
M

[
z′Θ(a− r′) +

z′a3

r′3
Θ(r′ − a)

]
(2.9)

which represents a first order coupling in Z between the center-of-mass and the relative-
coordinate system, and

(R ·∇)2 U(r′) = Z2Ne2
[

1

a3
Θ(a− r′) +

1− 3 cos2 θ′

r′3
Θ(r′ − a)

]
. (2.10)

In second order, the first term on the r.h.s. of (2.10) is the dominant contribution to the
confinement of the center of mass. The second term on the r.h.s. of (2.10) is negligible
compared to the first-order coupling of (2.9) and thus we only keep

(R ·∇)2 U(r′) ' Z2Ne
2

a3
Θ(a− r′). (2.11)

Inserting (2.8) and (2.11) into (2.6), we obtain

H =
P2

2Nme

+
1

2

Ne2

a3
R2

N∑
i=1

Θ(a− ri) +Hrel +Hc, (2.12)

where

Hc =
N∑

i=1

R · [∇U(r′i)]
∣∣∣
R=0

(2.13)

is the coupling between the center-of-mass and the relative coordinates to the first order
in the displacement R of the center of mass according to (2.9). The remaining sum over
i in (2.12) defines the number of electrons inside the nanoparticle, i.e., N −Nout where
Nout is the number of spill-out electrons, and finally we rewrite the Hamiltonian as

H = Hcm +Hrel +Hc. (2.14)

46
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The Hamiltonian of the center-of-mass system is

Hcm =
P2

2Nme

+
1

2
Nmeω̃

2
MR2. (2.15)

It is the Coulomb tail of the single-particle confinement (2.5) which modifies the fre-
quency to ω̃M defined in (1.7) instead of ωM for the effective harmonic trap that is
experienced by the center-of-mass system. The electronic spill-out thus redshifts the
frequency of the surface plasmon excitation from the classical Mie value ωM.

Eq. 2.14 with (2.7), (2.13), and (2.15) recovers up to the second order in R the
decomposition derived in Ref. 60. However, in contrast to that work, we do not need to
appeal to an effective potential for the center-of-mass system. The authors of Ref. 60
expanded this effective potential up to the fourth order, and obtained a correction to the
harmonic confinement of (2.15) which goes as αR4. However, they showed that the size-
dependent constant α is very small, and tends to zero when the size of the nanoparticle
is increasing. We will therefore restrict ourselves to the harmonic term in (2.15).

The structure of (2.14) is typical for quantum dissipative systems [74]: The system
under study (Hcm) is coupled via Hc to an environment or “heat bath” described by
Hrel. The system-environment coupling results in dissipation and decoherence of the
collective excitation. In our case the environment is peculiar in the sense that it is not
external to the nanoparticle, but it represents a finite number of degrees of freedom of
the gas of conduction electrons.

If the single-particle confining potential U(r) of (2.5) were harmonic for all r, Kohn’s
theorem [75] would imply that the center of mass and the relative coordinates are de-
coupled, i.e., Hc = 0, and thus the surface plasmon has an infinite lifetime. This can
be easily seen on (2.9): In the case of a perfectly harmonic confinement, we would have
R ·∇U(r′) = Zmeω

2
Mz

′. Thus according to (2.13), Hc = Zmeω
2
M

∑
i z
′
i which vanishes

since
∑

i z
′
i = 0. The Coulomb part of U(r) in (2.5) leads to the coupling of the center of

mass and the relative coordinates, and translates into the decay of the surface plasmon.
Furthermore, it redshifts from ωM the frequency of the center-of-mass system according
to (1.7).

2.1.3 Alternative derivation of the coupling Hamiltonian

In this section, we present an alternative derivation of the coupling Hamiltonian Hc

which yields a simple physical picture of such a coupling. Furthermore, it allows us to
generalize the derivation of Ref. 16 considering the Coulomb interaction to the case of a
dielectric mismatch between the nanoparticle and the surrounding matrix in which it is
embedded.

Assuming that at equilibrium the electron density is uniform within a sphere of radius
a, ne(r) = neΘ(a − r), a rigid displacement with a magnitude Z along the z-direction
changes the density at r from ne(r) to

ne(r−R) = ne(r) + δne(r). (2.16)
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Chapter 2 Metallic nanoparticles: A model system

To first order in the field R = Zez, we can write

δne(r) = −R ·∇ne(r) = Zne cos (θ)δ(r − a). (2.17)

We have neglected the oscillations of the density in the inner part of the particle due to
shell effects, and also the extension of the electronic density outside the particle, i.e., the
spill-out effect [10,11]. Denoting VC(r, r′) the Coulomb electron-electron interaction, the
change in the mean-field potential seen by the electrons due to the rigid shift (transition
potential) is

δV (R, r) =

∫
d3r′δne(r

′)VC(r, r′). (2.18)

As we show in the sequel, the transition potential of (2.18) is actually the same as
R ·∇U(r). Thus, the coupling Hamiltonian of (2.13) can be rewritten as

Hc =
N∑

i=1

δV (R, r′i). (2.19)

Let us now prove the equivalence between δV (R, r) and R · ∇U(r): From the def-
initions of the transition potential (2.18) and of the displaced density (2.17), writing
explicitly the Coulomb interaction yields

δV (R, r) = −e2R ·
∫

dr′
3∇r′ne(r

′)

|r− r′|
. (2.20)

Now,

R ·∇U(r) = −eR ·∇φ(r) (2.21)

with φ(r) the electrostatic potential created by the jellium background. Using the defi-
nition of φ(r), we thus have

R ·∇U(r) = −e2R ·∇r

∫
dr′

3 ne(r
′)

|r− r′|

= e2R ·
∫

dr′
3
ne(r

′)∇r′
1

|r− r′|
. (2.22)

To obtain the second line of the above expression, we have used

∇r′
1

|r− r′|
= −∇r

1

|r− r′|
. (2.23)

Integrating (2.22) by parts, we finally obtain the result of (2.20), and thus

δV (R, r) = R ·∇U(r). (2.24)
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2.1 Electronic Hamiltonian within the jellium model

Transition potential without dielectric mismatch

When we consider an alkaline-metal nanoparticle in vacuum, there is no dielectric mis-
match between the metallic cluster and the surrounding environment. In order to pro-
ceed with (2.18), the multipolar decomposition of the Coulomb interaction is very use-
ful [76]. It reads

VC(r, r′) = 4πe2
∞∑
l=0

+l∑
m=−l

1

2l + 1

rl
<

rl+1
>

Y m
l
∗(θ′, ϕ′)Y m

l (θ, ϕ), (2.25)

with r< = min (r, r′), r> = max (r, r′), and Y m
l (θ, ϕ) are the spherical harmonics. In-

serting (2.17) and (2.25) into (2.18), one obtains for the transition potential [16]

δV (R, r) = Z
4πnee

2

3

[
zΘ(a− r) +

za3

r3
Θ(r − a)

]
, (2.26)

similarly to (2.9). We notice that a displacement of the electron system leads to a dipolar
field inside the nanoparticle, and that its magnitude decays as 1/r2 outside the particle.

Transition potential with dielectric mismatch

If we now consider the case of a noble metal nanoparticle (where the d-electrons are
taken into account through a dielectric constant εd) embedded in a matrix (of dielectric
constant εm), the Coulomb interaction between electrons is given by [77]

VC(r, r′) = 4πe2



1

εd

∑
lm

1

2l + 1

[
rl
<

rl+1
>

+
rlr′l

a2l+1

(l + 1)(εd − εm)

εdl + εm(l + 1)

]
Y m

l
∗(θ′, ϕ′)Y m

l (θ, ϕ)

for r, r′ 6 a,∑
lm

rl
<

rl+1
>

Y m
l
∗(θ′, ϕ′)Y m

l (θ, ϕ)

εdl + εm(l + 1)
for r< 6 a, r> > a,

1

εm

∑
lm

1

2l + 1

[
rl
<

rl+1
>

+
a2l+1

rl+1r′l+1

l(εm − εd)

εdl + εm(l + 1)

]
Y m

l
∗(θ′, ϕ′)Y m

l (θ, ϕ)

for r, r′ > a.

(2.27)
Inserting this expression into (2.18), we obtain the result of (2.26) with the additional
multiplying factor 3/(εd + 2εm).

In both cases (with and without a dielectric mismatch), the expression (2.26) can be
written as

δV (R, r) = Zmeω
2
M

[
zΘ(a− r) +

za3

r3
Θ(r − a)

]
, (2.28)

where the Mie frequency is given in (1.5). The only effect of the dielectric constants
on the transition potential, as compared to the free case, is through the redshift of the
Mie frequency. We thus recover, once δV is summed over the relative coordinates, the
coupling Hamiltonian of (2.13).
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Chapter 2 Metallic nanoparticles: A model system

2.2 Mean-field approximation and second quantization
procedure

Even if the decomposition into center-of-mass and relative coordinates of the electronic
Hamiltonian H is useful in the sense that it clearly shows the origin of the coupling
between the two subsystems, it is still intractable because of the electronic interactions
appearing in the relative-coordinate Hamiltonian (2.7). Thus, we will use a mean-field
approximation which represents a substantial simplification for those degrees of freedom.
Together with the second quantization procedure [54], this approximation scheme will be
our starting point for the description of collective excitations in metallic nanoparticles.

2.2.1 Center-of-mass Hamiltonian

To proceed with the center-of-mass Hamiltonian (2.15), we introduce the standard an-
nihilation and creation operators [78]

b =

√
Nmeω̃M

2~
Z +

i√
2Nme~ω̃M

PZ , (2.29a)

b† =

√
Nmeω̃M

2~
Z − i√

2Nme~ω̃M

PZ , (2.29b)

with PZ the conjugated momentum to Z. If |n〉 is an eigenstate of Hcm, we have the
usual relations b|n〉 =

√
n|n−1〉 and b†|n〉 =

√
n+ 1|n+1〉. The operators (2.29) satisfy

the usual bosonic commutation relations, and Hcm then reads

Hcm = ~ω̃Mb
†b (2.30)

without taking into account the zero-point energy ~ω̃M/2.

2.2.2 Hamiltonian of the relative coordinates

The Hamiltonian (2.7) of the relative-coordinate system contains the electron-electron
interactions. In order to overcome this difficulty, we then treat it within the mean-
field approximation. Furthermore, the second-quantization procedure is a convenient
tool that allows to easily take into account the statistics of the particles (fermionic or
bosonic) [54]. Passing to second quantization, Hrel can then be expressed as

Hrel =
∑

α

εαc
†
αcα. (2.31)

εα are the eigenenergies for the effective mean-field potential V and c†α (cα) creates
(annihilates) the one-body eigenstates |α〉. Those operators are fermionic ones, and
satisfy the usual anticommutation relations.2

2In the remaining of this thesis, we do not use different symbols for the operators acting on the
Hilbert space (first-quantized form) and on the Fock space (second-quantized form), even though
these operators are conceptually totally different. This is done in order to simplify the notations.
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Figure 2.2: Self-consistent mean-field potential V from LDA numerical calculations (at
T = 0) for a sodium nanoparticle (rs = 3.93 a0) in vacuum with N = 1760
valence electrons, as a function of the radial coordinate in units of the Bohr
radius a0 = 0.53 Å. The radius a ' 47.7 a0 is indicated by the dotted
vertical line, while the horizontal dashed line indicates the Fermi energy εF.

The numerical calculations of the time-dependent local density approximation
(TDLDA, see Sec. 1.2.4) within the spherical jellium model at zero temperature are
a useful tool to obtain the mean-field potential seen by the electrons [26, 27, 58, 69].
Within this approximation, one can compute the response of the electronic system to
an external time-dependent perturbation like, e.g., an electrical field. Basically, in its
static counterpart (LDA), this approximation replaces the many-electron Hamiltonian
(2.1) by a self-consistent Hamiltonian

Hsc =
p2

2me

+ V (r), (2.32)

where the mean-field potential V (r) is a local function which contains exchange and
correlation terms. The self-consistent single-particle wave functions are found according
to

Hscψα(r) = εαψα(r) (2.33)

where εα is the eigenenergy of the state |α〉. Since we consider spherical nanoparticles,
the self-consistent potential entering (2.32) has radial symmetry, V (r) = V (r).3 In

3We use a numerical implementation of the TDLDA which is based on the code Jellyrpa by
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Chapter 2 Metallic nanoparticles: A model system

Fig. 2.2, we show the self-consistent potential V as a function of the radial coordinate
r, for a typical sodium nanoparticle of radius a = rsN

1/3, with rs = (3/4πne)
1/3 the

mean distance between electrons in the nanoparticle [9]. We see that it is relatively flat
at the interior of the nanoparticle, and presents a steep increase at the boundary. The
potential jump is often approximated for the purpose of analytical calculations by a true
discontinuity at r = a. However, the details of the self-consistent potential close to the
surface may be crucial for some properties, as we show in Sec. 5.1.3 and Chapter 8.

2.2.3 Coupling between center-of-mass and relative-coordinate
systems

Inserting (2.9) into the coupling Hamiltonian Hc from (2.13), and expressing the Z-
coordinate in terms of the annihilation and creation operators of (2.29),

Z =

√
~

2Nmeω̃M

(
b† + b

)
, (2.34)

one obtains in second quantization

Hc = Λ
(
b† + b

)∑
αβ

dαβc
†
αcβ, (2.35)

where

dαβ = 〈α|
[
zΘ(a− r) +

za3

r3
Θ(r − a)

]
|β〉 (2.36)

is the matrix element between two eigenstates of the unperturbed mean-field problem.
In (2.35), we have defined the constant

Λ =

√
~meω3

M

2N
(2.37)

and we have neglected the spill-out for the calculation of the coupling when we expressed
Z in terms of b and b†. This assumption is justified a posteriori. Indeed, we have seen
in the introduction of this thesis that the spill-out effect leads to a correction of the Mie
frequency which goes as 1/a. As we will see in the sequel, the effect of the coupling on
the physical quantities that will be evaluated leads to a scaling behavior which also goes
as 1/a. Thus, restricting ourselves to the first contributing order in 1/a, we can neglect
the spill-out effect in the coupling Hamiltonian Hc.

In a quantum many-body approach, the surface plasmon appears as a collective exci-
tation of the electron system. The discrete-matrix random phase approximation (RPA)
presented in Sec. 1.2.3 provides a useful representation since the eigenstates of the cor-
related electron system are expressed as superpositions of particle-hole states built from

G. F. Bertsch [79], which has been modified by R. A. Molina [80, 81] and ourselves. It has been
improved in order to get the TDLDA response of large clusters (up to approximately 2000 atoms).
Furthermore, with this modified code we are able to consider different dielectric environments.
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2.3 External driving field

the Hartree-Fock ground state. Following similar approaches developed for the study of
giant resonances in nuclei, Yannouleas and Broglia [30] proposed a partition of the many-
body RPA Hilbert space into a low-energy sector (the restricted subspace), generated
by particle-hole excitations with low energy, and a high-energy sector (the additional
subspace). The surface plasmon arises from a coherent superposition of a large number
of basis states of the restricted subspace. Its energy lies in the high-energy sector, and
therefore the mixture with particle-hole states of the additional subspace results in the
broadening of the collective resonance. Thus, it has to be understood that the sums over
α and β in (2.35) are restricted to the additional (high energy) RPA subspace. This
separation in disjoint Hilbert spaces allows us to introduce the second quantization for
the relative coordinates without falling into problems of double counting. If initially
the center of mass is in its first excited state, the coupling Hc allows for the decay of
the collective excitation into particle-hole pairs in the electronic environment Hrel, the
so-called Landau damping [16, 80,81].

2.3 External driving field

In this section, we describe the interaction of the nanoparticle with an external (classical)
field. The surface plasmon resonance is located in the visible range and thus the size
of the nanoparticle is much smaller than the wavelength of the electromagnetic field.
Therefore, the external electrical field only couples to the electronic center of mass. In
this situation, we can safely assume that the external electric field is independent of the
spatial coordinate and monochromatic at the frequency ωL,

E(t) = E0 cos (ωLt)ez. (2.38)

Therefore, in the dipolar approximation [78], the interaction between the driving field
and the center-of-mass system reads

HF(t) = −D · E(t) (2.39)

where D = −eNR is the dipole moment of the center of mass. With (2.34), we then
obtain

HF(t) = (b† + b)~ΩR cos (ωLt), (2.40)

where the Rabi frequency is defined as [82]

ΩR = eE0

√
N

2me~ω̃M

. (2.41)

Finally, the time-dependent Hamiltonian of the nanoparticle in presence of the external
driving field reads H +HF(t), where H is the electronic Hamiltonian of (2.14).
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2.4 Conclusion for Chapter 2

Starting from the electronic many-body Hamiltonian H within the jellium approxima-
tion, we have shown in this chapter that the introduction of center-of-mass and relative
coordinates yields a useful decomposition of H. Assuming that the displacement of the
center of mass is small compared to the size of the nanoparticle, we have linearized the
coupling between center-of-mass and relative-coordinate systems. This coupling arises
from the Coulomb part of the single-particle confinement outside the nanoparticle. The
Hamiltonian for the center of mass is harmonic, with a frequency redshifted from the
classical Mie value by the spill-out effect. The Hamiltonian for the relative coordinates
contains the many-body correlations, and therefore is treated within the mean-field ap-
proximation.

It has been shown that the coupling Hamiltonian has a simple physical interpretation.
It arises from a rigid displacement of the electronic cloud from its equilibrium position,
and results in a change of the mean-field potential seen by the electrons. We have shown
that in the case of a dielectric mismatch between a noble-metal nanoparticle and the
surrounding matrix, the expression for the coupling remains the same as in the case of
a alkaline-metal nanoparticle in vacuum, up to a renormalization of the Mie frequency.

The decomposition of the electronic Hamiltonian presented in this chapter shows that
the center-of-mass system interacts with an environment or “heat bath” (the relative
coordinates) via the coupling Hamiltonian. As we show in the next chapter, this results
in dissipation and decoherence of the surface plasmon excitation.
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Chapter 3

Dynamics of the surface plasmon
excitation

Il n’y a rien d’incompréhensible.

(Comte de Lautréamont,
1846-1870, in Poésies)

In this chapter, our goal is to study the dynamics of the surface plasmon after an
excitation by an external driving field, e.g., by a laser. A particularly well-adapted
formalism to attain such an objective is the density-matrix formalism that we develop
in Sec. 3.1. Under certain approximations, this yields an analytically tractable model to
study the dissipation of the collective surface plasmon excitation. In Sec. 3.2, we analyze
in detail this dissipative process in terms of a two-level description of the electronic center
of mass, a simplification that we discuss in Appendix A.

3.1 Reduced density-matrix description of the electronic
center of mass

The advantage of the density-matrix formalism is that one is able, once the dynamical
evolution of the system is resolved, to study both, the populations (diagonal part of the
density matrix) and the coherences (off-diagonal part) of the system evolving according
to a Hamiltonian dynamics. In Sec. 3.1.1, we will consider the free evolution of the
system, i.e., without the external driving field whose interaction with the electronic
center of mass is described by the Hamiltonian (2.40). In Sec. 3.1.2, we will incorporate
the effects of the driving.
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3.1.1 Free evolution of the center of mass

The evolution of the whole system in absence of the electromagnetic field is given by the
equation of motion of the total density matrix

ρ̇T(t) = − i

~
[H, ρT(t)] , (3.1)

where the Hamiltonian H = H0 + Hc of the entire system is given by (2.14), with
H0 = Hcm + Hrel. The dot represents the time derivative with respect to t. The
coupling Hamiltonian Hc between the center-of-mass system and the relative coordinates
is assumed to be sufficiently weak so that one can treat it as a small perturbation with
respect to H0. A well-suited representation is therefore the interaction picture, where
the evolution of the density matrix is

˙̃ρT(t) = − i

~

[
H̃c(t), ρ̃T(t)

]
, (3.2)

with

ρ̃T(t) = eiH0t/~ ρT(t) e−iH0t/~ (3.3)

and

H̃c(t) = eiH0t/~ Hc e−iH0t/~. (3.4)

The equation of motion (3.2) can be integrated formally to yield

ρ̃T(t) = ρT(0)− i

~

∫ t

0

ds
[
H̃c(s), ρ̃T(s)

]
. (3.5)

Inserting (3.5) into the equation of motion (3.2) yields the integro-differential equation

˙̃ρT(t) = − i

~

[
H̃c(t), ρT(0)

]
− 1

~2

∫ t

0

ds
[
H̃c(t),

[
H̃c(s), ρ̃T(s)

]]
. (3.6)

By tracing out the relative coordinates, we obtain the reduced density matrix of the
center-of-mass system

ρ = TrrelρT =
∑

α

〈α|ρT|α〉, (3.7)

where |α〉 are the eigenstates of the mean-field Hamiltonian Hrel given in (2.31). From
(3.6), we thus have

˙̃ρ(t) = − i

~
Trrel

[
H̃c(t), ρT(0)

]
− 1

~2

∫ t

0

dsTrrel

[
H̃c(t),

[
H̃c(s), ρ̃T(s)

]]
. (3.8)
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Statistical description of the heat bath

In dissipative quantum dynamics the environment is considered to be infinite, i.e., its
intrinsic properties like the temperature do not change as a consequence of its coupling
to the system [74]. This idealization is particularly stringent in the case of an environ-
ment constituted by the relative coordinates. Therefore, we must restrict our analysis
to the regime where the electron gas reaches thermal equilibrium at a temperature T
determined from the energy balance and from the coupling of the electron system to
external degrees of freedom (i.e., lattice vibrations). This is achieved under relatively
weak laser excitations (i.e., under the effect of a probe laser field) or after about ten
femtoseconds following a strong pump excitation.

We assume that the total system is in a thermal equilibrium at the temperature T
at the initial time t = 0. Furthermore, we assume weak coupling such that the center-
of-mass system and the relative coordinates are initially uncorrelated. Therefore we
have

ρT(0) ≈ ρ(0)⊗ ρrel, (3.9)

with ρ(0) the initial center-of-mass density matrix, and ρrel the density matrix of the
environment.

Since the number of particles is fixed to N , we should work in principle in the canonical
ensemble. In order to avoid the difficulty to deal with a fixed number of fermions, we
can use the grand-canonical ensemble1 and then

ρrel =
e−β(Hrel−µN)

Ξ
, (3.10)

where µ is the chemical potential of the electron gas, and where the grand-canonical
partition function is

Ξ = Trrel

[
e−β(Hrel−µN)

]
=
∏
α

[
1 + e−β(εα−µ)

]
. (3.11)

We have defined the inverse temperature as β = (kBT )−1, kB being the Boltzmann
constant. An implicit assumption in this analysis is that the electronic environment is
effectively coupled to a heat reservoir that ensures its thermalization.

As a consequence of the structure of the coupling Hc and of the assumption of an
uncorrelated initial condition (3.9), the first term on the r.h.s. of (3.8) vanishes. Indeed,
by inserting (2.35) and (3.9) we find

Trrel

[
H̃c(t), ρ(0)⊗ ρrel

]
= Trrel [Hc, ρ(0)⊗ ρrel] (3.12a)

= Λ
[
b† + b, ρ(0)

]∑
αβ

dαβTrrel

(
ρrelc

†
αcβ
)
. (3.12b)

1This approximation is valid in the thermodynamic limit (N � 1), where the canonical and grand-
canonical ensembles are equivalent [83]. Unlike in the problem of persistent currents in mesoscopic
rings [1], nothing subtle will appear with this approximation since we will deal with properties which
depend mainly on the smooth density of states (see Appendix B).
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To obtain (3.12a), we have used the cyclic invariance of the trace. Now, the trace over the
bath coordinates in (3.12b) is only nonvanishing if α = β, and since dαα = 0 because of
the dipole selection rules implicit in (2.36),2 the first term on the r.h.s. of (3.8) vanishes.
We therefore have

˙̃ρ(t) = − 1

~2

∫ t

0

dsTrrel

[
H̃c(t),

[
H̃c(s), ρ̃T(s)

]]
(3.13)

for the time evolution of the center-of-mass reduced density matrix.
An approximation that is usually done is to assume the weak coupling regime [82]: The

perturbationHc does not change significantly the environment, and therefore the relative
coordinates remain in the equilibrium state ρrel during the time evolution of the center of
mass. This assumption does not allow to describe the energy relaxation of the electronic
heat bath to the phonon heat bath. However, an extension of the present calculation to
the case of a time-dependent temperature which takes into account the above-mentioned
relaxation process could be possible. Furthermore, we neglect the correlations between
the system and the heat bath. Indeed, we assume that those correlations vanish on a
timescale τc which is much smaller than the time t at which we consider the evolution
of the system, τc being the correlation time. Since we disregard the dynamics of the
center-of-mass system on the timescale of τc, we have

ρ̃T(t) ≈ ρ̃(t)⊗ ρrel, (3.14)

and thus

˙̃ρ(t) ' − 1

~2

∫ t

0

dsTrrel

[
H̃c(t),

[
H̃c(s), ρ̃(s)⊗ ρrel

]]
. (3.15)

Calculation of the correlator

In order to proceed with the evaluation of the correlator appearing in the integrand of
(3.15), we now write explicitly the time dependence contained in the interaction picture
of Hc as defined in (3.4).3 To this end, we insert (2.35) into (3.4) and arrive at

H̃c(t) = Λ
[
b̃†(t) + b̃(t)

]∑
αβ

dαβ c̃
†
α(t)c̃β(t). (3.16)

The time evolution of any time-independent operator O in the interaction picture is
given by

˙̃O(t) =
i

~
eiH0t/~ [H0, O] e−iH0t/~. (3.17)

For the fermionic operator c̃α, we thus have

˙̃cα(t) =
i

~
eiH0t/~ [Hrel, cα] e−iH0t/~. (3.18)

2Those dipole selection rules will appear in (4.10) given in Chapter 4.
3By “correlator”, we mean the trace over the environment of the double commutator appearing on

the r.h.s. of (3.15).
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3.1 Reduced density-matrix description of the electronic center of mass

Using (2.31), [Hrel, cα] = −δαβcα, and the solution of (3.18) reads

c̃α(t) = cαe−iωαt (3.19a)

with ωα = εα/~. Likewise,
c̃†α(t) = c†αeiωαt. (3.19b)

For the bosonic operators b̃ and b̃†, a similar derivation yields

b̃(t) = be−iω̃Mt, (3.20a)

b̃†(t) = b†eiω̃Mt. (3.20b)

With those results, we thus arrive to the following expression for the correlator of
(3.15):

Trrel

[
H̃c(t),

[
H̃c(s), ρ̃(s)⊗ ρrel

]]
= (3.21)

Λ2
∑
αβγδ

dαβdγδe
i(ωαβs+ωγδt)

{[
b̃†(t) + b̃(t),

(
b̃†(s) + b̃(s)

)
ρ̃(s)

]
Trrel

(
ρrelc

†
γcδc

†
αcβ
)

−
[
b̃†(t) + b̃(t), ρ̃(s)

(
b̃†(s) + b̃(s)

)]
Trrel

(
ρrelc

†
αcβc

†
γcδ
)}

,

where ωαβ = ωα − ωβ. The two traces of the fermionic operators are given by

Trrel

(
ρrelc

†
γcδc

†
αcβ
)

= δαβδγδf(εα)f(εγ) + δαδδβγ [1− f(εα)] f(εβ), (3.22a)

Trrel

(
ρrelc

†
αcβc

†
γcδ
)

= δαβδγδf(εα)f(εγ) + δαδδβγf(εα) [1− f(εβ)] , (3.22b)

where

f(ε) =
1

eβ(ε−µ) + 1
(3.23)

is the Fermi-Dirac distribution. As it has already been mentioned, the dipole matrix
elements satisfy dαα = 0, and with (3.22), we obtain for (3.21)

Trrel

[
H̃c(t),

[
H̃c(s), ρ̃(s)⊗ ρrel

]]
= C(s− t)

[
b̃†(t) + b̃(t),

(
b̃†(s) + b̃(s)

)
ρ̃(s)

]
− C(t− s)

[
b̃†(t) + b̃(t), ρ̃(s)

(
b̃†(s) + b̃(s)

)]
. (3.24)

In the above equation, we have defined the correlation function of the bath as

C(τ) =
∑
αβ

[1− f(εα)] f(εβ) |Λdαβ|2 eiωαβτ . (3.25)

It contains the complete information on the time evolution of the relative-coordinate
degrees of freedom. It can be shown [82] that the real part of C(τ) describes the dynamics
of the fluctuations of the environment, and that the imaginary part is related to a linear
susceptibility.

Inserting the result of (3.24) into (3.15), we then arrive at

˙̃ρ(t) = − 1

~2

∫ t

0

dτ
{
C∗(τ)

[
b̃†(t) + b̃(t),

(
b̃†(t− τ) + b̃(t− τ)

)
ρ̃(t− τ)

]
− C(τ)

[
b̃†(t) + b̃(t), ρ̃(t− τ)

(
b̃†(t− τ) + b̃(t− τ)

)]}
. (3.26)
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Markovian approximation and perturbative approach

The correlation function (3.25) is a superposition of exponentials oscillating at the eigen-
frequencies ωαβ of the heat bath. For not too small nanoparticles, the electronic environ-
ment described by the Hamiltonian (2.31) contains a large number of degrees of freedom,
and its spectrum is therefore a quasi-continuum. Thus, the exponentials in (3.25) inter-
fere in a destructive fashion very rapidly. Therefore, we can assume that the correlation
function C(τ) decreases as a function of τ on a very short timescale τc, the correlation
time. For τ > τc, C(τ) ≈ 0. This constitutes the Markovian approximation [82, 84].
This allows to replace the upper bound t of the integral in (3.26) by ∞. This implies
that we consider the evolution of the center-of-mass system on a timescale t� τc.

4

Furthermore, since the coupling between the center-of-mass and the relative-coordinate
system is weak, and since the r.h.s. of (3.26) is a second-order term in the coupling Hamil-
tonian Hc, it is reasonable to neglect the evolution of ρ̃ between t− τ and t. Taking into
account this evolution would imply that we actually regard the evolution of the system
to a higher order in perturbation theory [82]. Thus we can replace in (3.26) ρ̃(t− τ) by
ρ̃(t).

With the Markovian approximation and the perturbative expansion to second order in
the coupling Hamiltonian, we then obtain for the evolution of the center-of-mass reduced
density matrix (in the interaction picture)

˙̃ρ(t) ≈ − 1

~2

∫ ∞

0

dτ
{
C∗(τ)

[
b̃†(t) + b̃(t),

(
b̃†(t− τ) + b̃(t− τ)

)
ρ̃(t)

]
− C(τ)

[
b̃†(t) + b̃(t), ρ̃(t)

(
b̃†(t− τ) + b̃(t− τ)

)]}
. (3.27)

Within the Markovian approximation, there is no memory effect on a first approximation
in the system we are studying.5 Together with the weak coupling assumption, it yields a
time evolution described by (3.27) which is tractable analytically and provides physical
insight into the relaxation process of the surface plasmon excitation.

Making explicit the time dependence of the bosonic operators (3.20) in (3.27), we

4Note that an explicit evaluation of the correlation function (3.25) could be done either numerically
from the knowledge of the single-particle eigenenergies, or analytically by means of the semiclassical
expansions that we develop in the remainder of this thesis. As we will see, the Markovian approxi-
mation yields valuable results, notably for the surface plasmon linewidth. Thus we can expect this
assumption to be reasonable.

5However, memory effects on the electron dynamics in metallic nanoparticles have been lately studied
numerically, and seem to broaden the surface plasmon resonance [85].
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3.1 Reduced density-matrix description of the electronic center of mass

obtain

˙̃ρ(t) = − 1

~2

∫ ∞

0

dτ

{
C∗(τ)

[ [
b†, b̃(−τ)ρ̃(t)

]
+
[
b, b̃†(−τ)ρ̃(t)

]
(3.28)

+ e2iω̃Mt
[
b†, b̃†(−τ)ρ̃(t)

]
+ e−2iω̃Mt

[
b, b̃(−τ)ρ̃(t)

] ]

−C(τ)

[ [
b†, ρ̃(t)b̃(−τ)

]
+
[
b, ρ̃(t)b̃†(−τ)

]
+ e2iω̃Mt

[
b†, ρ̃(t)b̃†(−τ)

]
+ e−2iω̃Mt

[
b, ρ̃(t)b̃(−τ)

] ]}
.

In the above expression, the terms proportional to e±2iω̃Mt are highly oscillating ones
as a function of t. Thus, once integrated over t to obtain ρ̃(t), those contributions are
almost vanishing and will be neglected in the following. This is the so-called rotating
wave approximation [82,84]. With the expression (3.25) of the correlation function C(τ),
we then obtain

˙̃ρ(t) '− 1

~2

∑
αβ

[1− f(εα)] f(εβ) |Λdαβ|2
∫ ∞

0

dτ
{

e−i(ωαβ−ω̃M)τ
[
b†, bρ̃(t)

]
(3.29)

+ e−i(ωαβ+ω̃M)τ
[
b, b†ρ̃(t)

]
− ei(ωαβ+ω̃M)τ

[
b†, ρ̃(t)b

]
− ei(ωαβ−ω̃M)τ

[
b, ρ̃(t)b†

] }
.

Now, using ∫ ∞

0

dτ e±iΩτ = ±iP 1

Ω
+ πδ(Ω), (3.30)

where P denotes the Cauchy principal value, we obtain by rearranging the commutators
in (3.29)

˙̃ρ(t) = iδ
[
b†b, ρ̃(t)

]
− γ−

2

[
b†bρ̃(t) + ρ̃(t)b†b− 2bρ̃(t)b†

]
− γ+

2

[
bb†ρ̃(t) + ρ̃(t)bb† − 2b†ρ̃(t)b

]
(3.31)

with

γ± =
2π

~2

∑
αβ

[1− f(εα)] f(εβ) |Λdαβ|2 δ (ω̃M ± ωαβ) (3.32)

and

δ =
2

~2
P
∑
αβ

[1− f(εα)] f(εβ) |Λdαβ|2
ωαβ

ω2
αβ − ω̃2

M

. (3.33)

Coming back to the Schrödinger picture, we finally obtain the master equation for
the reduced density matrix of the center-of-mass degree of freedom in absence of the
external driving field

ρ̇(t) = −iωsp

[
b†b, ρ(t)

]
− γ−

2

[
b†bρ(t) + ρ(t)b†b− 2bρ(t)b†

]
− γ+

2

[
bb†ρ(t) + ρ(t)bb† − 2b†ρ(t)b

]
, (3.34)
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where
ωsp = ω̃M − δ (3.35)

is the renormalized surface plasmon frequency.
Writing (3.34) in the basis of harmonic oscillator states |n〉, we have for the diagonal

part of the center-of-mass density matrix

ρ̇nn = −nγ−ρnn − (n+ 1)γ+ρn+1,n+1 + nγ+ρn−1,n−1 + (n+ 1)γ−ρn+1,n+1. (3.36)

If the state |n〉 is occupied with a certain probability ρnn, it decays to the state |n− 1〉
with the rate nγ− and raises to the state |n + 1〉 with the rate (n + 1)γ+. In the mean
time, the probability ρnn is increased by transitions from the states |n− 1〉 and |n+ 1〉
with rates nγ+ and (n+ 1)γ−, respectively.

Physical meaning of γ+, γ−, and δ

As we show here, the expressions of γ±, and of δ entering (3.34) have simple physical
interpretations: γ+ and γ− are related to the lifetime of the nth excited state of the
harmonic oscillator center-of-mass system, while δ is the frequency shift due to the
interaction of the system with the electronic environment.

When the displacement of the center of mass is much smaller than the nanoparticle
size, it is possible to linearize the coupling Hamiltonian as it was done in Chapter 2. The
weak coupling regime allows to treat Hc as a perturbation to the uncoupled Hamiltonian
Hcm +Hrel. Assuming that initially the center of mass is in its nth excited state |n〉, two
processes limit the lifetime of |n〉: (i) the decay into the lower state |n−1〉 with creation
of a particle-hole pair, and (ii) the excitation to the higher state |n + 1〉 of the center
of mass caused by the annihilation of a particle-hole pair (see Fig. 3.1). Obviously, this
last process is only possible at finite temperatures. Then, Fermi’s golden rule [53] yields
the linewidth

γn =
2π

~
∑
m

Frel,Irel

PIrel |〈m,Frel|Hc|n, Irel〉|2 δ ((n−m)~ω̃M + εIrel − εFrel
) (3.37)

for the collective state |n〉. It is related to the lifetime of the center-of-mass state |n〉
through τn = 1/γn. In the golden rule, |m〉 and |Frel〉 are the final states of center-of-
mass and relative coordinates, of energy m~ω̃M and εFrel

, respectively. The probability
of finding the initial state |Irel〉 occupied is given in the grand-canonical ensemble by the
matrix element

PIrel = 〈Irel|ρrel|Irel〉 (3.38)

of the equilibrium density matrix at the temperature T defined in (3.10). Introducing
the expression (2.35) of the coupling Hamiltonian, we obtain

γn = nγ− + (n+ 1)γ+, (3.39)

where γ± are defined in (3.32). For the linewidth of the surface plasmon excitation,
which is the first excited state of the center-of-mass system (n = 1), we thus obtain

γ1 ≡ γ = γ− + 2γ+. (3.40)
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Resonant processes Antiresonant processes

!ω̃
M

!ω̃
M

|n〉

|n + 1〉

|n− 1〉

|αβ〉

|αβ〉

|αβ〉

|αβ〉

(i)

(ii)

(iii)

(iv)

Figure 3.1: The four processes contributing to the linewidth γn of the nth center-of-mass
state and to the energy shift δ, as discussed in the text. In the figure, |αβ〉
stands for a particle-hole pair.

This very important and experimentally relevant quantity will be evaluated in Chapter
4. The first term on the r.h.s. in (3.40) is the rate associated with the spontaneous decay
of a plasmon, while the second one is the rate for a plasmon excitation by the thermal
environment. The latter mechanism is suppressed at zero temperature.

In the absence of the coupling Hc, the energy of the nth state of the center-of-mass
system is given by the eigenenergies E (0)

n = n~ω̃M of Hcm defined in (2.30). The pres-
ence of the coupling Hamiltonian (2.35) perturbs the eigenstates of Hcm. The leading

contribution to the resulting shift of the eigenenergies E (0)
n is determined using pertur-

bation theory in Hc. While the first order does not contribute due to the selection rules
contained in the coupling (2.35), there are four second-order processes involving virtual
particle-hole pairs. In addition to the two resonant processes (i) and (ii) mentioned
above, one has to take into account (iii) that a plasmon can decay by destroying a
particle-hole pair, and (iv) that a plasmon can be excited to a higher collective state by
creating a particle-hole pair (see Fig. 3.1). Those two latter processes are antiresonant
ones. Taking into account all four mechanisms, to second order in the coupling we obtain
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the perturbed energy

E (2)
n = n~ω̃M +

∑
m

Frel,Irel

PIrel

|〈m,Frel|Hc|n, Irel〉|2

(n−m)~ω̃M + εIrel − εFrel

. (3.41)

Using (2.35) to replace Hc in the preceding expression, we obtain

E (2)
n = n~ω̃M − n~δ− − (n+ 1)~δ+, (3.42)

where

δ± =
1

~2
P
∑
αβ

[1− f(εα)] f(εβ)
|Λdαβ|2

ωαβ ± ω̃M

. (3.43)

Thus, the energy difference between two adjacent center-of-mass states |n〉 and |n + 1〉
is independent of n, and is given by

~ωsp = E (2)
n+1 − E (2)

n = ~ω̃M − ~δ, (3.44)

where δ = δ+ + δ− is defined in (3.33). We thus recover (3.35), and the electronic
environment leads to a shift of the harmonic-oscillator frequency as compared to the
unperturbed case. As we will see in Chapter 5, the shift δ is positive, and thus we
have an additional redshift of the surface plasmon frequency compared to the redshift
induced by the spill-out effect which yields the frequency ω̃M given in (1.7). This redshift
of the surface plasmon frequency induced by the electronic environment is analogous to
the Lamb shift known in atomic physics [82, 84, 86, 87]. If an atom is subject to an
electromagnetic field, the interaction with the reservoir of photons induces a shift of its
resonance frequency. This effect comes in addition to the hyperfine structure of the atom,
and explains for instance the fact that in the hydrogen atom, the 2p1/2 state is slightly
lower in energy than the 2s1/2 state, resulting in a slight shift of the corresponding
spectral line. In our case, the shift δ is induced by the electronic environment which
acts on the center-of-mass system.

3.1.2 Effect of the external driving field

In this section, we consider the role of the external driving field whose interaction with
the center-of-mass coordinate is described by the time-dependent Hamiltonian HF(t)
(2.40). In a first step, we neglect the coupling Hamiltonian Hc. Thus, we do not have
any damping mechanism of the surface plasmon excitation, and also no renormalization
of the harmonic-oscillator frequency (3.35). In this case, the time-evolution of the density
matrix of the whole system is given by

ρ̇T(t) = − i

~
[Hcm +Hrel +HF(t), ρT(t)] . (3.45)

In the absence of the coupling Hc, the density matrix of the center-of-mass and of the
relative-coordinate system are uncoupled, such that ρT(t) = ρ(t)⊗ ρrel. Tracing out the
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relative coordinates, we thus arrive at

ρ̇(t) = − i

~
[Hcm +HF(t), ρ(t)] . (3.46)

Expressing Hcm and HF(t) according to (2.30) and (2.40), respectively, we obtain

ρ̇(t) = −iω̃M

[
b†b, ρ(t)

]
− iΩR cos (ωLt)

[
b† + b, ρ(t)

]
(3.47)

which describes the time evolution of a harmonic oscillator driven by an external mono-
chromatic field. The Rabi frequency ΩR is defined in (2.41).

Now, assuming that the driving does not influence the dissipation of the collective
surface plasmon excitation, we can add the contributions from Hc, i.e., the dissipative
part of the reduced density matrix described by the master equation (3.34), and from
HF(t) (see Eq. 3.47) independently [82]. This is justified in the following way. The
damping rates γ± and the shift δ are due to the interaction between the center of mass
and the relative coordinates via the coupling Hc, and not to the interaction with a
reservoir of photons. For the nanoparticles we consider, the radiative damping can be
neglected compared to the Landau damping. Thus, we can conclude that the external
electromagnetic field does not influence the linewidths and shifts of the center-of-mass
states.

Finally, the reduced density matrix of the center-of-mass system is governed by the
master equation

ρ̇(t) =− iωsp

[
b†b, ρ(t)

]
− iΩR cos (ωLt)

[
b† + b, ρ(t)

]
− γ−

2

[
b†bρ(t) + ρ(t)b†b− 2bρ(t)b†

]
− γ+

2

[
bb†ρ(t) + ρ(t)bb† − 2b†ρ(t)b

]
, (3.48)

which is nothing but the well-known master equation for a driven damped harmonic
oscillator [82, 84]. Another way to find this master equation would have been to use
the optical Bloch equation (3.47), together with the Lindblad theory in order to include
the natural damping of the system [88, 89]. Furthermore, we could have used second
order perturbation theory to introduce the environment-induced shift of the surface
plasmon frequency, as presented above. However, the master-equation method derived
in this section provides a self-contained approach which allows to render explicit all the
approximation of this simple model.

The matrix representation in the harmonic oscillator basis of (3.48) is given by

ρ̇nm(t) = −iωsp(n−m)ρnm(t)− γ

[
n+m

2
ρnm(t)−

√
(n+ 1)(m+ 1)ρn+1,m+1(t)

]
− iΩR cos (ωLt)

[√
nρn−1,m(t) +

√
n+ 1ρn+1,m(t)−

√
mρn,m−1(t)−

√
m+ 1ρn,m+1(t)

]
.

(3.49)

In the above equation, we have neglected γ+ as compared to γ− and noted γ = γ−.
Indeed, it is easy to show from (3.32) that the rate γ+ is related to γ− through the
detailed-balance relation

γ+ = e−β~ω̃Mγ−. (3.50)
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We have γ+ � γ− for temperatures up to a few thousand degrees since ~ω̃M is of the
order of several eV.

3.2 Two-level system approach

We now describe more precisely the time evolution of the center-of-mass degree of free-
dom under the influence of the external driving field. To this end, we will solve (3.49)
under the following assumption: The center-of-mass system which is normally a har-
monic oscillator described by the Hamiltonian (2.30) can be approximated by a two-
level system. The applicability of such an approximation is discussed in Appendix A.
The reasons for this simplifying hypothesis are the following: Except for a very strong
driving field, the harmonic oscillator states higher than the first excited state are not
significantly populated. Furthermore, the detuning between the frequency of the laser
and the resonance frequency of the system plays in favor of the two-level description (for
more details, see Appendix A). Moreover, there exists additional damping mechanisms
which are not included in our model, like the ionization of the double plasmon state
(see Chapter 7), or the radiation damping [11]. Then, the second collective level (the
double plasmon) has a width which is significantly larger than the one of the simple
surface plasmon, and it is then justified to neglect all excited levels but the first one. In
addition to this, the existence of the double-plasmon state has not been clearly identified
experimentally, even though indirect observations of such a state have been reported in
the experiments of Refs. 72 and 73 on charged sodium clusters in vacuum. In the case of
pump-probe experiments on noble-metal nanoparticles embedded in a dielectric medium,
interactions with the surrounding matrix provide further decay channels (e.g., via cou-
pling to phonons, localized states, surface states, etc.) For these reasons we will here
restrict ourselves to the study of the two-level system.

Writing explicitly the master equation (3.49) for the two collective states |0〉 and |1〉
yields the system

ρ̇00 = −iΩR cos (ωLt) (ρ10 − ρ01) + γρ11, (3.51a)

ρ̇11 = iΩR cos (ωLt) (ρ10 − ρ01)− γρ11, (3.51b)

ρ̇01 = iωspρ01 − iΩR cos (ωLt) (ρ11 − ρ00)−
γ

2
ρ01, (3.51c)

with the conditions ρ00 + ρ11 = 1 and ρ∗10 = ρ01. Introducing the new variables

ρnm = ρ̂nme−iωL(n−m)t (3.52)

and keeping only the terms which significantly contribute close to the resonance ωL ≈ ωsp
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(rotating wave approximation [82]), one obtains

˙̂ρ00 = −i
ΩR

2
(ρ̂10 − ρ̂01) + γρ̂11, (3.53a)

˙̂ρ11 = i
ΩR

2
(ρ̂10 − ρ̂01)− γρ̂11, (3.53b)

˙̂ρ01 = −iδLρ̂01 − i
ΩR

2
(ρ̂11 − ρ̂00)−

γ

2
ρ̂01, (3.53c)

where δL = ωL − ωsp is the detuning between the laser and the resonance frequency.
Introducing a Bloch vector X = ueu + vev + wew with components [82]

u =
1

2
(ρ̂01 + ρ̂10) , (3.54a)

v =
1

2i
(ρ̂01 − ρ̂10) , (3.54b)

w =
1

2
(ρ̂11 − ρ̂00) , (3.54c)

the Bloch equations (3.53) take the form

Ẋ = MX− γ

2
ew, (3.55)

where

M =

−γ/2 δL 0
−δL −γ/2 −ΩR

0 ΩR −γ

 . (3.56)

The general solution of (3.55) reads

X(t) =
3∑

i=1

Aie
λitxi + Xst, (3.57)

where xi is the eigenvector associated to the eigenvalue λi of the matrix M, while the
Ai’s are constants of integration determined by the initial conditions. Xst = usteu +
vstev + wstew is the stationary solution of (3.55) given by Xst = (γ/2)M−1ew, i.e.,

ust =

√
2s∆

1 + s2 + 4∆2
, (3.58a)

vst =

√
s/2

1 + s2 + 4∆2
, (3.58b)

wst =
s/2

1 + s2 + 4∆2
− 1

2
. (3.58c)

We have defined the so-called saturation parameter

s = 2

(
ΩR

γ

)2

(3.59)
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Figure 3.2: Stationary occupation probability ρst
11 according to (3.61b) as a function of

the saturation parameter s for increasing values of the detuning ∆ = δL/γ.

which is a measure of the ratio of the field intensity over damping (see the definition of
the Rabi frequency, Eq. 2.41), and the scaled detuning

∆ =
δL
γ
. (3.60)

With (3.54) and (3.52), this yields the stationary solutions

ρst
00 =

1 + s/2 + 4∆2

1 + s+ 4∆2
, (3.61a)

ρst
11 =

s/2

1 + s+ 4∆2
, (3.61b)

ρst
01(t) = eiωLt (2∆ + i)

√
s/2

1 + s+ 4∆2
. (3.61c)

For s� 1, both populations ρst
00 and ρst

11 tend to 1/2. In this situation, the limitation
to two levels is of course questionable. A sufficiently intense excitation thus yields an
equal occupation probability of the two collective levels, and hence the name “saturation
parameter” for s. In Fig. 3.2, we show the stationary population of the excited state
ρst

11 as a function of the saturation parameter s for various values of the detuning ∆.
For a fixed field intensity, i.e., a fixed saturation parameter, ρst

11 decreases as a function
of the detuning. Here we should mention that we cannot pretend to correctly describe
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Figure 3.3: Population of the excited state ρ11 (3.62) as a function of γt for different
values of the saturation parameter s.

the dynamical behavior of the center-of-mass system for a large detuning parameter δL.
Indeed, since we work in the rotating wave approximation, our treatment remains valid
for ωL near the resonance frequency ωsp. Thus, the results presented for δL ∼ 10γ have
to be taken with precaution.

3.2.1 Analytical solutions of the Bloch equations without detuning

When the laser field is at resonance with the collective frequency ωsp, i.e., there is no
detuning (δL = 0), it is possible to solve (3.55) analytically. Assuming that the system
is initially at rest, i.e., ρ00(0) = 1, the transient solutions are given by

ρ11(t) =
s/2

1 + s

{
1− e−3γt/4

[
cosh

(
γt

4

√
1− 8s

)
+

3√
1− 8s

sinh

(
γt

4

√
1− 8s

)]}
(3.62)

for the population of the excited state, and

ρ01(t) = i eiωspt

√
s/2

1 + s

{
1− e−3γt/4

[
cosh

(
γt

4

√
1− 8s

)
+

1− 2s√
1− 8s

sinh

(
γt

4

√
1− 8s

)]}
(3.63)

for the coherences. For γt� 1, (3.62) and (3.63) tend to the stationary solutions (3.61b)
and (3.61c), respectively (for ∆ = 0).
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Figure 3.4: Real part of the off-diagonal density matrix element ρ01 according to (3.63),
proportional to the mean center-of-mass coordinate 〈Z〉, for increasing val-
ues of the saturation parameter s. In the figure, ωsp/γ = 30.

In Fig. 3.3, we show the population of the excited state ρ11 as a function of time,
for increasing values of the saturation parameter. For s < 1/8, ρ11 smoothly increases
as a function of time to reach the stationary value given in (3.61b) (for ∆ = 0). For
s � 1, the center-of-mass system experiences damped Rabi oscillations and reaches
the steady state on a timescale ∼ γ−1. Note that if the laser field is turned off
after a certain time τ , the population of the excited state relaxes to zero accord-
ing to ρ11(t) = ρ11(τ) exp [−γ(t− τ)], while the coherence of the system decreases as
ρ01(t) = ρ01(τ) exp [−(γ/2− iωsp)(t− τ)].

In Fig. 3.4, we show the real part of (3.63) which is proportional to 〈Z〉 = Trcm (ρZ),
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the mean center-of-mass coordinate (or mean dipole). For s� 1,

<ρ01(t) ' − sin (ωspt)

√
s

2

(
1− e−γt/2

)
, (3.64)

and the dipole oscillates regularly, while its amplitude increases smoothly as a function
of time. In the case of strong saturation parameter s� 1,

<ρ01(t) ' −
sin (ωspt)√

2s

{
1− e−3γt/4

[
cos

(
γt

√
s

2

)
−
√
s

2
sin

(
γt

√
s

2

)]}
, (3.65)

and an irregular pattern appears for times shorter than a few γ−1 (see Fig. 3.4). For
0 6 s 6 1, the amplitude of 〈Z〉 increases with s, while for s > 1, it goes to zero, as it
can be easily seen on the stationary solution (3.61c). Thus, for strong laser excitation,
the mean dipole vanishes.

We conclude this section with the following remark: During the time the laser field is
applied, one could measure the emission spectrum of the ensemble of nanoparticles. In
the limit of an intense laser beam, i.e., of a large saturation parameter, this fluorescent
spectrum is [90]

S(ω, r) =
I(r)

4π

{
γ/2

(ω − ωsp)2 + (γ/2)2
+

1

2

3γ/4

[ω − (ωsp + ΩR)]2 + (3γ/4)2

+
1

2

3γ/4

[ω − (ωsp − ΩR)]2 + (3γ/4)2

}
, (3.66)

where

I(r) =

∣∣∣∣ω2
sp

c2r

(
D× r

r

)
× r

r

∣∣∣∣2 , (3.67)

D = −eNR being the dipole moment of the electronic center of mass. We therefore
have a fluorescence spectrum consisting of three Lorentzians, a central peak at ω =
ωsp with a width γ, and two sidebands at ω − (ωsp ± ΩR) with a width 3γ/2 (see
Fig. 3.5). The fluorescence spectrum is therefore a good experimental check of a large
saturation parameter s as for example in pump-probe experiments [63, 64], since the
spectral separation between the central peak and the sidebands provides a measure of
the Rabi frequency, while the width of the peaks provides γ. One should scan to this
end with a photodetector a region of several eV in order to find the satellites.
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3.2.2 Numerical solutions of the Bloch equations in presence of
detuning

When we have a detuning between the frequency of the laser field ωL and the resonance
frequency ωsp, i.e., δL 6= 0, it is no longer possible to diagonalize the matrix M of (3.56)
analytically. However, in order to understand the role of the detuning on the surface
plasmon excitation, we can solve (3.55) numerically. The result for the population ρ11

of the collective excited states is presented in Fig. 3.6 for different values of the scaled
detuning ∆ defined in (3.60). We see that as the detuning increases, the probability to
find the first excited state of the center-of-mass system occupied decreases, consistently
with the behavior of the stationary solution (3.61b) (see also Fig. 3.2).

For the coherences, the numerical calculations show that for a large saturation param-
eter, the amplitude of the mean center-of-mass coordinate 〈Z〉 ∼ <ρ01 increases with
the detuning, a result which might be surprising. This feature can be explained in the
following way. According to the stationary solution (3.61c), we have

<
[
ρst

01(t)
]

=

√
s/2

1 + s+ 4∆2
[2∆ cos (ωLt)− i sin (ωLt)] . (3.68)
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The maxima of this equation as a function of time are located at

tmax = − 1

ωL

arctan

(
1

2∆

)
+
nπ

ωL

, (3.69)

where n is an integer greater than arctan (1/2∆)/π. Thus, the amplitude of the center-
of-mass coordinate is proportional to

∣∣< [ρst
01(tmax)

]∣∣ =
2
√
s/2

1 + s+ 4∆2

√
∆2 +

1

4
. (3.70)

This shows that for s < 1, the amplitude of the center-of-mass coordinate decreases with
∆, while for s > 1, it increases until it reaches the critical value

√
(s− 1)/2 and then

decreases as a function of ∆ (see Fig. 3.7).

3.2.3 Estimation of the saturation parameter in typical experiments

The study of the preceding sections shows that the saturation parameter of (3.59) is the
crucial parameter which determines the dynamics of the surface plasmon excitation in
presence of an external driving field.

In typical photoabsorption experiments [10], a weak laser field excites an ensemble of
nanoparticles. If the power of the laser is about several mW, the resulting electric field
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is of the order of 103 Vm−1, and thus the Rabi frequency is no more than several µeV
according to (2.41). Since in typical nanoparticles, the surface plasmon linewidth is of the
order of less than 1 eV, the resulting saturation parameter s� 1. The power absorbed
by a nanoparticle is Pabs = σρ00I − σρ11I, where σ is the absorption cross section of
the nanoparticle and I the intensity of the driving field. The second term in the above
expression accounts for the stimulated emission of photons [82]. With ρ00 = 1− ρ11, we
have Pabs = σ(1−2ρ11)I. Since the saturation parameter is proportional to Ω2

R, we have
according to (2.41) s ∼ E2

0 ∼ I, and thus for small s, ρst
11 ∼ I (see Eq. 3.61b). Therefore,

it is only for small values of ρ11 � ρ00 that we are in the linear response regime, i.e.,
Pabs ∝ I.

On the contrary, in pump-probe experiments, the nanoparticles are excited by an
ultrashort pump laser pulse which is extremely intense. As a generic example, we con-
sider the experiments of Ref. 63 on silver nanoparticles which have an average radius
a = 3.25 nm. These nanoparticles present a broad absorption spectrum around the res-
onance frequency ~ωsp = 2.85 eV. According to TDLDA calculations, the width of this
resonance is approximately ~γ = 50 meV (see Chapter 8). The estimation of the Rabi
frequency (2.41) requires the knowledge of the electrical field of the pump laser field.
The “energy density” ū being defined as the energy carried by one laser pulse divided
by the cross section of the laser beam, we have ū = E2

0cτ/8π, where c is the speed
of light, and τ the duration of the pulse (typically 100 fs). With ū = 1 Jm−2, we get
E0 = 8.7× 107 Vm−1. The Rabi frequency is therefore ~ΩR ' 0.92 eV, which results in
a very large saturation parameter s ' 600. Thus, the population of the excited state
equals that of the ground state, ρ00 = ρ11 = 1/2, and we are no longer in the linear
response regime.

3.3 Conclusion for Chapter 3

This chapter has been devoted to the study of the surface plasmon dynamics. By
means of a reduced-density-matrix formalism, we have established the master equation
describing the time evolution of the center-of-mass degree of freedom. To this end,
we have made four crucial approximations. First, we have assumed that the electronic
environment was in thermal equilibrium. This assumption does not allow us to describe
the energy relaxation of the thermal bath, e.g., to the phonon heat bath. Second, we
have assumed the weak coupling regime, i.e., the coupling Hamiltonian between the
center-of-mass system and the environment of the relative coordinates can be treated
as a perturbation to the uncoupled Hamiltonian. Third, we have neglected memory
effects and worked within the Markovian approximation. Fourth, we have incorporated
the effects of the external driving field and of the environment independently. With
those approximations, we have recovered the well-known optical Bloch equation for the
evolution of the center-of-mass density matrix.

Two quantities appear as a consequence of the coupling to the environment: the
Landau damping rate γ which yields the lifetime of the center-of-mass excited states,
and the shift δ which renormalizes the surface plasmon frequency. Those two quantities
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will be evaluated in Chapter 4 and 5, respectively.
Assuming that the center-of-mass system can be described by a two-level system,

we have solved the corresponding Bloch equations in different situations, i.e., with and
without detuning between the frequency of the external field and the surface plasmon
resonance frequency. It has appeared that the determining parameter for the dynamical
evolution of the center-of-mass degree of freedom is the so-called saturation parameter. It
is a measure of the external field intensity over the damping of the system. Increasing it,
we go from the linear response regime of typical absorption experiments to the nonlinear
regime of pump-probe setups.
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Chapter 4

Lifetime of the surface plasmon
excitation

Le temps est un grand mâıtre, il
règle bien des choses.

(Pierre Corneille, 1606-1684, in
Sertorius)

In this chapter, we evaluate the linewidth γ of the surface plasmon excitation (3.40).
We will calculate it by means of a semiclassical low-temperature expansion, and focus
on its size and temperature dependence. To this end, we introduce the function

Σ(ω) =
2π

~2

∑
αβ

[1− f(εα)] f(εβ) |Λdαβ|2 δ (ω − ωαβ) . (4.1)

In the above expression, f(ε) is the Fermi-Dirac distribution given in (3.23), Λ the
constant defined in (2.37), and dαβ are the matrix elements of (2.36). The linewidth γ
is related to Σ(ω) through

γ = Σ(ω̃M) + 2Σ(−ω̃M), (4.2)

as it can be seen from (3.32) and (3.40). It is understood that in (4.1), |ωαβ| > ωc

where ωc is some cutoff separating the restricted subspace that builds the coherent
superposition of the surface plasmon excitation from the additional subspace at high
energy (see Sec. 1.2.3). We have introduced the function Σ(ω) since it is helpful for
the evaluation of γ and will also be useful in Chapter 5 when the frequency shift of the
surface plasmon induced by the electronic environment (3.33) will be determined. The
first term on the r.h.s. in (4.2) is the rate associated with the spontaneous decay of a
plasmon [see Fig. 3.1(i)], while the second one is the rate for a plasmon excitation by the
thermal environment [see Fig. 3.1(ii)]. The expression (4.1) implies the detailed-balance
relation

Σ(−ω) = e−β~ωΣ(ω) (4.3)

which allows to write (4.2) as

γ = Σ(ω̃M)
(
1 + 2e−β~ω̃M

)
. (4.4)
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This expression shows that an excitation of the surface plasmon to a higher level is
suppressed at low temperatures because no or only few particle-hole pairs are present.

4.1 Dipole matrix element from single-particle
self-consistent states

In order to evaluate the plasmon linewidth from (4.1), we need a description of the
eigenstates |α〉 of the mean-field Hamiltonian (2.31). The TDLDA numerical calcula-
tions briefly presented in Secs. 1.2.4 and 2.2.2 inform us on the shape of the self-consistent
mean field potential V (r), as shown in Fig. 2.2. It suggests that for analytical calcula-
tions, V (r) can be approximated by a spherical well of radius a and finite height V0,

V (r) = V0Θ(r − a), (4.5)

where V0 = εF + W , εF and W being the Fermi energy and the work function of the
considered nanoparticle, respectively. The self-consistent potential of Fig. 2.2 is for an
alkaline-metal nanoparticle in vacuum, and as we will see in Chapter 8, the dielectric
constants inside and outside the cluster influence the steepness of V (r).

Because of the spherical symmetry of the problem, the one-particle wave functions

ψεlm(r) =
uεl(r)

r
Y m

l (θ, ϕ) (4.6)

decompose into radial and angular parts given by the spherical harmonics Y m
l (θ, ϕ),

where l and m are the angular momentum quantum numbers. The radial wave functions
uεl(r) satisfy the reduced Schrödinger equation[

− ~2

2me

d2

dr2
+

~2l(l + 1)

2mer2
+ V (r)

]
uεl(r) = εuεl(r) (4.7)

with the conditions uεl(0) = 0 and limr→∞ [uεl(r)/r] = 0. This yields the single-particle
eigenenergies ε in the mean-field potential V (r) of (4.5). Thus, the matrix elements
dαβ appearing in (4.1) can be separated into an angular part Amαmβ

lαlβ
and a radial part

Rlαlβ(εα, εβ),

dαβ = Amαmβ

lαlβ
Rlαlβ(εα, εβ). (4.8)

With (2.36), we have

Amαmβ

lαlβ
=

∫ π

0

dθ sin θ

∫ 2π

0

dϕY mα
lα

∗(θ, ϕ) cos (θ)Y
mβ

lβ
(θ, ϕ) (4.9)

which can be expressed in terms of Wigner-3j symbols [91] as

Amαmβ

lαlβ
= (−1)mα

√
(2lα + 1)(2lβ + 1)

(
lα lβ 1
0 0 0

)(
lα lβ 1
−mα mβ 0

)
. (4.10)
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The Wigner-3j symbols contain the dipole selection rules lα = lβ ± 1 and mα = mβ.
For the calculation of the radial part of the matrix elements dαβ, we now closely follow

the derivation of Yannouleas and Broglia [30] (see also Ref. 92). In the limit of strong
electronic confinement (V0 � εF in Eq. 4.5), the single-particle wave function vanishes
outside the nanoparticle, and we can therefore approximate the radial matrix element
(see Eq. 2.36) by

Rlαlβ(εα, εβ) '
∫ a

0

dr u∗εαlα(r) r uεβ lβ(r). (4.11)

The commutator of r with the self-consistent Hamiltonian (2.32) reads

[r,Hsc] =
i~
me

pr, (4.12)

where pr is the conjugated momentum to the variable r. Calculating the matrix element
of this commutator between two single-particle eigenstates |α〉 and |β〉 of Hsc then allows
to write

〈α|r|β〉 =
i~

me (εβ − εα)
〈α|pr|β〉. (4.13)

Now,

[pr, Hsc] = −i~
dV

dr
, (4.14)

such that

〈α|pr|β〉 = − i~
εβ − εα

〈α|dV
dr
|β〉. (4.15)

Inserting this result in (4.13), we have

〈α|r|β〉 =
~2

me (εβ − εα)2 〈α|
dV

dr
|β〉, (4.16)

and then

Rlαlβ(εα, εβ) =
~2

me (εβ − εα)2

∫ a

0

dr u∗εαlα(r)
dV

dr
uεβ lβ(r). (4.17)

With (4.5), we thus obtain

Rlαlβ(εα, εβ) =
~2

me (εβ − εα)2V0u
∗
εαlα(a)uεβ lβ(a). (4.18)

For V0 → ∞ and r 6 a, the regular solutions of (4.7) satisfying uεl(a) = 0 are given
by (see Appendix C, Sec. C.2.1)

uεl(r) =

√
2

a3/2

rjl(kr)

jl+1(ka)
, (4.19)

where jν(z) are spherical Bessel functions of the first kind [93], and k =
√

2meε/~.
We have the condition jl(ka) = 0 which yields the quantization of the single-particle
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states in the infinitely deep spherical well. Inserting the radial wave functions (4.19)
into (4.18), we thus have

Rlαlβ(εα, εβ) =
2~2

mea (εβ − εα)2V0
jlα(kαa)

jlα+1(kαa)

jlβ(kβa)

jlβ+1(kβa)
. (4.20)

Now, for r → a+, uεl(r) → 0 and V (r) = V0 → ∞, such that the radial Schrödinger
equation (4.7) takes the form(

− ~2

2me

d2

dr2
+ V0

)
uεl(r) = 0. (4.21)

With k0 =
√

2meV0/~, the physical solution of this equation is

uεl(r → a+) ∼ e−k0r. (4.22)

Then,
duεl

dr

∣∣∣∣
r→a+

= −k0uεl(r → a+), (4.23)

and imposing the continuity of the radial wave function and of its derivative with respect
to r at r = a, we arrive to

duεl

dr

∣∣∣∣
r→a−

= −k0uεl(r → a−). (4.24)

Then, we obtain with (4.19)

lim
V0→∞

[√
2meV0

~
jl(ka)

]
= − djl(kr)

dr

∣∣∣∣
r=a

= −k djl(η)

dη

∣∣∣∣
η=ka

. (4.25)

Using the recurrence relation of the spherical Bessel functions [93]

l

η
jl(η)−

djl
dη

= jl+1(η) (4.26)

and the fact that jl(η) = jl(ka) = 0, we finally arrive to the following expression for the
radial matrix elements [30,92]:

Rlαlβ(εα, εβ) =
2~2

mea

√
εαεβ

(εα − εβ)2 . (4.27)

Note that the dipole selection rule lα = lβ ± 1 appearing in the angular matrix element
(4.10) implies that εα 6= εβ, and thus (4.27) is nondivergent. Furthermore, it decreases
with increasing energy |εα − εβ| of the dipole transition |α〉 → |β〉.
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4.2 Semiclassical low-temperature expansion and
contribution to the surface plasmon linewidth with
smooth size dependence

We now use semiclassical techniques to determine the low-temperature behavior of Σ(ω).
In view of the detailed-balance relation (4.3) we can restrict ourselves to positive fre-
quencies ω.

The summations appearing in (4.1) can be replaced by integrals provided one knows
the density of states of the single-particle states in the self-consistent potential V (r).
Decomposing the density of states as a sum over its fixed angular momentum component,

%(ε) =
∞∑
l=0

+l∑
m=−l

%l(ε), (4.28)

we have with (4.8)

Σ(ω) =
4π

~

∫ ∞

~ω

dεF (ε)
∑
l,m

l′,m′

%l(ε)%l′(ε− ~ω)
[
ΛAmm′

ll′ R(ε, ε− ~ω)
]2
, (4.29)

where a factor of 2 accounts for the spin degeneracy. In the above equation, we have
introduced the notation

F (ε) = [1− f(ε)] f(ε− ~ω). (4.30)

Furthermore, we have omitted the subscripts ll′ for the radial matrix element R since
(4.27) shows that it actually does not depend on the angular quantum numbers. Per-
forming the sums over l′ and m′ with the help of the selection rules contained in the
angular part (4.10) of the dipole matrix element, namely l′ = l ± 1 and m′ = m, one
obtains

Σ(ω) =
4π

~

∫ ∞

~ω

dεF (ε) [ΛR(ε, ε− ~ω)]2

×
∑
lm

%l(ε)
[(
Amm

l,l+1

)2
%l+1(ε− ~ω) +

(
Amm

l,l−1

)2
%l−1(ε− ~ω)

]
. (4.31)

Writing explicitly the Wigner-3j symbols in (4.10), we have

(
Amm

l,l+1

)2
=

(l + 1−m)(l + 1 +m)

(2l + 1)(2l + 3)
, (4.32a)

(
Amm

l,l−1

)2
=

(l −m)(l +m)

(2l + 1)(2l − 1)
. (4.32b)
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Chapter 4 Lifetime of the surface plasmon excitation

The summation over m entering (4.31) then yields

+l∑
m=−l

(
Amm

l,l+1

)2
=
l + 1

3
, (4.33a)

+l∑
m=−l

(
Amm

l,l−1

)2
=
l

3
, (4.33b)

and we obtain for (4.31)

Σ(ω) =
4π

3~

∫ ∞

~ω

dεF (ε) [ΛR(ε, ε− ~ω)]2
∞∑
l=0

%l(ε) [(l + 1)%l+1(ε− ~ω) + l%l−1(ε− ~ω)] .

(4.34)
We now appeal to a semiclassical approximation for the two densities of states ap-

pearing in (4.34) using the Gutzwiller trace formula [94] presented in Appendix B and
adapted to the effective radial motion (see Appendix C). The l-fixed density of states is
decomposed into a smooth and an oscillating part,

%l(ε) = %0
l (ε) + %osc

l (ε), (4.35)

with

%0
l (ε) =

τl(ε)

2π~
(4.36)

and

%osc
l (ε) =

τl(ε)

π~

∞∑
r̃=1

cos

[
r̃

(
Sl(ε)

~
− 3π

2

)]
. (4.37)

The classical action of the periodic orbit at energy ε is

Sl(ε) = 2~
[√

(ka)2 − (l + 1/2)2 −
(
l +

1

2

)
arccos

(
l + 1/2

ka

)]
, (4.38)

while its period is given by

τl(ε) =
~
√

(ka)2 − (l + 1/2)2

ε
. (4.39)

We denote by r̃ the number of repetitions of the periodic orbit. Within the semiclassical
approximation, the finite height V0 of the self-consistent potential is irrelevant since the
classical trajectories at a given energy are not sensitive to the shape of the potential
above this energy. In this section, we focus on the smooth semiclassical density of
states (4.36). As we will see, it yields the dominant 1/a-dependent component of γ. In
Sec. 4.3, we will show that the oscillating component of the density of states gives rise
to a nonmonotonic behavior of the surface plasmon linewidth as a function of the size of
the nanoparticle. This feature will be shown to be only relevant for small cluster sizes.
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4.2 Semiclassical low-temperature expansion

Inserting the smooth part (4.36) of the density of states into (4.34), and assuming
l� 1, consistently with the fact that we are interested in leading order contributions in
~, we obtain the smooth contribution to Σ(ω),

Σ0(ω) =
2

3π~

∫ ∞

~ω

dε
F (ε) [ΛR(ε, ε− ~ω)]2

ε(ε− ~ω)

×
∫ lmax

0

dl l

√
2meεa2

~2
− l2

√
2me(ε− ~ω)a2

~2
− l2. (4.40)

We have approximated the sum over l by an integral and assumed l ' l±1. Furthermore,
lmax =

√
2me(ε− ~ω)a2/~2 is the maximal angular momentum quantum number allowed

at the energy ε − ~ω (see Appendix C). In the above equation, the integral over l can
be easily evaluated, and with (4.27) we get

Σ0(ω) =
3vF

8a

(
~ωM

εF

)3
εF

~ω
F(µ, ~ω). (4.41)

Here, we have introduced

F(µ, ~ω) =

∫ ∞

~ω

dε

~ω
F (ε)H

( ε

~ω

)
, (4.42)

where
H(x) = (2x− 1)

√
x(x− 1)− ln

(√
x+

√
x− 1

)
(4.43)

is a monotonically increasing function. For x close to 1, we have H(x) ' (8/3)(x−1)3/2.
The dependence on the chemical potential µ in (4.42) is via the Fermi functions appearing
in this expression.

Integrating (4.42) by parts yields

F(µ, ~ω) =

∫ ∞

~ω

dε

(
−dF

dε

)
H
( ε

~ω

)
(4.44)

with

H(x) =

∫ x

1

dx′H(x′)

=
1

6

{√
x(x− 1) [4x(x− 1) + 3]− 3(2x− 1) ln

(√
x+

√
x− 1

)}
. (4.45)

In the low-temperature limit ~ω � kBT , we get according to (4.30)

−dF

dε
≈ −β eβ(ε−µ)

[eβ(ε−µ) + 1]
2 + β

eβ(ε−~ω−µ)

[eβ(ε−~ω−µ) + 1]
2 , (4.46)

which corresponds to two peaks of opposite sign centered at ε = µ and at ε = µ+~ω (see
Fig. 4.1). It is therefore helpful to expand the function H around ε = µ and ε = µ+~ω.
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Chapter 4 Lifetime of the surface plasmon excitation

As it can be seen from Fig. 4.1, one has to distinguish between three cases: (a) When
~ω−µ & kBT , only the peak centered at ε = µ+~ω contributes to the integral of (4.44)
(Fig. 4.1a). (b) When ~ω − µ . −kBT , the two peaks contribute (Fig. 4.1b). (c) In
the special case where ~ω is in a range of order kBT around the chemical potential µ
(Fig. 4.1c), the nonanalyticity of H(x) for x = 1 has to be properly accounted for, while
the peak at ε = µ+ ~ω yields the same result as in the case (a).

In the case (a), we expand in (4.44) H around ε = µ+ ~ω and obtain with (4.46)

F(µ, ~ω) ' H
(
1 +

µ

~ω

)∫ +∞

−∞
dx

ex

(ex + 1)2 +H
(
1 +

µ

~ω

) 1

β~ω

∫ +∞

−∞
dx

xex

(ex + 1)2

+
1

2
H ′
(
1 +

µ

~ω

) 1

(β~ω)2

∫ +∞

−∞
dx

x2ex

(ex + 1)2 , (4.47)

where H ′(x) denotes the derivative of H(x). Note that the second term on the r.h.s. in
(4.47) vanishes since the integrand is an odd function of x. Evaluating the two remaining
integrals, we arrive to

F(µ, ~ω) ' H
(
1 +

µ

~ω

)
+
π2

6

(
kBT

~ω

)2

H ′
(
1 +

µ

~ω

)
. (4.48)

In the case (b) where ~ω − µ . −kBT (see Fig. 4.1b), one has to take into account the
two peaks that present the derivative of F (ε) to obtain a similar expression. Putting the
two cases (a) and (b) together, we obtain for low temperatures and for |~ω − µ| & kBT

F(µ, ~ω) ' H
(
1 +

µ

~ω

)
−H

( µ

~ω

)
Θ(µ− ~ω)

+
π2

6

(
kBT

~ω

)2 [
H ′
(
1 +

µ

~ω

)
−H ′

( µ

~ω

)
Θ (µ− ~ω)

]
. (4.49)

We now come to the special case (c) where ~ω lies in a range kBT around µ (Fig. 4.1c).
Here, we cannot linearize the functionH given in (4.45) since it is nonanalytical at x = 1.
However, we can use the behavior of H near x = 1, namely

H(x) ' 16

15
(x− 1)5/2 . (4.50)

Note that the peak at ε = µ+~ω ' 2µ contributes to F(µ, ~ω) like in the case (a) since
here, H can be linearized. Thus, for ~ω = µ, we have with (4.48)

F(µ, µ) ' H(2) +
π2

6

(
kBT

~ω

)2

H ′(2)− 16

15

∫ ∞

0

dx
exx5/2

(ex + 1)2︸ ︷︷ ︸
≈3.07

(
kBT

~ω

)5/2

. (4.51)

In order to pursue the evaluation of (4.49), we need to determine the chemical potential
µ. To this end, we employ the Sommerfeld expansion [9] to the second order in T/TF

with TF the Fermi temperature. This leads to∫ ∞

0

dε f(ε)h(ε) '
∫ εF

0

dε h(ε) + h(εF)(µ− εF) +
π2

6
h′(εF) (kBT )2 (4.52)
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Figure 4.1: Sketch of −dF/dε from (4.46) (solid line), and of the function H of (4.45)
(dashed line) as a function of ε, for (a) ~ω− µ & kBT , (b) ~ω− µ . −kBT ,
and (c) ~ω = µ.
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Chapter 4 Lifetime of the surface plasmon excitation

when h(ε) is a function that varies slowly on scales larger than kBT . The first term
on the r.h.s. of (4.52) corresponds to the zero-temperature result, while the remaining
terms are the finite-temperature corrections. Since the density of states of (4.36), once
summed over l and m yields the three-dimensional bulk density of states proportional to√
ε given in (C.28) in Appendix C, we obtain with h(ε) = %0(ε) the standard Sommerfeld

expression for the chemical potential of free fermions [9], i.e.,

µ ' εF

[
1− π2

12

(
T

TF

)2
]
. (4.53)

This expression is obtained by requiring that the number of electrons does not depend
on temperature. We thus get for (4.49)

F(µ, ~ω) '
∫ εF+~ω

max (εF,~ω)

dε

~ω
H
( ε

~ω

)
(4.54)

+
π2

6

εF

~ω

(
T

TF

)2{
εF

~ω

[
H ′
(
1 +

εF

~ω

)
−H ′

( εF

~ω

)
Θ (εF − ~ω)

]
− 1

2

[
H
(
1 +

εF

~ω

)
−H

( εF

~ω

)
Θ (εF − ~ω)

]}
.

Inserting the result (4.54) into (4.41), and using the expression (4.43) for H, we finally
obtain

Σ0(ω) =
3vF

4a

(ωM

ω

)3

g

(
εF

~ω
,
T

TF

)
(4.55)

with

g

(
x,

T

TF

)
= g0(x) + g2(x)

(
T

TF

)2

, (4.56)

where [29,30]

g0(x) =
1

12x2

{√
x(x+ 1)

(
4x(x+ 1) + 3

)
− 3(2x+ 1) ln

(√
x+

√
x+ 1

)
(4.57)

−
[√

x(x− 1)
(
4x(x− 1) + 3

)
− 3(2x− 1) ln

(√
x+

√
x− 1

)]
Θ(x− 1)

}
is a monotonically increasing function with g0(0) = 0 and limx→∞ g0(x) = 1, while

g2(x) =
π2

24x

{√
x(x+ 1)(6x− 1) + ln

(√
x+

√
x+ 1

)
−
[√

x(x− 1)(6x+ 1) + ln
(√

x+
√
x− 1

)]
Θ(x− 1)

}
(4.58)

with g2(0) = 0 and limx→∞ g2(x) = π2/6. For x near 1, note that a T 5/2-correction
coming from (4.51) has to be added to (4.56), namely −1.54(T/TF)5/2.

Eq. 4.4 then yields the size- and temperature-dependent surface plasmon linewidth

γ0 =
3vF

4a
g

(
εF

~ωM

,
T

TF

)
. (4.59)
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Figure 4.2: Surface plasmon linewidth as a function of εF/~ωM, for different tempera-
tures. Solid lines: low-temperature expansion (4.59). Dashed lines: numer-
ical integration of (4.4) with Eqs. 4.41–4.43. In the figure, the temperature
increases from bottom to top.

We denote the smooth component of the surface plasmon linewidth as γ0 since the
smooth semiclassical density of states (4.36) is at the origin of this result. As it will be
shown in the next section, the oscillating component (4.37) of the density of states will
yield an additional term for the surface plasmon linewidth which oscillates as a function
of the size a of the nanoparticle. Note that the exponential factor appearing in (4.4) is
irrelevant in our low-temperature expansion. Furthermore, we have replaced ω̃M by ωM

for the calculation of γ0. As we will see in Chapter 5, the spill-out correction to the Mie
frequency scales as 1/a (see also Sec. 1.1.2). Furthermore, (4.59) shows that γ0 scales
also as 1/a. Thus, incorporating the spill-out correction in the result of (4.59) would
yield higher order terms in 1/a, inconsistently with our semiclassical expansion that we
have restricted to the leading order.

At T = 0, we recover with (4.59) the well-known 1/a size dependence of the surface
plasmon linewidth. First found by Kawabata and Kubo [48], this size dependence is due
to the confinement of the single-particle states in the nanoparticle (see Sec. 1.2.2). We
also recover the zero-temperature frequency dependence found in Refs. 29 and 30. As a
function of εF, the Landau damping linewidth increases linearly for εF � ~ωM and as√
εF for εF � ~ωM (see solid line for T = 0 in Fig. 4.2). The increase of the linewidth is

a consequence of the fact that with increasing Fermi energy the number of particle-hole
excitations rises. The behavior for a high Fermi energy when the discreteness of the
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Figure 4.3: TDLDA photoabsorption cross section σ(ω) in arbitrary units for a sodium
nanoparticle with N = 1760 electrons (solid line). The dashed line is a
Lorentzian fit.

quantum levels is negligible can be understood in two ways. Quantum mechanically,
the two densities of states in expression (4.34) for the Landau damping rate (4.4) are
evaluated nearly at the same energy. Performing the calculations in this limit thus yields
γ0 ∼ √

εF. Classically, the motion of the electrons is ballistic, and we can think of an
effective electronic mean free path limited by the size a of the nanoparticle, such that
γ0 ' vF/a ∼

√
εF (see Sec. 1.2.1).

In order to confirm the relevance of the result (4.59) at T = 0, we can compare it with
the TDLDA numerical calculations. From the TDLDA linear response function, one can
extract the photoabsorption cross section σ(ω) as defined in (1.15) [79]. It is represented
in Fig. 4.3 for a sodium nanoparticle containing N = 1760 valence electrons (solid line).
A Lorentzian fit then provides the full width at half maximum of the absorption curve
γt(a) = γi + γ(a) (see dashed line in Fig. 4.3). γi is introduced to smooth the excitation
peaks of the TDLDA response function in order to get a continuous curve. It is chosen
to be of the order of 0.1 eV, and one has to subtract this quantity from the result of the
Lorentzian fit to obtain the size-dependent linewidth γ(a). We verified that the precise
value of γi does not affect the γ(a) that we extract.

The analytical evaluation of γ0 at T = 0 agrees with the TDLDA numerical calcu-
lations for the largest nanoparticle sizes (see dashed line of Fig. 4.4). However, we see
in Fig. 4.4 that when a decreases, the linewidth extracted from the TDLDA absorption
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Figure 4.4: Inverse lifetime of the first collective excitation in sodium nanoparticles as
a function of the radius a of the cluster for T = 0. The dashed line is
the smooth part of the single plasmon linewidth (4.59). The full line is
the smooth part plus the oscillating contribution from (4.69) for a number
of repetitions r̃ = 1. This semiclassical result is compared to numerical
TDLDA calculations (dots) for clusters with magic numbers of atoms be-
tween 20 and 1760, corresponding to kFa between 5.2 and 23.

cross section presents a nonmonotonic behavior. This will be the subject of the next
section. Experiments on charged alkaline clusters with a diameter in the range 1–5 nm in
vacuum [18] yield a linewidth of the order of ~γ ∼ 1 eV. Although the charged character
of those clusters used in this experiment might limit the applicability of our model, we
note that our calculated value is smaller, but of the same order of magnitude than the
experimental one. This difference might be explained by additional contributions to the
linewidth present in the experiment.

Since the function g2 is positive, finite temperatures lead to a broadening of the
surface plasmon resonance which to leading order is quadratic. As for T = 0, the
linewidth decreases with increasing size of the nanoparticle like 1/a. Based on classical
considerations, this has been proposed in Ref. 30, where the authors argued that γ ' v̄/a
with the average speed

v̄ =
3vF

4

[
1 +

π2

6

(
T

TF

)2
]

(4.60)

of electrons at the temperature T . The result of Ref. 30 is only relevant in the high
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Chapter 4 Lifetime of the surface plasmon excitation

energy limit εF � ~ωM where it agrees with our general result (4.59).

In Fig. 4.5, we show the linewidth (4.59) as a function of the temperature, scaled by the
zero-temperature linewidth, for different values of the ratio εF/~ωM (solid lines). In order
to confirm the validity of our low temperature expansion, we compare it to the result of a
numerical integration (dashed lines) of (4.4) with Eqs. 4.41–4.43.1 The agreement of the
expansion (4.59) with this direct integration is excellent for low temperatures. For fixed
T/TF, the deviation increases with εF/~ωM since then, the low-temperature condition
~ωM � kBT is less and less fulfilled. This can also be noticed from Fig. 4.2 where we
show the result of (4.59) as a function of the ratio εF/~ωM for different temperatures.
Note that the cusp present in our analytical result at finite temperature for εF = ~ωM

is unphysical, as confirmed by the numerical integration of (4.4). The cusp comes from
the improper treatment of our evaluation of (4.44) when ~ωM is in a range of order kBT
around the Fermi energy εF (see Fig. 4.1c).

There are a number of experiments showing a broadening of the surface plasmon
linewidth with temperature [46,47,95,96]. Those experimental results on not too small
clusters indicate the presence of small corrections to the width of the collective surface
plasmon excitation due to finite temperatures, in agreement with our result (4.59). In
Ref. 95, absorption measurements on gold nanoparticles with a diameter ranging from 9
to 25 nm in aqueous solution have shown only a weak temperature effect on the surface
plasmon linewidth. In Refs. 46 and 47, a weak broadening of the plasmon resonance
in silver and gold nanoparticles of sizes a = 4.25 to 10 nm is reported, accompanied
by a small redshift of the peak position as the temperature increases. In Ref. 96, the
temperature dependence of small silver clusters (radius of 1.6 to 10.5 nm) embedded in
a glass matrix has been investigated and a rather small broadening of the plasmon line
has been reported as the temperature increases from 1.5 to 300K.

There are also experiments on very small clusters [23,24] showing a strong temperature
effect on the surface plasmon linewidth. It has been observed in Ref. 23 that the plasmon
width of mercury clusters increases dramatically with temperature. A systematic study
of the temperature dependence of the linewidth in small charged sodium nanoparticles

1Note that for the purpose of a numerical evaluation of γ0(T ), we cannot use the approximate Som-
merfeld expression (4.53) for the chemical potential µ. Nevertheless, it can be found by remarking
that the number of valence electrons N in the system does not change with temperature. We thus
have the self-consistent equation

N(T ) =
∫ ∞

0

dεf(ε)%0(ε) = N(T = 0)

with f(ε) the Fermi distribution and %0(ε) the density of states given in (C.28). The preceding
expression can be evaluated and we obtain(

T

TF

)3/2

Li3/2

[
−eµ(T )/kBT

]
+

4
3
√

π
= 0,

where Liν(z) is the polylogarithmic function. This expression can be solved numerically to yield the
self-consistent chemical potential µ. We have checked that (4.53) provides a reasonable approxima-
tion to µ. For instance, at T/TF = 0.2, the error of the Sommerfeld result is about 7 %.
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Figure 4.5: Surface plasmon linewidth as a function of the temperature, scaled by the
linewidth at T = 0, for different ratios εF/~ωM. Solid lines: low-temperature
expansion (4.59). For εF = ~ωM, we have accounted for the additional
T 5/2-correction to γ0, see (4.51). Dashed lines: numerical integration of
(4.4) with Eqs. 4.41–4.43. The arrow indicates the direction of increasing
εF/~ωM.

with N = 8, 20, and 40 valence electrons has been carried out in Ref. 24. As the
temperature of the cluster is increasing, the authors found a pronounced broadening of
the resonance which goes typically as

√
T . This is in apparent contradiction with our

result (4.59). However, for very small particle sizes, an additional broadening mechanism
not considered in our analysis becomes important, namely the coupling of the surface
plasmon to quadrupole surface thermal fluctuations [16,97,98].

4.3 Shell effects and nonmonotonic behavior of the
plasmon linewidth

In this section, we restrict ourselves to zero temperature. In this case, the function F (ε)
defined in (4.30) and entering (4.34) reads

F (ε) = Θ(ε− εF)Θ(εF + ~ω − ε). (4.61)

In the expression (4.34), the oscillating part of the density of states (4.35) gives rise
to terms of the type %0

l %
osc
l′ as well as %osc

l %osc
l′ . The former become negligible (in the
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semiclassical limit of small ~) because one integrates a smooth function multiplied by a
highly oscillating one. With the help of (2.37), (4.27) and (4.37), the latter yields

Σosc(ω) =
24

~

(ωM

ω

)3 εF

~ω
εF

(kFa)
7

∫ ηmax

ηmin

dη η
∑

l,l′=l±1

fl′

√
η2 − (l + 1/2)2

√
η′2 − (l′ + 1/2)2

×
∑

r̃,r̃′>1

cos

[
r̃

(
Sl(η)

~
− 3π

2

)]
cos

[
r̃′
(
Sl′(η

′)

~
− 3π

2

)]
. (4.62)

We have defined η = ka for the particles, η′ =
√
η2 − (kFa)2~ω/εF for the holes, ηmin =

kFamax (1,
√

~ω/εF), and ηmax = kFa
√

1 + ~ω/εF. In (4.62), fl′ = l for l′ = l − 1 and
fl′ = l+1 for l′ = l+1. We can expand the product of the two cosines and keep only the
contribution in leading order in ~, neglecting the highly oscillating term as a function
of the particle and hole actions. We now write this contribution with the help of the
Poisson summation rule (C.29) to obtain

Σosc(ω) ' 24

~

(ωM

ω

)3 εF

~ω
εF

(kFa)
7

∫ ηmax

ηmin

dη η
+∞∑

m̃=−∞

∑
r̃,r̃′>1
σ=±

∫ lmax

−1/2

dl

×
∑

l′=l±1

fl′

√
η2 − (l + 1/2)2

√
η′2 − (l′ + 1/2)2 eσiφr̃r̃′m̃

l (η), (4.63)

where we have defined the phase

φr̃r̃′m̃
l (η) =

r̃Sl(η)

~
− r̃′Sl′(η

′)

~
− 3π

2
(r̃ − r̃′) + 2πm̃l. (4.64)

Performing a stationary phase approximation (see Appendix B), given by the condition
∂φ/∂l|l̄ = 0 with the stationary points l̄, we obtain with (4.38) the stationary phase
equation

r̃ arccos

(
l̄ + 1/2

η

)
− r̃′ arccos

(
l̄′ + 1/2

η′

)
= πm̃. (4.65)

The phase of (4.64) indicates that the major contribution to the integral over l in (4.63)
will be given by r̃ = r̃′ and m̃ = 0. We then select only one point within the full mesh
of the stationary points,

l̄ + 1/2

η
=
l̄′ + 1/2

η′
. (4.66)

Noticing that η′ =
√
η2 − (kFa)2~ω/εF < η, we see that in order to satisfy (4.66), we

have to set l̄′ = l̄ − 1. The stationary point is then given by

l̄ =
η + η′

2(η − η′)
. (4.67)
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Performing the integral over l in (4.63) with the help of the stationary phase approxi-
mation, we get

Σosc(ω) =
48
√

2π

~

(ωM

ω

)3 εF

~ω
εF

(kFa)
7

∫ ηmax

ηmin

dη ηl̄
√
η2 − (l̄ + 1/2)2

√
η′2 − (l̄ − 1/2)2

×
∞∑

r̃=1

∣∣∣∣∣ ∂2φr̃,r̃,0
l (η)

∂l2

∣∣∣∣∣
l=l̄

∣∣∣∣∣
−1/2

cos

{
φr̃,r̃,0

l̄
(η) +

π

4
sign

[
∂2φr̃,r̃,0

l (η)

∂l2

∣∣∣∣∣
l=l̄

]}
. (4.68)

After a lengthly but straightforward calculation, this finally provides the following result
for the oscillating part of the first plasmon linewidth, γosc = Σosc(ωM):

γosc =
6
√
π

~
εF

ξ(kFa)5

∫ √
1+ξ

max (1,
√

ξ)

dβ
β + β′

(β − β′)4
β5/2β′

3/2 [
(kFa)

2(β − β′)2 − 1
]5/4

(4.69)

×
∞∑

r̃=1

1√
r̃

cos

{
2r̃

[√
(kFa)2(β − β′)2 − 1− arccos

(
1

kFa(β − β′)

)]
− π

4

}
,

where β′ =
√
β2 − ξ and ξ = ~ωM/εF. The remaining integral over β can be performed

numerically (solid line, Fig. 4.4). Assuming that kFa � 1, using that β − β′ ∼ 1 and
that the sum over the number of repetitions is dominated by the first term, we see that
the argument of the cosine is close to 2kFa and

γosc ∼ εF

~(kFa)5/2
cos (2kFa). (4.70)

Therefore the linewidth of the single surface plasmon excitation has a nonmonotonic
behavior as a function of the size a of the metallic cluster. This is due to the density-
density particle-hole correlation appearing in (4.34). Let us mention that the result of
(4.69) is slightly different from the one of the previous work of Ref. 80. This is due to
the fact that we have used here a more rigorous treatment of the semiclassical radial
problem, as presented in Appendix C. As in Ref. 80, we have to set a phase shift in our
analytical prediction of (4.69) to map the TDLDA numerical points in Fig. 4.4. This is
due to the fact that we have taken only one stationary point (see Eq. 4.66) and neglected
all the other contributions coming from the full mesh of stationary points which influence
the phase appearing in (4.63).

A nonmonotonic behavior of the surface plasmon linewidth has also been observed
experimentally in the case of charged lithium clusters [18]. Our numerical TDLDA
calculations confirm the presence of size-dependent oscillations for alkaline metals. In
Refs. 29, 99, and 100, some numerical evidences of such oscillations have also been
reported. Our semiclassical approach also predicts a nonmonotonous behavior of γ for
noble metal clusters, in agreement with recent experimental results [101]. However,
the presence of different dielectric constants inside and outside the cluster renders the
problem more involved. This issue is discussed in Chapter 8.
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Chapter 4 Lifetime of the surface plasmon excitation

4.4 Conclusion for Chapter 4

In this chapter, we have evaluated the Landau damping linewidth resulting from the
coupling of the surface plasmon to particle-hole excitations. Assuming that the self-
consistent states are perfectly confined by the mean field, the size and temperature
dependence of the linewidth of the surface plasmon has been investigated by means of
a semiclassical evaluation, together with a low-temperature expansion.

In addition to the well-known 1/a size dependence, we have shown that for the small-
est sizes, the surface plasmon linewidth presents oscillations as a function of the size of
the nanoparticle. These oscillations arise from electron-hole density-density correlations.
These results are in good agreement with numerical time-dependent local density ap-
proximation calculations, and consistent with experiments on free alkaline nanoparticles.
The development of the spectroscopy for individual nano-objects [38–44], which gets rid
of the inhomogeneous broadening, will certainly allow in a near future to quantitatively
confront our prediction of the oscillating behavior of the surface plasmon linewidth with
measurements.

Furthermore, we have demonstrated in this chapter that an increase in temperature
leads to an increasing width of the resonance. The effect of the temperature has been
found to be weak, in qualitative agreement with the experimental results and with the
previous theory of Ref. 30.
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Chapter 5

Frequency of the surface plasmon
excitation

Quand je n’ai pas de bleu, je
mets du rouge.

(Pablo Picasso, 1881-1973, cited
by Paul Éluard in Donner à voir)

In this chapter we turn to the evaluation of the redshift of the surface plasmon frequency
with respect to the classical Mie value ωM. The experimentally observed surface plasmon
frequencies are smaller than the Mie frequency ωM [10, 22, 25], and this is qualitatively
captured by TDLDA calculations since the position of the maximum of the absorption
curve ωsp is smaller than ωM (see Fig. 5.1). This redshift is usually attributed to the
so-called spill-out effect [10,11,13]. As presented in Sec. 1.1.2, the origin of this quantum
effect is a nonzero probability to find electrons outside the nanoparticle, which results
in a reduction of the effective frequency for the center-of-mass coordinate. If a fraction
Nout/N of the electrons is outside the geometrical boundaries of the nanoparticle, we
can expect that the electron density within the nanoparticle is reduced accordingly and
the frequency of the surface plasmon is given by (1.7). We have seen in Chapter 2 that
such an estimation can be formalized considering the form of the single-particle confining
potential (2.5).

It has been known for a long time [11] that ωsp is even smaller than the Mie frequency
corrected by the spill-out effect ω̃M. Therefore the spill-out effect is not sufficient to
explain the redshift of the surface plasmon frequency as illustrated in Fig. 5.1. Recently,
the coupling to the electronic environment has been invoked as an additional source
of frequency shift [60, 102]. This has been formalized in Chapter 3, where the expres-
sion (3.33) for the environment-induced shift δ has been established. In this chapter
we provide an estimation of such a contribution (analogous to the Lamb shift of atomic
physics [82]) and its parametric dependence on the particle size and electron temperature
(see Sec. 5.2). Despite the fact that we have to make drastic approximations, we find
that this additional shift implies a reduction of the surface plasmon frequency, thus ap-
proaching the TDLDA result. However it is known [11] that the experimental resonance
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Figure 5.1: Absorption cross section σ(ω) in arbitrary units extracted from TDLDA cal-
culations for a sodium cluster containing N = 832 valence electrons. The
classical Mie frequency is ωM, while ω̃M is the frequency of the surface plas-
mon resonance taking into account the spill-out effect, Eq. 1.7. It has been
obtained with the LDA self-consistent ground-state density as explained in
Sec. 5.1.3. The frequency ωsp corresponds to the position of the maximum
of the absorption curve.

frequency is even lower than the TDLDA prediction within the jellium approximation.
This could be due to the ionic degrees of freedom.

In Sec. 5.1, we calculate one of the contributions affecting the resonance frequency
according to (1.7), namely the spill-out effect, while in Sec. 5.2, we will calculate the
additional frequency shift induced by the electronic environment (3.33).

5.1 Spill-out-induced frequency shift

5.1.1 Mean-field approximation

Within the mean-field approximation, the electronic degrees of freedom are treated in
the self-consistent one-particle potential V (r) shown in Fig. 2.2, and the number of
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5.1 Spill-out-induced frequency shift

electrons outside of the nanoparticle is given by

Nout = 2

∫ ∞

0

dε
∑
lm

%l(ε)f(ε)

∫
(r>a)

d3r |ψεlm(r)|2 . (5.1)

Here, %l(ε) is the density of states restricted to a fixed angular momentum l from (4.35),
while f(ε) is the Fermi-Dirac distribution defined in (3.23). The factor of 2 accounts for
the spin degeneracy. Because of the spherical symmetry of the problem, the one-particle
wave functions separate into radial and angular parts according to (4.6). The radial
wave functions uεl(r) satisfy the reduced Schrödinger equation (4.7) which yields the
single-particle eigenenergies ε in the mean-field potential V (r), that we approximate by
the step-like potential of (4.5).

The Fermi function in (5.1) suppresses contributions to the energy integral from values
higher than εF plus a few kBT . For low temperatures kBT � W , the states in the
continuum do not contribute and we restrict our evaluation to the bound states with
ε < V0.

1 Defining k =
√

2meε/~ and χ =
√

2me(V0 − ε)/~, we find for the regular
solutions of (4.7)

uεl(r) =

√
r

a

{
Akl

√
kJl+ 1

2
(kr), r 6 a,

Bkl
√
χKl+ 1

2
(χr), r > a,

(5.2)

where Jν(z) are Bessel functions of the first kind andKν(z) are modified Bessel functions.
The normalization constants Akl and Bkl are given by

Akl =

√
2

kaCkl

, (5.3a)

Bkl =

√
2

χaCkl

Jl+ 1
2
(ka)

Kl+ 1
2
(χa)

, (5.3b)

with

Ckl =

[
Jl+ 1

2
(ka)

Kl+ 1
2
(χa)

]2

Kl− 1
2
(χa)Kl+ 3

2
(χa)− Jl− 1

2
(ka)Jl+ 3

2
(ka). (5.4)

We therefore obtain for the integral in (5.1)

∫
(r>a)

d3r |ψεlm(r)|2 =
J2

l+ 1
2

(ka)

Ckl

[
Kl− 1

2
(χa)Kl+ 3

2
(χa)

K2
l+ 1

2

(χa)
− 1

]
. (5.5)

The summation of this expression over all one-particle states required to obtain Nout

according to (5.1) cannot be done analytically. We therefore use a semiclassical approx-
imation which provides additional physical insight into the spill-out effect.

1The energy required to ionize the nanoparticle is the work function W plus the charging energy. This
corresponds to a temperature of several 105 K. Therefore, nanoparticles cannot be thermoionized at
reasonable temperatures.
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Chapter 5 Frequency of the surface plasmon excitation

5.1.2 Semiclassical low-temperature expansion for the number of
spill-out electrons

The integral of the electronic density (5.5) increases with the energy. Combined with the
increasing density of states in (5.1) and the Fermi function providing an energy cutoff,
this allows to conclude that the spill-out is dominated by the energies near the Fermi
level. In addition, in most of the metallic nanoparticles, we have εF ∼ W � ∆, where
∆ is the mean single-particle level spacing. The semiclassical limit, in which ka and χa
must be much larger than one, then applies. In this limit, we obtain2 for the integral
(5.5) of the density outside of the nanoparticle∫

(r>a)

d3r |ψεlm(r)|2 ' ε

χaV0

, (5.6)

to first order in 1/ka and 1/χa. Since this result for a single state does not depend
on the angular momentum quantum numbers l and m, the total density of states
%(ε) =

∑
lm %l(ε) is sufficient to determine the number of spill-out electrons. Restrict-

ing ourselves to the smooth semiclassical density of states %0(ε) given in (C.28),3 and
inserting (5.6) into (5.1) then yields

Nout '
4mea

2

3π~2V0

∫ V0

0

dε f(ε)h(ε) (5.7)

with

h(ε) =
ε3/2

√
V0 − ε

. (5.8)

Applying the low-temperature Sommerfeld expansion (4.52) with the chemical potential
(4.53), we obtain

Nout =
(kFa)

2

6π
ζ

(
εF

V0

,
T

TF

)
(5.9)

with

ζ

(
x,

T

TF

)
= ζ0(x) + ζ2(x)

(
T

TF

)2

, (5.10)

where

ζ0(x) =
1

x

[
−
√
x(1− x)(2x+ 3) + 3 arcsin

√
x
]

(5.11)

2To obtain this result, we have used the asymptotic behavior of the Bessel functions

Jν(z) '
√

2
πz

cos
(
z − νπ

2
− π

4

)
,

Kν(z) '
√

π

2z
e−z,

for z � 1 [93].
3The oscillating component (C.37) of the density of states does not contribute to Nout. Indeed,

integrating (5.1) with (5.6) and (C.37) leads to an averaging-out.
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5.1 Spill-out-induced frequency shift

and

ζ2(x) =
π2

3

(
x

1− x

)3/2

(2− x). (5.12)

Note that the upper bound of the integral over the energy in (5.7) has been replaced by V0

since we neglect exponentially suppressed contributions from higher energies. Therefore
our Sommerfeld expansion is reliable for temperatures T/TF . 1− εF/V0.

At zero temperature the number of spill-out electrons increases smoothly with in-
creasing Fermi energy, reaching its maximal value (kFa)

2/4 at εF = V0. According to
(5.9) and (5.10), the number of spill-out electrons increases with temperature. This is
expected since the evanescent part of the wave function increases with the energy of the
occupied states.

Scaling the result (5.9) with the total number of electrons in the nanoparticle, N =
4(kFa)

3/9π, we obtain
Nout

N
=

3

8kFa
ζ

(
εF

V0

,
T

TF

)
. (5.13)

This relative spill-out scales to first order as 1/a, and becomes less important for large
particles. Since the work function W depends on the size of the nanoparticle through
W = W∞ + α/a,4 the number of spill-out electrons (5.13) acquires, via the dependence
on V0, higher-order corrections to the 1/a scaling. We neglect these terms because they
are of the same order as the ones neglected in our semiclassical expansion. Therefore
we approximate W by its bulk value W∞. The dependence of (5.13) on a can be
interpreted by observing that the spill-out is a surface effect so that Nout increases only
with a2. Inserting (5.13) into (1.7), one can calculate the spill-out-induced redshift of the
surface plasmon resonance. This redshift increases for decreasing sizes and for increasing
temperatures, in qualitative agreement with experiments [18, 22,46,47,96].

One can define a spill-out length as the depth

ls =
1

3

Nout

N
a (5.14)

of the spill-out layer. Inserting (5.13) into (5.14) yields the size-independent spill-out
length

kFls =
1

8
ζ

(
εF

V0

,
T

TF

)
, (5.15)

which is represented in Fig. 5.2 as a function of the ratio εF/V0 for different temperatures.
The result is compared with the results of a numerical integration of (5.7) with (5.8)
(dashed lines). This confirms our expectations about the validity of our results, namely
for low temperatures and for small ratios εF/V0.

4α is a constant which includes quantum mechanical corrections. See, e.g., Ref. 103.
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Figure 5.2: kFls from (5.15) as a function of εF/V0 at zero temperature (black line) and
for finite temperatures (solid gray lines). The dashed lines result from the
numerical integration of (5.7) with (5.8). In the figure, T/TF increases from
bottom to top.
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Figure 5.3: LDA ground-state self-consistent electronic density ne as a function of the
radial coordinate r scaled by the radius a, for various nanoparticle sizes
(rs = 3.93 a0, corresponding to sodium). The square profile (thick solid line)
represents the abrupt jellium density decreasing from its value ni inside the
nanoparticle to zero at r = a.

5.1.3 Number of spill-out electrons: semiclassics vs. LDA

In this section, we compare our semiclassical evaluation of the spill-out effect at zero
temperature with LDA calculations for spherical sodium nanoparticles. One possible way
to estimate Nout is to use the LDA, which allows to compute the spherically symmetric
self-consistent electronic ground-state density for nanoparticles with closed electronic
shells (see Fig. 5.3). Integrating the density outside the nanoparticle then yields an
approximation to Nout, and thus to ls according to (5.14). An estimation of the spill-
out length from (5.15) by means of our semiclassical theory at zero temperature gives
ls ' 0.2 a0 for sodium nanoparticles, while Madjet and collaborators obtained on the
basis of Kohn-Sham and Hartree-Fock calculations ls around 0.55 a0 for clusters of size
N = 8–196 [31]. With our LDA calculations, we obtain ls of the order of 0.45 a0 for all
sizes between N = 8 and N = 1760 (see the squares in Fig. 5.4).

The fact that the semiclassical spill-out length is significantly smaller than that of LDA
is a consequence of our assumption of a step-like potential for V (r). Indeed, the LDA
self-consistent potential V (r) shown in Fig. 5.5 deviates from the form V (r) = V0Θ(r−a)
that we have used. As one can see in Fig. 5.5, the Fermi level does not coincide with
V (a). Defining the effective radius of the nanoparticle for the spill-out effect by means
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Figure 5.4: Spill-out length ls at T = 0 from (5.15) in units of the Bohr radius a0 as a
function of the total number of electrons N (solid line) for sodium nanopar-
ticles. The dashed line is twice the result of (5.15), and is obtained consid-
ering the effective radius aeff for the approximated self-consistent potential,
namely V (r) = V0Θ(r − aeff). The squares result from LDA calculations.

of V (aeff) = εF, it seems appropriate to approximate the self-consistent potential by
V (r) = V0Θ(r − aeff). An estimation from our LDA calculations gives aeff ' a + ls for
all sizes between N = 8 and N = 1760. Using this effective radius in (5.9) does not
change our results for Nout and ls since a� ls. However, the spill-out length is defined
from the geometrical radius a of the ionic jellium background of the nanoparticle. Since
aeff ' a + ls, it actually yields an effective spill-out length leffs ≈ 2ls and approximately
doubles our result for Nout. The improved T = 0 result for the spill-out length is
represented by the dashed line in Fig. 5.4. It yields good agreement with the spill-out
length as deduced from the LDA calculations (squares in Fig. 5.4). Note that there is no
need to consider an effective radius of the nanoparticle in the calculation of the resonance
width presented in Chapter 4. Indeed, the linewidth γ scales to leading order as 1/a.
Replacing a by an effective radius for the linewidth γ would thus lead to higher-order
corrections.

5.1.4 Redshift of the surface plasmon resonance

We now examine the redshift of the surface plasmon resonance by means of TDLDA
calculations. In Fig. 5.6, we show the frequencies deduced from the LDA number of
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Figure 5.5: LDA self-consistent potential V as a function of the radial coordinate r for
a sodium nanoparticle containing N = 1760 valence electrons. The radius
a is indicated by the vertical dotted line, and the effective radius defined
by V (aeff ' a + ls) = εF is indicated by the dashed line. The Fermi level
corresponds to the horizontal dashed line.

spill-out electrons for various closed-shell nanoparticle sizes between N = 8 and N =
1760, where Nout is incorporated according to (1.7) (squares). The dashed line is our
semiclassical result from (5.13) with (1.7), where we have taken into account the effective
radius for the self-consistent potential, as discussed in the preceding section. We see
that our analytical expression for the spill-out is in a good agreement with the LDA
calculations, and that the redshift is increasing with decreasing size as predicted by
(5.13).

Alternatively the resonance frequency can be extracted directly from the absorption
cross section σ(ω) defined in (1.15) and calculated from the TDLDA response function
(see Fig. 5.1). An upper bound for the resonance energy is given by the root mean
square [11,104] √

〈ω2〉 =

√∫∞
0

dω ω2σ(ω)∫∞
0

dω σ(ω)
, (5.16)

providing a lower bound for the redshift of the surface plasmon frequency from the Mie
value. In the spherical jellium model, the frequency deduced from (5.16) coincides with
ω̃M [11,105], the Mie frequency redshifted by the spill-out effect (1.7). We have checked
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Figure 5.6: Surface plasmon frequency as a function of the number N of valence elec-
trons in the nanoparticle. Squares: ω̃M/ωM, frequencies deduced from the
LDA number of spill-out electrons according to (1.7). Dashed line: semi-
classical evaluation of (5.13) with (1.7). Dots: ωsp/ωM, frequencies obtained
by fitting the TDLDA absorption curves with a Mie-type cross section [10].
Dotted line: linear fit to the dots. Solid line: sum of the spill-out effect
(dashed line) and the environment-induced redshift of the resonance (5.27).
All results shown here are at zero temperature for the case of sodium. The
points shown represent all closed shell sizes between N = 8 and N = 1760.

with our TDLDA calculations that the frequencies deduced from Nout, i.e., from the
electronic ground-state self-consistent density, correspond to the frequencies obtained
from (5.16), up to the numerical error. At zero temperature, the TDLDA thus fulfills
the sum rule [11]

√
〈ω2〉 = ω̃M within less than 1% for sizes N larger than 254, and

within 1–4% for the smaller sizes up to N = 8.

The dots in Fig. 5.6 represent the maxima ωsp of the absorption curves obtained by
fitting the TDLDA results with a Mie-type cross section [10]. It is clear from Fig. 5.6
that the frequency obtained by (1.7) from the number of spill-out electrons (squares)
overestimates the resonance frequency ωsp (see also Fig. 5.1).5 It has been noticed in

5Within the jellium model, the LDA is not responsible for any underestimation of the number of
spill-out electrons, as it has been shown using Hartree-Fock and RPA calculations [11]. Our results
show that the frequency shift induced by the electronic environment has to be taken into account
in order to explain the above-mentioned discrepancy.
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Figure 5.7: Measured peak positions for singly-ionized spherical sodium clusters Na+
A

(squares) and large potassium nanoparticles K+
A (dots). The number of

atoms A = N + 1 is indicated in the figure (N is the number of valence
electrons). The triangles represent the measured root mean square of (5.16)
for the sodium clusters. The straight lines are deduced from various theories
of the spill-out and of the dynamic screening of surface science (see Ref. 25
and references therein). (Reproduced from Ref. 25.)

Ref. 25 that the spill-out effect is not sufficient to describe the experimentally observed
resonance frequency (see Fig. 5.7).

In the following section, we propose to interpret the discrepancy between ωsp given by
the TDLDA and ω̃M deduced from the spill-out by means of the coupling of the surface
plasmon mode to electron-hole excitations. This coupling results in a shift of the surface
plasmon frequency which adds to the effect of the spill-out.

5.2 Environment-induced frequency shift

We now evaluate the redshift δ defined in (3.33) which comes in addition to the spill-out
contribution, as stated in (3.35).

According to (4.1) and (3.33), the energy shift δ is related to the function Σ(ω) through
the Kramers-Kronig relation

δ =
1

π
P
∫ +∞

−∞
dω

ωΣ(ω)

ω2 − ω̃2
M

. (5.17)
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Chapter 5 Frequency of the surface plasmon excitation

In what follows, we focus on the smooth size-dependent function Σ0(ω) given in (4.55)
which will yield the smooth component δ0 of the environment-induced redshift of the
surface plasmon frequency. Thus, in (5.17), the frequency ω̃M appearing in the denom-
inator can be replaced by ωM. Indeed, the function Σ0(ω) of (4.55) is proportional
to 1/kFa. Thus, taking into account the spill-out effect in the evaluation of δ would
yield higher order terms in powers of 1/kFa, that we neglect in the semiclassical limit.
Furthermore, we have to restrict the integral over the frequency ω by introducing the
cutoff ωc discussed in Chapter 4. It arises from the fact that the particle-hole pairs that
participate to δ in (3.33) belong to the high-energy sector of the RPA Hilbert space,
while the surface plasmon excitation is the superposition of particle-hole pairs of the
restricted low-energy subspace (see Secs. 1.2.3 and 2.2.3). The TDLDA absorption cross
section shows a large excitation peak at the frequency ωsp which supports almost all of
the dipole strength. This peak is surrounded by particle-hole excitations that become
noticeable for frequencies larger than ∼ ωM − ηγ, where η is a constant of the order of
unity. Thus for the purpose of calculating the integral (5.17) we can take the cutoff at
ωM − ηγ and approximate

δ0 ' 1

π
P
∫ +∞

ωM−ηγ

dω
ωΣ0(ω)

ω2 − ω2
M

. (5.18)

For frequencies ω larger than ωM − ηγ, the function g appearing in (4.55) can be
replaced by its asymptotic expansion for εF � ~ω,

g

(
x,

T

TF

)
'

[
8

15
+

2π2

9

(
T

TF

)2
]
√
x. (5.19)

Inserting (4.55) with (5.19) into (5.18), we arrive at

δ0 =
3vF

4πa

[
8

15
+

2π2

9

(
T

TF

)2
]
I

(
~ωM

εF

,
ηγ

εF

)
, (5.20)

where we have defined

I(ξ, α) = ξ3P
∫ ∞

ξ−α

dx

x5/2 (x2 − ξ2)
. (5.21)

This integral can be split into two parts, namely

I1(ξ, α) = ξ3P
∫ ξ+α

ξ−α

dx

x5/2 (x2 − ξ2)
(5.22)

and

I2(ξ, α) = ξ3

∫ ∞

ξ+α

dx

x5/2 (x2 − ξ2)
. (5.23)

I1 yields a vanishing contribution to the shift δ0. Indeed, the linewidth ~γ is of the
order of ∼0.1–0.2 eV (see Chapter 4), while the Mie energy is of several eV. Thus we
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5.2 Environment-induced frequency shift

have γ � ωM, and expanding I1 in the limit α� ξ, we obtain a contribution which goes
as γ, i.e., ∼ 1/a. Inserting this result into (5.20) therefore yields a term proportional to
1/a2, that we can neglect in our semiclassical expansion. The remaining integral I2 can
be evaluated exactly, and we have

I(ξ, α) ' 1√
ξ

[
−π

2
− 2

3

(
ξ

ξ + α

)3/2

+ arctan

(√
1 +

α

ξ

)
− 1

2
ln

(√
ξ + α−

√
ξ√

ξ + α+
√
ξ

)]
.

(5.24)
In the limit α� ξ, it reduces to

I(ξ, α) ' 1√
ξ

[
1

2
ln

(
4ξ

α

)
− π

4
− 2

3

]
, (5.25)

and inserting this result into (5.20), we obtain in the semiclassical limit kFa� 1

δ0 ' 3vF

4a

√
εF

~ωM

[
ln

(
4ωM

ηγ

)
− π

2
− 4

3

][
4

15π
+
π

9

(
T

TF

)2
]
. (5.26)

We remark that the dependence of this result on the cutoff is only logarithmic.
Inserting our expression (4.59) for the linewidth γ,6 we obtain to second order in T/TF

δ0 =
3vF

4a
j

(
εF

~ωM

,
T

TF

)
(5.27)

where

j

(
x,

T

TF

)
= j0(x) + j2(x)

(
T

TF

)2

, (5.28)

with

j0(x) =
4
√
x

15π

[
ln

(
8kFa

3ηxg0(x)

)
− π

2
− 4

3

]
(5.29)

and

j2(x) =
π
√
x

9

[
ln

(
8kFa

3ηxg0(x)

)
− π

2
− 4

3
− 12

5π2

g2(x)

g0(x)

]
. (5.30)

The functions g0 and g2 are defined in (4.57) and (4.58), respectively. While the linewidth
(4.59) goes as 1/a, the frequency shift scales as 1/a up to a logarithmic factor. This
redshift increases with temperature and adds to the redshift arising from the spill-out
effect discussed in Sec. 5.1.

The importance of the shift δ0 can be seen in Fig. 5.6. There, the position of the
surface plasmon resonance peak for sodium clusters calculated from TDLDA (dots) is
in qualitative agreement with our semiclassical result (solid line) taking into account
the shift δ0 and the spill-out (see Eqs. 1.7 and 5.13).7 In Fig. 5.6, we have used η =

6We neglect here the oscillating component (4.69) which yields higher order corrections.
7We can compare the semiclassical and numerical results since both approaches are based on the

many-body Hamiltonian (2.1), and thus contain the same physical ingredients.
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Chapter 5 Frequency of the surface plasmon excitation

1/2 for the frequency cutoff in (5.18). Our approximate expression for δ0 does not
permit us to obtain a quantitative agreement with the position ωsp of the resonance
frequency shown by the dots. This is not surprising considering the approximations
needed in order to derive an analytical result. First, the expression for δ0 is based on
our result (4.55) for Σ0(ω) which was derived under the assumption of perfectly confined
electronic states. Thus, the delocalized self-consistent single-particle states have not
been treated accurately in the calculation of δ0. Second, the cutoff introduced above
is a rough estimate of the energy beyond which particle-hole excitations couple to the
surface plasmon. Despite those approximations, our estimate implies an increase of the
redshift beyond that caused by the spill-out (dashed line in Fig. 5.6). Comparing the
two effects leading to a redshift of the surface plasmon frequency, we find that they have
the same parametric size and temperature dependence, and are of the same order of
magnitude. Therefore, one has to take into account both contributions in quantitative
descriptions of the surface plasmon frequency.

For zero temperature, the shift δ has also been considered in Refs. 60 and 102. The
authors of Ref. 60 have used the separation of the collective center-of-mass motion from
the relative coordinates. Their coupling between the two subsystems which is only non-
vanishing outside the nanoparticle leads to a shift that they have numerically evaluated
by means of the RPA plus exchange in the case of small charged sodium clusters. In
Ref. 102, the authors assumed a certain expression for the coupling, and a variational
RPA calculation was used to obtain an analytical expression of the environment-induced
redshift. In contrast to our findings, Refs. 60 and 102 obtained a shift δ proportional to
the number of spill-out electrons.

For very small clusters (N between 8 and 92), a nonmonotonic behavior of the reso-
nance frequency as a function of the size of the nanoparticle has been observed experi-
mentally [25] (see Fig. 5.7). This behavior is consistent with our numerical calculations
(see dots in Fig. 5.6) and can be understood in the following way. We have shown in
Chapter 4 that the linewidth of the surface plasmon resonance presents oscillations as
a function of the size of the nanoparticle. Furthermore, we have shown in this section
that the linewidth and the environment-induced shift are related through the Kramers-
Kronig transform (5.17). Thus, the shift δ should also present oscillations as a function
of the size of the cluster. This is in contrast to the spill-out effect discussed in Sec. 5.1
where the oscillating character of the density of states leads to a vanishing contribution,
as confirmed by the LDA calculations (see squares in Fig. 5.6). Those significantly dif-
ferent behaviors could allow to distinguish between the two mechanisms contributing to
the redshift of the surface plasmon frequency with respect to the classical Mie value.

Using temperature-dependent TDLDA calculations, Hervieux and Bigot [67] have re-
cently found a nonmonotonic behavior of the energy shift of the surface plasmon fre-
quency as a function of the temperature for a given nanoparticle size (see Fig. 5.8). They
observed a redshift of the surface plasmon resonance up to a certain critical temperature
(e.g., 1000K and 2500K for Na138 and Na+

139, respectively), followed by a blueshift of
the resonance at higher temperatures. This behavior is not present in our theory. The
authors of Ref. 67 attribute the nonmonotonic temperature dependence to the coupling
of the surface plasmon to bulklike extended states in the continuum, which causes a
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5.3 Conclusion for Chapter 5

The optical response of the valence electrons is treated
quantum mechanically. In the usual first-order TDLDA,
the induced electronic density !"! ~rr;!;Te" is related to
Vext!~rr0;!", the Fourier transform (with respect to time) of
the external potential associated to the electric field of the
laser, by [26]

!"! ~rr;!;Te" #
Z

#! ~rr; ~rr0;!;Te"Vext!~rr0;!" d~rr0; (9)

where #! ~rr; ~rr0;!;Te" is the retarded density correlation
function which is deduced from the noninteracting re-
tarded density correlation function #0 via a Dyson-type
integral equation:

#! ~rr; ~rr0;!;Te" ##0! ~rr; ~rr0;!;Te" $
ZZ

#0! ~rr; ~rr00;!;Te"

% Kr! ~rr00; ~rr000;!"#!~rr000; ~rr0;!;Te" d~rr00 d~rr000;

with Kr the residual interaction.
At finite electronic temperature, the grand-canonical

noninteracting retarded density correlation function
reads [27]

#0!~rr; ~rr0;!;Te" #
1

ZG

X

n;N

exp
!

& 1

kBTe
'En!N" & N$(

"

% #0
n;N!~rr; ~rr0;!;Te"; (10)

where ZG is the grand-canonical partition function,
En!N" is the energy of the state jnNi having N electrons,
and

#0
n;N! ~rr; ~rr0;!;Te" #

X

m

hnNjn̂n!~rr"jmNihmNjn̂n!~rr0"jnNi
!& 'Em!N" & En!N"( $ i!

& hnNjn̂n!~rr0"jmNihmNjn̂n! ~rr"jnNi
!$ 'Em!N" & En!N"( $ i!

:

In the above expression, n̂n!~rr" is the particle density op-
erator defined from the wave field operators by n̂n! ~rr" #
 ̂ $!~rr" ̂ !~rr" with  ̂ $!~rr" # P

kâa
$
k ’

)
k!~rr" and  ̂ ! ~rr" #

P

kâak’k! ~rr". In order to produce numerically tractable
results, we have added a small imaginary part to the
probe frequency, so !! !$ i!.

The quantity which is directly related to an experi-
mental determination of the plasmon shift is the differ-
ential transmission usually defined in femtosecond
spectroscopy by

!T
T

!!;Te" #
3

2%R2 '&!!;T0" & &!!;Te"(; (11)

where R is the radius of the metallic particle. The
variation of temperature from T0 to Te is induced by
a pump pulse which can be delayed with respect to
the probe (dynamical measurements). &!!;Te" #
'4%!=c(=''!!;Te"( is the photoabsorption cross section
calculated from the frequency dependent polarizability at
temperature Te given by

'!!;Te" #
Z

!"! ~rr;!;Te"Vext!~rr;!" d~rr: (12)

Because of the problem of mass selection, most of the
experiments on free mass-selected clusters are carried
out with charged species. We have computed the optical
spectrum for two isoelectronic free closed-shell sodium
clusters having 138 valence electrons. The results are
presented in Fig. 1. The oscillator strengths in the photon
energy range shown in the figure are 73% and 84% for
Na138 and Na$139, respectively. Thus, due to the presence of
the surface plasmon resonance, almost all the oscillator
strength is concentrated in this small energy range
(0.2 eV). Furthermore, it does not change in the electronic
temperature range considered in this work. Additional
quasiparticle states are also present in this energy range.
They will be ignored in the following since they do not
reflect the collective behavior of the confined electronic
system. For the two species, we observe the same striking
evolution with increasing temperature: a redshift of the
SP up to a certain temperature, Ttre , followed by a blue-
shift of the resonance. The value of Ttre depends on the
cluster charge. Indeed, we have approximately Ttre ’
1000 K and 2500 K for Na138 and Na$139, respectively.
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FIG. 1. TDLDA photoabsorption cross sections of Na138 and
Na$139 as a function of the photon energy for different values of
the electronic temperature.
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Figure 5.8: TDLDA photoabsorption cross sections (in atomic units) of Na138 and Na+
139

as a function of the photon energy for different values of the electronic
temperature. (Reproduced from Ref. 67.)

blueshift, as one can expect for a bulk metal. However, we have restricted ourselves
to low temperatures compared to the work function of the nanoparticle, where we can
neglect those extended states in the evaluation of the spill-out. The critical temperature
of a thousand degrees is much smaller than the Fermi temperature for metals, such that
our treatment should remain a good approximation.

5.3 Conclusion for Chapter 5

In this chapter, we have focused on the surface plasmon resonance frequency. There are
two effects which lead to a redshift of this frequency with respect to the classical Mie
frequency: the well-known electronic spill-out and the coupling of the collective surface
plasmon excitation to the electronic environment.

We have analyzed the spill-out effect arising from the electron density outside the
nanoparticle. Our semiclassical analysis has led to a good agreement with local density
approximation calculations. In order to achieve this, it was necessary to introduce an
effective radius of the nanoparticle which accounts for the details of the self-consistent
mean-field potential. The ratio of spill-out electrons over the total number as well as
the resulting redshift of the surface plasmon frequency scale inversely with the size of
the nanoparticle. The spill-out-induced redshift was shown, by means of a Sommerfeld
expansion, to increase quadratically with the temperature.

We have demonstrated that the coupling between the electronic center of mass and the
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Chapter 5 Frequency of the surface plasmon excitation

relative coordinates results in an additional redshift of the surface plasmon frequency.
This effect is of the same order as the redshift induced by the spill-out effect and presents
a similar size and temperature dependence. Thus it has to be taken into account in the
description of numerical and experimental results. Our semiclassical theory predicts that
for the smallest sizes of nanoparticles, the environment-induced redshift should exhibit
a nonmonotonic behavior as a function of the size. This is confirmed by numerical
calculations. Since such oscillations do not occur in the contribution to the redshift
caused by the spill-out effect, one should be able to distinguish the two effects.
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Chapter 6

Time evolution of the optical
transmission in a pump-probe
configuration

Inutile d’employer un
thermomètre de haute précision
pour prendre la température
d’un fantôme.

(Jean Rostand 1894-1977, in
Carnet d’un biologiste)

We now discuss the experimental consequences of the temperature dependence of the
Landau damping linewidth (4.59) and of the energy shifts induced by the spill-out
(Eqs. 1.7 and 5.13) and by the electronic environment (5.27).

We focus on the absorption cross section defined in (1.15). Assuming it to be of the
Breit-Wigner form, we have

σ(ω, T ) = s(a)
γ(T )/2

[ω − ωsp(T )]2 + [γ(T )/2]2
, (6.1)

where ωsp(T ) is the temperature-dependent resonance frequency of the surface plasmon
excitation given in (3.35) and s(a) is a size-dependent normalization prefactor. For the
spill-out-caused redshift included in ωsp, we consider the effective radius discussed in
Sec. 5.1.3 which doubles the result of (5.13).

Unfortunately, to the best of our knowledge, systematic experimental investigations of
the shape of the absorption cross section as a function of temperature are not available.
However, an indirect approach is offered by pump-probe experiments [61–65], where the
nanoparticles are excited by an intense laser pulse, i.e., the pump laser field (see Sec. 1.3).
After a given time delay, the system is probed with a weak laser field, measuring the
transmission T of the nanoparticles. After the excitation of a surface plasmon, its energy
is transferred on the femtosecond timescale to the electronic environment, resulting in
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Chapter 6 Time evolution of the optical transmission in a pump-probe configuration

the heating of the latter. On a much longer timescale of typically a picosecond, the
equilibration of the electrons with the phonon heat bath results in the decrease of the
temperature of the electronic system with time. Such a process is not treated in our
theory.

An experimentally accessible quantity [61–65] is the differential transmission ∆T /T =
(Ton − Toff)/Toff , i.e., the normalized difference of transmissions with and without the
pump laser field. It is defined as ∆T /T = −∆αL where L = 2a is the sample thickness
(here, the diameter of the nanoparticle) and ∆α is the pump-induced absorption change
[66]. Since the absorption coefficient α is related to the photoabsorption cross section
through σ = αV , V being the volume of the nanoparticle, we have

∆T
T

(ω, T ) = − 3

2πa2
[σ(ω, T )− σ(ω, Tamb)] , (6.2)

Tamb being the ambient temperature. The relation (6.2) between transmission and ab-
sorption holds provided that the reflectivity of the sample can be neglected, which is the
case in most of the experimental setups. The differential transmission can be viewed in
two different ways. For a fixed time delay between the pump and the probe pulses, it is
sensitive to the energy provided by the pump laser which is transferred to the electronic
environment via the surface plasmon, and thus to the temperature of the heat bath. Al-
ternatively, for a given pump intensity, increasing the time delay between the pump and
the probe scans the relaxation process of the electronic system as the bath temperature
decreases.

In order to obtain an estimate of the electronic temperature just after the excitation of
the nanoparticle by the pump laser field, we assume that the cluster absorbs resonantly
a photon of energy Eph ' ~ωM. This results in an increase of the internal energy
E(T ) of the nanoparticle compared to the ambient temperature according to Eph =
E(T )−E(Tamb). The Sommerfeld theory of metals yields for the electronic energy of a
Fermi gas at a temperature T � TF [9]

E(T ) ' E(T = 0) +
π2

6
(kBT )2 %(εF), (6.3)

where %(εF) is the density of states at the Fermi energy εF. Consistently with our
semiclassical expansions, we take for the density of states the Weyl term (C.28), and
including the spin degeneracy, we obtain

kBT '

[
9Eph

π
√
εF

(
~2

2mea2

)3/2

+ (kBTamb)
2

]1/2

(6.4)

for the initial electronic temperature just after the excitation by the pump pulse.1

1As an example, if we consider a sodium nanoparticle consisting of N = 138 electrons, we obtain with
(6.4) an initial temperature of approximately 2400 K after the excitation by the pump laser field.
This is consistent with the result of 2000 K obtained in Ref. 67 using a two-temperature model (see
Fig. 3a in Ref. 67).
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Figure 6.1: Differential transmission ∆T /T as a function of the probe energy ~ω for
increasing temperatures, resulting from increasing pump intensities and a
fixed delay between pump and probe (or by decreasing the time delay at a
fixed pump intensity). The presented results are for a sodium nanoparticle
with a radius a = 2 nm.

In Fig. 6.1, we present the differential transmission of (6.2) for a sodium nanoparticle
of radius a = 2 nm, which has a strong surface plasmon resonance around ~ωsp(T =
300 K) ' 3.37 eV according to our semiclassical calculations. From (6.4), the resonant
absorption of one photon heats the electronic system to a temperature of approximately
900K. We see that as the temperature of the electronic system increases, ∆T /T becomes
more and more pronounced since both, the linewidth and the redshift of the resonance
frequency in (6.1) increase with temperature. Similar results are observed in experiments
[61–65], where the amplitude of ∆T /T is observed to decrease as a function of the time
delay between the pump and the probe laser fields (see Fig. 6.2). This is accompanied
by the blueshift of the crossing of the differential transmission curves with the zero
line as the time delay increases. This blueshift comes from the fact that, as the time
delay increases, the temperature of the electronic system decreases, and thus the surface
plasmon frequency is shifted to higher energies. This could explain the slowing of the
relaxation process noticed in Ref. 61 when the probe frequency is in the vicinity of
the surface plasmon resonance (see Fig. 1.10). Moreover, the asymmetry of ∆T /T is
observed in the experiments (see Figs. 1.9 and 6.2) and obtained in our calculations.

Our results could provide a possibility to fit the experimental results on metallic
nanoparticles excited by a pump laser field in order to extract the temperature, and
thus could assist in analyzing the relaxation process. The possibility of fitting the dif-
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Chapter 6 Time evolution of the optical transmission in a pump-probe configuration

( )J.-Y. Bigot et al.rChemical Physics 251 2000 181–203 189

Ž . Ž .Fig. 9. D´ t and D´ t as in Fig. 8 showing the initial1 2

Ž .relaxation in D´ . The curves are obtained after a fit of DTrT t2

Ž .and DRrR t with spline functions.

2.3. Electron dynamics in Cu and Ag nanoparticles

The optical response of noble metallic clusters

embedded in a glass matrix displays a resonance
Ž .when the condition ´ v sy2´ is fulfilled, where1 0

´ is the dielectric constant of the matrix. This0

resonance, which corresponds to the first order mode
w xof the scattering of light by a metallic sphere 13,42 ,

w xcan also be viewed as a plasmon mode 43,44 since,

in its simplest description, it is directly related to the

electronic properties of the collective excitation of

the metal. This resonance was described as a colloid
w xband in the early work of Doyle 45 . One should

keep in mind that both the intraband and interband

optical processes are involved in the material re-

sponse to a light excitation. As a consequence, the

quasi-particle aspect of the electronic structure is

always inherent to the dielectric properties of a

metallic sphere. Far from being a handicap, this

allows us to use the surface plasmon as a tool to

probe the dielectric properties of the metal, since the

usual structureless character of the optical response

of the metal is suppressed. This is particularly true

for the study of the electron dynamics in the metallic
w xnanoparticles 46–49 . The aim of this section is to

see how the dynamical properties reported in the

preceding section are influenced by the existence of

this surface plasmon mode.

Fig. 10 represents the spectrally and temporally

resolved differential transmission of copper nanopar-

ticles with an average diameter of 10 nm. Because of
Ž y4 .the low particle concentration 2P10 in volume ,

the reflection is essentially governed by the glass

matrix and no significant DRrR pump–probe signal
Ž .can be observed. The set of curves DTrT l,t dis-

Ž .plays a positive resp. negative contribution on the
Ž .high resp. low energy side of the interband transi-

tion energy of copper. It corresponds to a modifica-

tion of the electronic populations around the Fermi

level, which nicely reflects the heating and cooling

processes of the electrons. First, the distribution of

occupied electronic states smears around the Fermi

energy when the electrons acquire some kinetic en-

ergy due to the pump pulse. The process lasts several

hundreds of femtoseconds during which the electrons

are not necessarily in thermal equilibrium. Then, the

distribution spectrally narrows when the electrons

relax their energy via the electron–phonon interac-

tion. During this process, the electronic and lattice

temperatures tend to equilibrate, a process which

lasts a few picoseconds. The detailed analysis of the

pump–probe signals shows that the surface plasmon

is spectrally broadened during several hundreds of

Fig. 10. Spectral and temporal dependence of the differential

transmission of Cu nanoparticles with a diameter of 10 nm. The

absorbed pump energy density is 200 mJrcm2.
Figure 6.2: Measured differential transmission as a function of the probe energy for

increasing delay times between the pump and the probe pulses for copper
nanoparticles with a radius a = 5 nm. (Reproduced from Ref. 63).

ferential transmission using a well-defined temperature would allow to determine the
thermalization time following the pump laser excitation and the surface plasmon de-
cay. This initial period is very difficult to describe theoretically given its nonequilibrium
character.2 In the timescale of picoseconds, the two-temperature model, in which the
electrons and lattice vibrations (phonons) are considered as two interacting systems at
different temperatures, can be used. From the time dependence of the electron tem-
perature, important informations can be extracted, like the electron-phonon coupling
strength [63].

2A useful tool to describe nonequilibrium phenomena is however Keldysh’s formalism. See, e.g.,
Ref. 106.
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Chapter 7

Double plasmon excitation and
ionization in metallic clusters

Ce qui n’est pas, c’est ce qui ne
pouvait être.

(André Gide, 1869-1951, in
Journal)

In this chapter we address the lifetime of the second collective excitation level in metallic
nanoparticles. This second excited level will be called “double plasmon” in the sequel.
Although there is no clear direct experimental observation of a double plasmon in metal-
lic clusters, the development of femtosecond spectroscopy will certainly allow for detailed
studies in the near future. Recent experiments observed the ionization of the charged
cluster Na+

93 by a femtosecond laser pulse and claimed it was a consequence of the ex-
citation of the second plasmon state [72]. However, the analysis of the distribution of
photoelectrons yielded a thermal distribution and therefore the relevance of the double
plasmon for this experiment is not yet settled [73]. On the other hand, it is clear that a
strong-enough laser pulse will excite the second collective state (see Appendix A). Such
an excitation will be a well-defined resonance only if its linewidth is small compared
with other scales of the photoabsorption spectrum (like for instance ωM).

Second collective excitations have been widely analyzed in the context of giant dipolar
resonances in nuclei [6,7,107,108]. The anharmonicities were found to be relatively small,
making it possible to observe this resonance [109]. The theoretical tools developed
in nuclear physics have been adapted to the study of the double plasmon in metallic
clusters [110,111]. In particular, a variational approach [111] showed that the difference
between the energy of the double plasmon and 2~ωM decreases as N−4/3 with the size of
the nanoparticle. In our calculations, we will assume that the double-plasmon energy is
exactly twice the Mie energy.

For most of the clusters of experimental interest, 2~ωM > W > ~ωM, where W is the
work function. Ionization then appears as an additional decay channel of the double
plasmon that adds to the Landau damping, while it is not possible if only the single
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plasmon is excited.1

In the remaining of this chapter, we will neglect the spill-out effect that redshifts the
frequency of the surface plasmon from the classical Mie value according to (1.7). As
it was previously the case for instance in our derivation of the single surface plasmon
linewidth in Chapter 4, the spill-out correction to the Mie frequency yields higher-
order terms for the double plasmon linewidth that we can neglect consistently with our
semiclassical expansions. Thus, we will approximate ω̃M by ωM. Furthermore, we will
restrict ourselves to zero temperature.

7.1 Second plasmon decay: Landau damping

In this section, we consider processes which do not lead to ionization, that is, the final
particle energies verify εp < V0 = εF +W . A sufficiently strong laser excitation gives rise
to a non-negligible occupation probability of the second harmonic oscillator state |2〉 (see
Appendix A). The second plasmon state can then decay by two distinct Landau damping
processes (see the sketch of Fig. 7.1). A first-order process, with a rate γ2→1, results
from the transition of |2〉 (double plasmon) into |1〉 (single plasmon). The corresponding
matrix element of the perturbation Hc between these two states is a factor of

√
2 larger

than the one worked out in Chapter 4, and then γ2→1 = 2γ [where γ is the single-plasmon
linewidth given by (4.2) and calculated under certain approximations in Chapter 4].
Thus, the contribution of the first-order process to the linewidth is just twice the value
found for the single plasmon, and shows the same nonmonotonic features superposed to
a 1/a size-dependence.

The other mechanism one has to take into account is the second-order process, where
the double plasmon decays directly into the center-of-mass ground state. It is shown by
the dashed arrow in Fig. 7.1. This is possible provided that V0 > 2~ωM. In order to
simplify the calculation we assume, for the remainder of this section, that V0 →∞. At
zero temperature, the corresponding linewidth γ2→0 is given by the Fermi golden rule in
second order perturbation theory (see Appendix D, Eq. D.9, and Ref. 71):

γ2→0 =
2π

~
∑
Frel

∣∣∣∣∣∣
∑
F ′

rel

〈0, Frel|Hc|1, F ′rel〉〈1, F ′rel|Hc|2, Irel〉
~ωM + εIrel − εF ′

rel

∣∣∣∣∣∣
2

δ(2~ωM + εIrel − εFrel
). (7.1)

Here we have used the same notations as in Sec. 3.1.1. Making explicit the perturbation
Hc of (2.35) and restricting ourselves to the random phase approximation which allows
only one particle-one hole transitions [54], we obtain at zero temperature

γ2→0 =
4π

~
∑
ph

|Kph|2 δ(2~ωM − εp + εh), (7.2)

with

Kph = Λ2
∑
i6=p,h

dpidih

~ωM − εi + εh

. (7.3)

1However, for ~ωM > W , the ionization through a single-plasmon process is a relevant channel [112].
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!ωM

!ωM

|2〉

|1〉

|0〉

γ2→1

γ1→0

γ2→0

Figure 7.1: Sketch of the decay of the double plasmon state. The first-order decay
mechanisms are indicated by solid arrows (rates γ2→1 and γ1→0), while the
second-order process is shown by a dashed arrow (rate γ2→0).

In (7.2) and (7.3), p and h denote particle and hole states, respectively. The sum over
i in (7.3) runs over all the virtual intermediate states. We use the same notations as
in Chapter 4 and replace the sums over particle and hole states by integrals over the
energy with the appropriate density of states, which is approximated by its semiclassical
counterpart (4.35).

As in the case of the single plasmon, we work in the limit lp � 1 in order to find
the smooth size-dependent contribution γ0

2→0 (and the corresponding K0
ph). Using the

expression of the matrix elements dαβ (see Eqs. 4.8, 4.10 and 4.27), the dipole selection
rules, and the smooth part of the semiclassical density of states (4.36), we have

K0
ph = 9

(
~ωM

εF

)3

(kFa)
3√εpεhδmpmh

[
Ampmp

lplp+1A
mpmp

lp+1lh
Ilp+1(ηp, ηh)(δlhlp + δlh,lp+2) (7.4)

+Ampmp

lplp−1A
mpmp

lp−1lh
Ilp−1(ηp, ηh)(δlhlp + δlh,lp−2)

]
.

Here, we have defined the integral

Ili(ηp, ηh) =

∫ ∞

li+1/2

dηi

ηi

√
η2

i − (li + 1/2)2

(ξη2
F − η2

i + η2
h)
[
(η2

i − η2
p)(η

2
i − ηh

2)
]2 (7.5)
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with η = ka, ηF = kFa, and ξ = ~ωM/εF.
By inserting the semiclassical oscillating density of states (4.37) in the expression of

Kph (7.3), we obtain a negligible contribution Kosc
ph since one has to integrate smooth

energy-dependent functions multiplied by the oscillating density of states %osc
li

(εi) of the
intermediate states in the well.

Inserting (7.4) into expression (7.2), replacing the sum over lp by an integral, we find

γ0
2→0 =

324

5π~

(
~ωM

εF

)6

εF (kFa)
4

∫ ηF
√

1+2ξ

ηF max (1,
√

2ξ)

dηp ηp (7.6)

×
∫ ηh

0

dlp 2lp

√
η2

p − l2p

√
ηh

2 − l2p
[
Ilp(ηp, ηh)

]2
,

where a factor of 2 accounts for the spin degeneracy. We have introduced ηh = (η2
p −

2η2
Fξ)

1/2. With the change of variables z = η2
p/η

2
F, y = l2p/η

2
F, and x = η2

i /η
2
F, we obtain

γ0
2→0 =

81

10π~

(
~ωM

εF

)6
εF

(kFa)
4

∫ 1+2ξ

max (1,2ξ)

dz

∫ z−2ξ

0

dy
√
z − y

√
z − y − 2ξ J2(y, z, ξ),

(7.7)
with

J(y, z, ξ) =

∫ ∞

y

dx

√
x− y

(x+ ξ − z) [(x− z)(x− z + 2ξ)]2
. (7.8)

The integral J possesses three singularities. This comes from the fact that, to evaluate
Kph, we have approximated the discrete sum over intermediate states i by an integral
over the energy εi. However, in (7.3), i must be different from a particle (p) or a hole
(h) state. The divergences occurs for

x = z − ξ ⇔ εi = εp − ~ωM, (7.9a)

x = z ⇔ εi = εp, (7.9b)

x = z − 2ξ ⇔ εi = εh. (7.9c)

The function J is therefore dominated by those divergences. Changing the variable x to
x′ = x− z + ξ, we obtain by expanding the integral around the three singularities

J(y, z, ξ) ≈ 1

4ξ3

[√
z − y

∫ +∞

−∞
dx′

1

(x′ − ξ)2 −
√
z − y − 2ξ

∫ +∞

−∞
dx′

1

(x′ + ξ)2

]
, (7.10)

which can be rewritten, introducing the appropriate cutoffs αξ and α−ξ, as

J(y, z, ξ) =
1

2ξ3

[
√
z − y

∫ +∞

αξ/2

dα

α2
−
√
z − y − 2ξ

∫ +∞

α−ξ/2

dα

α2

]

=
1

ξ3

(√
z − y

αξ

−
√
z − y − 2ξ

α−ξ

)
. (7.11)
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εiεp εa
i

“forbidden”region

εa
i−1

εFαξ

εFαξ

Figure 7.2: Sketch of the region of integration over the intermediate state of energy εi.
The width of the forbidden region (shown in gray) is taken as the mean
level spacing in the system. εa

i is the energy of the quantum level just above
εi = εp which determines the cutoff αξ.

Let us now detail the estimation of the cutoff αξ at εi = εp: With our notations, it is
given by

αξ =
εa

i − εp

εF

(7.12)

where εa
i is the allowed energy of the (discrete) state i just after the divergence point for

which εi = εp (see Fig. 7.2). Using the semiclassical quantization in the infinite spherical
well2

ka =
lπ

2
+ nπ (7.13)

with n a positive integer, we obtain

αξ =
1

(kFa)
2

[
(lai − lp)π

2
+ (na

i − np)π

] [
(lai + lp)π

2
+ (na

i + np)π

]
. (7.14)

Now, the dipole selection rules dictate that lai = lp ± 1. If lai = lp + 1 (lai = lp − 1), the
next allowed quantum level just after the state p has na

i = np (na
i = np + 1). Thus, in

2It is obtained by expanding the spherical Bessel function jl(ka) for ka � 1.

119



Chapter 7 Double plasmon excitation and ionization in metallic clusters

the limit kFa� 1, we finally obtain

αξ =
π
√
z

kFa
. (7.15)

A similar calculation yields the cutoff

α−ξ =
π
√
z − 2ξ

kFa
(7.16)

for the divergence at εi = εh. Thus, we get for (7.11)

J(y, z, ξ) ' kFa

πξ3

(√
z − y

z
−

√
z − y − 2ξ

z − 2ξ

)
. (7.17)

With this result, we finally obtain for the Landau damping rate of the second-order
decay process (7.7)

γ0
2→0 '

81

10π3~
εF

(kFa)
2h

(
~ωM

εF

)
, (7.18)

where the function h of the parameter ξ = ~ωM/εF is defined as

h(ξ) =

∫ 1+2ξ

max (1,2ξ)

dz

∫ z−2ξ

0

dy
√
z − y

√
z − y − 2ξ

(√
z − y

z
−

√
z − y − 2ξ

z − 2ξ

)2

. (7.19)

When the remaining two-dimensional integral is evaluated numerically we obtain an
increasing function of the parameter ξ, with h(0) = 0 as shown in Fig. 7.3. This function
has the asymptotic limit limξ�1 h(ξ) = ∞. We see that when the double-plasmon state
is too high in energy, the linewidth diverges to infinity and this resonance is no longer
well-defined (the double-plasmon state has a lifetime equal to zero in this condition).

The total linewidth of the Landau damped second plasmon is the sum of the first-
and second-order processes: γdp = γ2→1 + γ2→0 (see Fig. 7.1). The different (smooth)
size dependence of both processes [vF/a for the former and (kFa)

−1vF/a for the latter]
implies that, except for the smallest clusters, the second-order process gives a negligible
contribution to the linewidth of the double plasmon (in comparison with that of the first
order). We might ask the question of whether the inclusion of the oscillating components
of both linewidths can affect the above conclusion in this range of particle sizes. An
extension of the calculations presented in Chapter 4 shows that the oscillating part of
the second-order channel of the double plasmon is given by

γosc
2→0 ∼

εF

~(kFa)11/2
cos (2kFa). (7.20)

As indicated before, γosc
2→1 is given by twice the result of (4.69), therefore these nonmono-

tonic contributions cannot lead to a significant modification of our conclusion about the
irrelevance of the second-order term for the sizes of physical interest. We also notice
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Figure 7.3: Frequency dependence of the double-plasmon Landau damping rate, given
by the function h of ~ωM/εF.

that γdp � ωM, since for typical nanoparticles, εF ∼ ~ωM and kFa � 1. Therefore,
the Landau damping is not capable of ruling out the second plasmon as a well-defined
resonance.

The lifetime of the second plasmon for the Landau damping processes is simply γ−1
dp .

To determine the time it takes for the doubly excited state of the center-of-mass system
to return to its ground state, we also have to take into account the decay of the first
plasmon into the ground-state γ1→0. If we assume that the recombination of particle-
hole pairs (created by the decay of the double plasmon into the single plasmon) is very
fast as compared to other timescales, we have γ1→0 = γ. Due to the fact that lifetimes
are additive, we have for this sequential decay a lifetime τ2→1→0 = 3/2γ.

7.2 Second plasmon decay and ionization

We now examine the last decay channel of the second plasmon state: the relaxation of
this collective excitation by ejecting an electron from the nanoparticle (ionization, see
Fig. 7.4). We now need to determine the particle and hole states in the self-consistent
field V (r) = V0Θ(r−a) which has a finite height V0, since the ionization process requires
an appropriate treatment of the states of the continuum. For simplicity, we will neglect
the Coulomb tail seen for r > a by electrons with an energy εp > V0.

In order to determine the particle and hole states, we close the system into a spherical
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V (r)

εF
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|h〉
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|i〉2!
ω

M

Figure 7.4: Scheme of the ionization process of the double-plasmon state which decays
by creating a particle-hole pair of energy 2~ωM, via the intermediate state
|i〉. Since the energy of the particle is such that εp > V0, ionization occurs.

box of radius L� a to quantize the states above the well and take the limit of L→∞
at the end of our calculations. Obviously we need to do some approximations in order to
simplify this difficult problem. First, in the high energy limit, we assume that kr � 1,
and then use the asymptotic expansions of the quantum mechanical single-particle states
inside and outside the well. Even though this approximation strongly affects the wave
functions near r = 0, its impact on the dipole matrix elements is very small.3 Second,
for the states with energy ε < V0, we neglect the exponential decay of the wave function
for r > a. Finally, in the spirit of the scattering theory, we use a simplified expression
for the normalization of the free states above the well. The above assumptions result in
the following radial wave functions inside the well (ε < V0)

u<
εl(r) '


√

2

a
sin (kr − lπ/2), r 6 a,

0, r > a.

(7.21)

The wavevector k =
√

2meε/~ is given by the quantization condition ka = lπ/2 + nπ,

3As a test of consistency, we checked that this approximation leads in the case of the single plasmon
to a linewidth at T = 0 given by (4.59) for ~ωM/εF = 0. For ~ωM/εF 6= 0, we obtain a slightly
different frequency-dependence, but with the same decreasing features.
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with n a non-negative integer. For energies ε > V0, we have

u>
εl(r) '

√
2

L

{
αl(k)A(k) sin (kr − lπ/2), r 6 a,

sin [κ(r − L)], r > a,
(7.22)

with κ =
√
k2 − 2meV0/~2. We have introduced the notations

αl(k) = sign

{
sin [κ(a− L)]

sin (ka− lπ/2)

}
, (7.23)

A(k) =

√
sin2 [κ(a− L)] +

(κ
k

)2

cos2 [κ(a− L)]. (7.24)

The ionization rate of the double-plasmon state γion is given by (7.2) in the case where
the final particle states p of the sum are in the continuum. Since the effective (second-
order) matrix element Kph (7.3) is given by a sum over intermediate states |i〉, we now
have contributions from cases where the energy of |i〉 lies either in the well or in the
continuum.

When i represents a state in the well, using the angular momentum selection rules,
we can write in the limit kr � 1 the radial part of the matrix elements (4.8) as

Rlilh(εi, εh) =
(−1)ni−nh

∆k2
iha

δli,lh±1, (7.25)

and

Rlpli(εp, εi) = ±
√
a

L

αlp(kp)A(kp)

∆kpi

[
cos (∆kpia)−

sin (∆kpia)

∆kpia

]
δli,lp±1, (7.26)

where ∆kαβ = kα − kβ (α, β = p, h, i).
When i represents a state in the continuum,Rlilh(εi, εh) can be obtained by exchanging

(p↔ i) and (i↔ h) in (7.26). For the remaining case, we have

Rlpli(εp, εi) =
a

L

αlp(kp)αlp+1(ki)A(kp)A(ki)

∆kpi

[
cos (∆kpia)−

sin (∆kpia)

∆kpia

]
δli,lp±1

+B(kp, ki)δli,lp±1, (7.27)

where

B(kp, ki) =
a2

L

{
cos (∆κpiL)− sin (∆κpiL)ci(|∆κpi|a)

+ ∆κpia
[
cos (∆κpiL)sign(∆κpi)si(|∆κpi|a)

]}
, (7.28)

with si(x) and ci(x) the sine and cosine integral functions [113].
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The semiclassical l-fixed smooth density of states can be approximated by

%0
l (ε) '

1

2πε0


√

(ka)2 − (l + 1/2)2

(ka)2
, ε < V0,√

(κL)2 − (l + 1/2)2

(κa)2
, ε > V0,

(7.29)

with ε0 = ~2/2mea
2.

There is an obvious divergence that occurs in the sum of (7.3) for εi = εh, as it
can be seen on the matrix element (7.25). However, a careful analysis shows that the
contribution around that divergence vanishes because of the alternating sign when one
integrates over ni. For εi = εp, there is no divergence in (7.27). Therefore the dominant
contribution to Kph is given by the divergence of the term 1/(~ωM− εi + εh) that occurs
for εi < V0 in the regime we are interested in (~ωM < W < 2~ωM). We then have for
the ionization rate

γion ' 2Λ4 4π

~
∑
p>V0
h<εF

∑
i,j<V0

dpidih

~ωM − εi + εh

dpjdjh

~ωM − εj + εh

δ(2~ωM − εp + εh), (7.30)

where the factor of 2 accounts for the two spin channels and the dαβ are given by (4.8)
with the approximations (7.25) and (7.26) for the radial matrix elements. Furthermore,
we can distinguish in the above equation two contributions: off-diagonal terms (i 6= j)
which have divergences of the principal value type and that we neglect here, and diagonal
terms (i = j) yielding divergences which determine γion. We smooth out the energy εi

appearing in the denominator by introducing an imaginary part of the order of the mean
level-spacing

∆ =
3πε

3/2
0√

~ωM + εh

(7.31)

at an energy ~ωM + εh. ∆ is just the inverse of the Weyl density of states taken at the
above-mentioned energy. This standard procedure of smoothing the divergences is of
critical importance, and that is why in Ref. 71 the final result is presented as a function
of ∆. Summing over li and mi, the remaining sum over the radial quantum numbers ni

can be done in the following way. Defining

X =
∑
ni

1

(~ωM − εi + εh)
2 (7.32)

and

x =
~ωM + εh

π2ε0

, (7.33)

and using the quantization

εi = ε0

(
liπ

2
+ niπ

)2

, (7.34)
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we have

X =
1

π4ε2
0

∑
ni

1[
(ni − n−i )(ni − n+

i )
]2 . (7.35)

In the above equation, we have defined n+
i = −li/2 +

√
x and n−i = −li/2−

√
x. Since

ni has to be positive, n−i < 0 cannot be a singularity. Thus we have

X ≈ 1

π4ε2
0

1

(n+
i − n−i )2

∑
ni

1

(ni − n+
i )2

. (7.36)

Now, using the definitions of n±i and x, replacing the sum over ni by an integral and
introducing the imaginary part ∆, we obtain

X ≈ 1

4π2ε0

1

~ωM + εh

∫ +∞

−∞

dy

(y − n+
i − i∆̄)(y − n+

i + i∆̄)
, (7.37)

with ∆̄ = ∆/π2ε0. Performing the remaining integral in the complex plane, we finally
obtain ∑

ni

1

|~ωM − εi + εh + i∆|2
≈ π

4∆

1

~ωM + εh

. (7.38)

Inserting the result (7.38) into (7.30), we arrive at

γion '
π2a(~ωM)6ε0

120~N2L

∑
lp

lp

∫ εF+2~ωM

max (V0,2~ωM)

dεp

%0
lp
(εp)%

0
lp
(εh)

∆
(7.39)

× [A(kp)]
2

(~ωM + εh)(
√

~ωM + εh −
√
εh)

4
(
√
εp −

√
~ωM + εh)

2 ,

with εh = εp − 2~ωM.
Taking the limit of L→∞, we finally obtain

γion '
3π

160

vF

a
q(ξ, ζ), (7.40)

where ξ = ~ωM/εF and ζ = W/εF. The function q of the two variables ξ and ζ is defined
as

q(ξ, ζ) =

(
ξ

2

)6 ∫ 1+2ξ

max (2ξ,1+ζ)

dz
(2z − 1− ζ)

√
z − 2ξ

z
√

(z − ξ)(z − 1− ζ)

× 1

(
√
z − ξ −

√
z − 2ξ)

4
(
√
z −

√
z − ξ)

2 . (7.41)

Since our approach is valid when ~ωM 6 W 6 2~ωM, the function q(ξ, ζ) is defined for
ξ 6 ζ 6 2ξ. It can be integrated numerically. The result is shown in Fig. 7.5. The
function q(ξ, ζ) is not very sensitive to the value of ζ/ξ = W/~ωM in the presented
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Figure 7.5: Function q(ξ, ζ) from (7.41). It is represented as a function of ξ for different
values of ζ/ξ, with ζ = W/εF.

interval. However, it vanishes at the upper limit W = 2~ωM, since in this case particle
states cannot be in the continuum and γion = 0.

The size scaling of γion is mainly given by a 1/a-dependence of the prefactor (Fig. 7.6),
despite the fact that the work function W appearing in the parameter ζ is size dependent
and scales (for a neutral cluster) as [103] W = W∞ + 3e2/8a where W∞ is the work
function of the bulk material.

Using the work function W = 4.65 eV and the experimental value of ~ωM = 2.75 eV
for the charged Na+

93 clusters of Refs. 72 and 73, Eq. 7.40 yields ~γion ' 0.1 eV, which
corresponds to an ionization lifetime of the second plasmon of 6.6 fs. This value is
of the same order of magnitude as the experimentally reported lifetime of 10 fs. It is
also in rough agreement with the estimation yielded by the numerical calculations of
Ref. 71 based on a separable residual interaction (10 to 20 fs). Therefore, despite the
approximations we have been forced to make in our analytical calculations, we believe
that we kept the essential ingredients of this complicated problem. The lifetimes obtained
by the different procedures consistently establish the second plasmon as a well-defined
resonance in metallic clusters, at least in charged ones where the work function is larger
than for the case of neutral nanoparticles. While the numerical calculations of Ref. 71
have been performed for just one size, our results exhibit a clear size dependence that
can be tested in future experiments.
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Figure 7.6: Ionization linewidth of the second plasmon state as a function of the
nanoparticle radius for singly charged Na clusters. Square: experimental
value for Na+

93 taken from Refs. 72, 73. We have assumed a constant work
function W = 4.65 eV and took the experimental surface plasmon frequency
of 2.75 eV for ωM.

7.3 Conclusion for Chapter 7

In this chapter, the physical relevance of the second surface plasmon collective state
has been analyzed in terms of different decay channels: Landau damping and particle
ionization. For the Landau damping, we have shown that there exist two decay mecha-
nisms: the decay of the second collective state to the first one, a process whose associated
linewidth scales as 1/a with superimposed size-oscillations, and the direct decay to the
collective ground state leading to an additional linewidth scaling as 1/a2. The latter is
therefore negligible compared to the first-order decay process. The linewidth associated
with the ionization of the nanoparticle has been shown, by means of a semiclassical
expansion, to scale with the inverse size of the cluster. In this case, the delocalized
self-consistent states play a crucial role, and make the calculations more involved.

We have shown that both processes, Landau damping and particle ionization, are
relevant, but they do not preclude the existence of the resonance. The comparison
of our semiclassical calculation with the existing numerical and experimental results is
reasonably good, despite the various approximations of our model.

Our theoretical results concerning the different decay mechanisms of the second col-
lective excitation of metallic clusters should be important for the analysis of the electron
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Chapter 7 Double plasmon excitation and ionization in metallic clusters

dynamics following short and strong laser excitations. Indeed, a sufficiently strong ex-
citation could lead to a non-negligible occupation probability of the second collective
state. It could then be necessary to take it into account when discussing the dynamics
of the surface plasmon excitation.
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Chapter 8

Surface plasmon linewidth with an
inhomogeneous dielectric environment

Notre esprit est fait d’un
désordre, plus un besoin de
mettre en ordre.

(Paul Valéry, 1871-1945, in
Mauvaises Pensées et autres)

In this chapter, we go back to the problem of the single surface plasmon lifetime in the
experimentally relevant case of noble-metal nanoparticles embedded in a surrounding
matrix. In those nanoparticles, the screening of the s-electrons by the d-electrons can be
modeled by a dielectric constant εd, and the dielectric matrix by a constant εm. The two
dielectric constants affect the classical Mie frequency ωM according to (1.5). However,
a generalization of the derivation of Chapter 4 shows that, as long as we work with the
hypothesis of a steep potential (4.5), the smooth part of γ at zero temperature is still
given by

γ0(T = 0) =
3vF

4a
g0

(
εF

~ωM

)
, (8.1)

g0 being defined in (4.57). For a silver nanoparticle (εd ' 3.7) embedded in an argon
matrix (εm ' 1.7) [114], using (8.1) yields a value of γ0 about three times larger than the
TDLDA calculations [80, 81], themselves in good agreement with existing experiments
[115] (see Fig. 8.1). This discrepancy quoted by Molina et al. in Refs. 80 and 81 makes
the more systematic study of the dependence of the plasmon lifetime on εd and εm
presented in this chapter necessary. In the sequel of this chapter, we show that this
discrepancy can be understood regarding the details of the mean-field self-consistent
potential that has been approximated by a step-like function in Chapter 4.

In Fig. 8.2 we present the surface plasmon linewidth obtained from TDLDA calcula-
tions for several particle sizes between N = 138 and 1760, taking εd = 4 and εm = 2 and
the electron density of silver (rs = 3.03 a0). As in the case of Fig. 4.4, we see that for
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Chapter 8 Surface plasmon linewidth with an inhomogeneous dielectric environment

R.A. Molina et al.: Oscillatory behavior of the surface plasmon linewidth 129

Fig. 1. Linewidth as a function of the radius (in units of the
Bohr radius aB = 0.53 Å) for silver nanoparticles in an Ar ma-
trix calculated within TDLDA (full circles) together with the
experimental results of reference [11] (empty squares). The dot-
ted line through the numerical points is a guide-to-the-eye. The
dashed and the solid lines represent, respectively, Γ0(R) and
∆Γ (R) according to equations (4–6) (with a reduction factor
of 3 as discussed in the text). Inset: logarithm of the TDLDA
absorption cross section for Ag440 (R/aB = 2.2), showing the
pronounced surface plasmon resonance, fitted by a Lorentzian
(dotted line). The excited states are indicated by tick marks
and their oscillation strengths given by the height of the ver-
tical lines.

is larger than a minimum value. ∆Γ exhibits pronounced
oscillations as a function of the radius. The smooth part of
the linewidth, and our semiclassical result, are an overall
factor of 3 larger than the numerical results. Therefore,
they have been rescaled for in the figure. The experimen-
tal values of Charlé et al. (empty squares) are relatively
well described by the TDLDA results (within 20%). The
oscillations are suppressed due to the large particle sizes
and the smearing resulting from wide size-distributions.
The difference between the Kubo formula, on one hand,
and the numerical and experimental results, on the other
hand, is not understood. In any case, given the approx-
imations used in the semiclassical calculation, it is not
surprising that, although this simple theory works well
with alkaline metals, when we include εd(ω) there are fac-
tors not taken into account. Nevertheless, the analytically
obtained oscillations have the correct period and relative
size.

Moving through different values of εm we change the
position of the plasmon frequency ωM. Since the electron-
hole density-density correlation function is insensitive to
εm, the plasmon lifetime behaves in a non-monotonous
fashion as a function of εm. Thus, we can use the dielec-
tric constant of the embedding medium as a probe for
this density-density correlation function. As an example,
we show in Figure 2 the results of TDLDA calculations
for the width of the surface plasmon resonance for silver
clusters of two different sizes (N = 92 and N = 198) as

Fig. 2. Width of the surface plasmon resonance for silver
clusters of two different sizes as a function of εm. Inset: energy
of the plasmon together with the expression for the Mie formula
(solid line) with a small modification of the bulk ωp.

a function of εm. The oscillations in the width are very
different for the two sizes due to the shell filling and the
corresponding density correlation function. Although the
range of εm over which we can see the complete oscillation
of the plasmon lifetime is very large, it should be possible
to observe maxima and minima in experiments, if we are
able to change the dielectric constant of the surrounding
medium. In the inset of this figure we show the position of
the plasmon peak as a function of εm for the correspond-
ing sizes. The behavior with εm is very well described by
the Mie formula, and the two sizes behave in the same
way. We can see almost no difference in the position of
the plasmon peak between the sizes for the same value of
εm, but there are great changes in its width.

4 Ag nanoparticles embedded in a matrix
with a conduction band

The SiO2 used in experiments for embedding Ag nanopar-
ticles is an amorphous solid with a conduction band with
a minimum situated at −1.7 eV with respect to the vac-
uum energy. The valence band maximum occurs 10.6 eV
below the vacuum energy and has no influence in the Ag-
surface plasmon [15]. Chemical interaction in the surface
between Ag and the SiO2 is not expected to occur [14]
and chemical interface damping does not influence the
width of the plasmon in this case. In order to imple-
ment the TDLDA calculations, we simulate the embedded
medium by a change in the boundary conditions for the
calculation in the self-consistent potential V (r) so that
V (r) → −1.7 eV when r → ∞. In this way the electrons
are less bounded to the cluster and can more easily go
to the conduction band in the matrix. The results of the
self-consistent calculation of V (r) and its comparison with
the potential without conduction band are shown in the
inset of Figure 3. We can clearly see that the electrons at
EF are less tightly bounded, which translates in a small
redshift in the position of the plasmon peak due to the

a/a0

!γ (eV)

!ω (eV)

Figure 8.1: Linewidth at zero temperature as a function of the radius (in units of the
Bohr radius a0) for silver nanoparticles in an argon matrix calculated within
TDLDA (full circles) together with the experimental results of Ref. 115
(empty squares). The dotted line through the numerical points is a guide-
to-the-eye. The dashed and the solid lines represent, respectively, ~γ0 and
~γ = ~(γ0 + γosc) according to (4.59) and (4.69) (with a reduction factor
of 3 as discussed in the text). Inset: TDLDA absorption cross section (in
logarithmic scale) for Ag440 (a = 2.2 a0), showing the pronounced surface
plasmon resonance, fitted by a Lorentzian (dotted line). The many-body
states are indicated by tick marks and their oscillation strengths given by
the height of the vertical lines. (Reproduced from Ref. 81.)
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Figure 8.2: Surface plasmon linewidth from the TDLDA as a function of the inverse
radius for the example of εd = 4 and εm = 2 (dots). The straight line is a
linear fit ~γ0 = C/(a/a0) with C = 3.21 eV. In the figure, rs = 3.03 a0.

relatively large radii the linewidth can be approximated by

~γ0 =
C

a/a0

(8.2)

while for smaller radii a, superimposed oscillations become noticeable. As shown in
Figs. 8.3 and 8.4 when plotting the coefficients C as a function of εd and εm, we see that
the numerical results are at odds with the simple prediction of (8.1) (upward continuous
curves).

The increase of γ0 with εd and εm in the latter case arises from the fact that the
function g0 is increasing with εF/~ωM and the Mie frequency ωM = ωp/

√
εd + 2εm is

redshifted when εd or εm is increasing. Calculations performed for the electronic density
of sodium (rs = 3.93 a0) give the same kind of discrepancy between (8.1) and TDLDA
results, as shown in Fig. 8.4. The discrepancy in Fig. 8.3 for εd = εm = 1 between (8.1)
and the TDLDA is due to the uncertainty of the fitting procedure. For rs = 3.93 a0 (see
Fig. 8.4), both points are in good agreement.

The discrepancy between the numerics and (8.1) shows that a direct application of the
analytical approach presented in Chapter 4 does not reproduce the TDLDA results. As
we will see in the following, the discrepancy is caused by approximating the electronic
self-consistent potential by a square well.

The LDA calculations show that the shape of the self-consistent potential is modified
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Chapter 8 Surface plasmon linewidth with an inhomogeneous dielectric environment

0

2.5

5

7.5

10
C

(e
V

)
C

(e
V

)

1 2 3 4

εmεm

εd = 1

εd = 2

εd = 3

εd = 4

Figure 8.3: Prefactor C of the smooth 1/a size-dependent component of the surface
plasmon linewidth ~γ0 as a function of εm for εd between 1 and 4. The
crosses connected by straight lines (guide-to-the-eye) represent the TDLDA
calculations, while the increasing curves in the upper part of the figure
depict the analytical expression (8.1). The thin dotted line is for εd = εm.
The results presented in the figure are for the electronic density of silver
(rs = 3.03 a0).

when one increases the dielectric constants εd or εm. In Fig. 8.5 we present the self-
consistent potential of a nanoparticle consisting of N = 832 atoms (rs = 3.03 a0) for
various values of ε = εd = εm. This choice does not correspond to a physical realization,
but it is useful for the interpretation of the analytical work, as it merely represents a
renormalization of the electronic charge. The main effect of increasing ε is the decrease
of the slope of the potential near the boundary r = a. This indicates that our ap-
proximation of a square-well potential becomes less valid as the dielectric constant is
increased. The dependence of γ0 on ε in this case is obtained by moving along the (thin
dotted) line εd = εm in Figs. 8.3 and 8.4.

In the following we refine the calculation of the radial dipole matrix element (4.17)
in order to take into account the behavior of the slope of the self-consistent potential.
The finite value of the slope of the self-consistent potential is often ignored. But here, it
is necessary to go beyond the hypothesis of infinitely steep potential walls (see Eq. 4.5)
in order to make progress. As it can be seen from (4.17), the dipole matrix element is
proportional to the matrix element of the derivative of the potential V with respect to r.
In the sequel, we show that below a certain value, the dipole matrix element is directly
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Figure 8.4: Same as in Fig. 8.3 for the electronic density of sodium (rs = 3.93 a0).

proportional to the slope of the self-consistent potential near the interface and estimate
the slope from a simple Thomas-Fermi model. Since the linewidth is proportional to the
square of the dipole matrix element, we see that γ decreases with the slope, and thus
with the increase of the dielectric constant.

8.1 Surface plasmon linewidth with a soft
self-consistent potential

In all the forthcoming derivations, we restrict ourselves to zero temperature. In order to
improve our understanding of the role of a dielectric mismatch to the surface plasmon
linewidth, we now need to come back to the evaluation of the surface plasmon linewidth
at T = 0,

γ =
2π

~
∑
ph

|Λdph|2 δ(~ωM − εp + εh), (8.3)

without making the approximation of an infinitely steep well for the self-consistent po-
tential. In (8.3), p and h denote particle and hole states, respectively. A simplified way
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Figure 8.5: Self-consistent potential as a function of the radial coordinate (in units of
the Bohr radius a0) from the LDA calculations for a 832-atom nanoparticle
with mean distance between electrons rs = 3.03 a0, corresponding to a '
28.5 a0. The different curves are for ε = εd = εm between 1 and 4, showing
that the slope of the potential decreases with increasing values of ε. The
corresponding Fermi levels are indicated by horizontal lines.

of taking into account the noninfinite slope of V (r) is to change (4.5) by

V (r) =


0, 0 6 r < a− ds

2
,

s

(
r − a− ds

2

)
+ V0, a− ds

2
6 r 6 a+

ds

2
,

V0, r > a+
ds

2
,

(8.4)

where the distance ds on which the slope s = V0/ds is nonvanishing is assumed to be
small as compared to the nanoparticle radius a. We first need an approximation for the
dipole matrix element between particle and hole states in that potential. As explained
in the following section, this can be done semiclassically using the limit in which particle
and hole states are close in energy:

εp − εh

εF

=
~ωM

εF

� 1. (8.5)

This semiclassical approximation relates the dipole matrix element to the Fourier com-
ponents of the classical trajectory in the one-dimensional effective potential V eff

l (r) given
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8.1 Surface plasmon linewidth with a soft self-consistent potential

in (C.7).

8.1.1 Semiclassical dipole matrix element with spherical symmetry

In this section we focus on the semiclassical evaluation of the dipole matrix element
for the case of a spherically symmetric system, and extend the well-known result which
relates in the one-dimensional case the dipole matrix element to the Fourier components
of the classical motion of the particle [116,117].

The spherical symmetry permits us to separate the dipole matrix element
〈nlm|z|n′l′m′〉 into two parts: an angular part Amm′

ll′ given in (4.10) and a radial part

Rll′

nn′ =

∫ ∞

0

dr unl(r)
∗ r un′l′(r), (8.6)

where the radial wave functions unl(r) satisfy the reduced Schrödinger equation (4.7).
Here, n denotes the radial quantum number. According to (4.13), and expressing the
conjugated momentum to r as pr = −i~d/dr, we have

Rll′

nn′ =
~2

me(εn′l′ − εnl)

∫ ∞

0

dr unl(r)
d

dr
un′l′(r). (8.7)

Next, we restrict ourselves to the classical region in the effective potential V eff
l (r) given

in (C.7) between the two turning points (r−, r+) and use the WKB approximation to
express the radial wave functions as (see Eq. B.27 in Appendix B)

unl(r) =

2 cos

{
1/~

∫ r

r−

dr′
√

2me

[
εnl − V eff

l (r′)
]
− π/4

}
√
τl
{
2
[
εnl − V eff

l (r)
]
/me

}1/4
. (8.8)

In (8.8), τl is the period of the periodic orbit trajectory at energy εnl in the effective
potential V eff

l (r). In order to pursue the evaluation of (8.7), we need to evaluate the
derivative of (8.8) with respect to r. In the high energy limit (εnl �

∣∣V eff
l

∣∣), we obtain
to leading order in ~

d

dr
unl(r) ' −

2

~√τl
{
2m3

e

[
εnl − V eff

l (r)
]}1/4

sin

[
1

~
Sl(r−, r; εnl)−

π

4

]
, (8.9)

where we have defined

Sl(r−, r; εnl) =

∫ r

r−

dr′
√

2me

[
εnl − V eff

l (r′)
]
. (8.10)

We now assume that l ' l′ (this is justified because the dipole selection rules dictate
that l′ = l±1 and we are looking at the high energy limit) and that the energies involved
in the dipole matrix element are sufficiently close to each other, i.e., both trajectories
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Chapter 8 Surface plasmon linewidth with an inhomogeneous dielectric environment

at the energies εnl and εn′l′ have the same classically allowed region. Inserting (8.8) and
(8.9) into (8.7), we thus obtain

Rll′

nn′ ' −
2~

τl(εn′l′ − εnl)

∫ r+

r−

dr

{
sin

[
Sl′(r, r−; εn′l′)− Sl(r, r−; εnl)

~

]
+ sin

[
Sl′(r, r−; εn′l′) + Sl(r, r−; εnl)

~

]}
. (8.11)

In the above equation, we neglect the last term since it is highly oscillating (in the limit
“~ → 0”). Moreover, we have for l ' l′ and εnl ' εn′l′

Sl′(r, r−; εn′l′)− Sl(r, r−; εnl) ≈
∂Sl

∂εnl

(εn′l′ − εnl). (8.12)

Note that ∂Sl/∂εnl = tl(r, εnl) is the time it takes to the particle to go from r− to r
with the energy εnl in the effective potential V eff

l (r). Next, we use the semiclassical
quantization condition (see Appendix B)

Sl(εnl) = 2π~
(
n+

νc

4
+
νr

2

)
, (8.13)

where νc and νr are the number of conjugated and reflection points in the effective radial
potential, respectively. It yields

∂εnl

∂n
=
∂εnl

∂Sl

∂Sl

∂n
=

2π~
τl
. (8.14)

Thus,

εn′l′ − εnl ≈
2π~∆n

τl
, (8.15)

with ∆n = n′ − n. With those approximations, we have for (8.11)

Rll′

nn′ ' −
1

π∆n

∫ r+

r−

dr sin

(
2π∆n

tl
τl

)
, (8.16)

and changing the spatial coordinate r to the time tl, we obtain

Rll′

nn′ = − 1

π∆n

∫ τl/2

0

dt ṙ(t) sin

(
2π∆n

t

τl

)
. (8.17)

Integrating by parts, we finally obtain, to leading order in ~

Rll′

nn′ =
2

τl

∫ τl/2

0

dt r(t) cos

(
2π∆n

t

τl

)
, (8.18)

where r(t) represents the classical trajectory in the effective potential. Thus we see
that, as in the one-dimensional case, the dipole matrix element is related to the Fourier
transform of the trajectory of the classical motion [116].
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8.1 Surface plasmon linewidth with a soft self-consistent potential

Example of application: Spherical hard wall potential

As a check of consistency, we apply this semiclassical analysis to the hard-wall potential
(of radius a) involved in our evaluation of the surface-plasmon lifetime. This analysis is
only possible in the limit εF � ~ωM: The approximation of (8.18) is valid if we assume
that the energy of the particle is close to the one of the hole. This energy difference is,
because of the conservation of energy appearing in the Fermi golden rule (8.3), simply
~ωM.

At a given energy ε, the periodic trajectory in the effective potential obeys the con-
servation of energy

ε =
1

2
meṙ

2 +
~2(l + 1/2)2

2mer2
, (8.19)

i.e.,

ṙ =

√
2

me

[
ε− ~2(l + 1/2)2

2mer2

]
. (8.20)

Since we have a periodic motion, the initial position of the particle can be chosen every-
where in the classically allowed region, and we choose r(t = 0) = r−. Using∫ t

0

dt′ =

∫ r

r−

dr′

ṙ′
, (8.21)

we obtain

t =
1

ε

√
me

2
εr2 − ~2(l + 1/2)2

4
, (8.22)

which can be inverted to yield the trajectory

r(t) =

√
2ε

me

t2 +
~2(l + 1/2)2

2meε
, 0 6 t 6

τl
2
. (8.23)

The period of the effective radial motion being τl =
√

2meεa2 − ~2(l + 1/2)2/ε, we verify
that r(τl/2) = a.

Substituting the above expression of the classical trajectory in (8.18), and integrating
twice by parts, we have

Rll′

nn′ =
τlε

2 (π∆n)2me

{
(−1)∆n τl

a
− ~2

(
l +

1

2

)2√
me

∫ τl/2

0

cos (2π∆nt/τl)

[2εt2 + ~2(l + 1/2)2/2ε]3/2

}
.

(8.24)
By continuing to integrate by parts, we will obtain an even series in 1/(∆n)2q, with
q an integer. But, in the semiclassical limit, we are interested in a range of energies
where εF � ~ωM � ∆, with ∆ the mean level spacing in the nanoparticle. Making the
expansion in 1/∆n (proportional to 1/~ωM, see Eq. 8.15), we obtain the leading order
term (up to an irrelevant phase factor)

Rlαlβ(εα, εβ) =
2~2

mea

εα

(εα − εβ)2 , (8.25)
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Chapter 8 Surface plasmon linewidth with an inhomogeneous dielectric environment

which agrees with (4.27) in the limit εα ≈ εβ. We notice that this semiclassical dipole
matrix element leads to the correct result for the smooth part γ0 of the single-plasmon
linewidth in the limit εF/~ωM →∞ of (8.1).

8.1.2 Surface plasmon rate with a slope for the self-consistent field

In this section, we apply the semiclassical calculation of the dipole matrix element de-
picted in Sec. 8.1.1 to the case of the self-consistent potential with a finite slope (8.4).
As a simplifying approximation, we neglect the centrifugal part of the effective poten-
tial V eff

l (r) above r > a − ds/2. With this assumption, valid in the semiclassical limit
kFa� 1, we have

V eff
l (r) '



~2(l + 1/2)2

2mer2
, 0 6 r < a− ds

2
,

s̃

(
r − a− ds

2

)
+ V0, a− ds

2
6 r 6 a+

ds

2
,

V0, r > a+
ds

2
,

(8.26)

where s̃ = s − ~2(l + 1/2)2/2meds(a − d/2)2. The effective radial potential from (8.26)
is represented in Fig. 8.6.

Integrating the classical equation of motion, we obtain periodic trajectories for ε < V0

given by

r(t) =


√

2ε

me

t2 +
~2(l + 1/2)2

2meε
, 0 6 t 6 tc,

− s̃

2me

(τl
2
− t
)2

+ a+
ds

2
− V0 − ε

s̃
, tc < t 6

τl
2
,

(8.27)

with r(tc) = a − ds/2. We can now evaluate the dipole matrix element using the
semiclassical Eq. 8.18, neglecting the acceleration of the particle for r − a+ ds/2 → 0−

and approximating s̃ by s (justified for a � ds). An expansion in 1/∆n (where ∆n is
the difference between the radial quantum number of the particle and of the hole) gives,
up to an irrelevant phase factor,

Rlplh(εp, εh) '
s

me

2

τlp

~3

(εp − εh)3
sin

(
π∆n

δt

tc

)
, (8.28)

with δt = τlp/2 − tc the time spent by the particle in the region where the slope is
nonvanishing.

An estimation of the argument of the sine gives (~ωM/∆)(ds/a), with ∆ the mean
level spacing. Typical values give ~ωM/∆ ∼ 104 � 1. In the limit of a very large slope,
ds/a tends to zero. Then, the argument of the sine is very small compared to one, and
we recover the semiclassical evaluation of (8.25) with an infinite slope. On the contrary,
if we assume that ds is of the order of the spill-out length ls (∼ a0, see Chapter 5), the
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Figure 8.6: Sketch of the effective radial potential V eff
l (r) from (8.26). We denote by

r− and r+ the turning points on the left and on the right of the classically
allowed region of the potential, respectively.

argument of the sine is much greater than one. Inserting (8.28) into (8.3), we obtain
with (4.36)

γ0 =
2s2

π~2ω3
MNme

∫ εF+~ωM

εF

dεp

∑
lp,mp

lh,mh

(
Ampmh

lplh

)2

sin2

(
π∆n

δt

tc

)
. (8.29)

Averaging the highly oscillating sine (squared) by 1/2 gives for the surface plasmon
linewidth in the limit ~ωM � εF

γ0 ' 3s2

4~
1

meω2
M

1

kFa
. (8.30)

We then see that in the case of a soft self-consistent potential, the surface plasmon
linewidth is proportional to the square of the slope s of that potential. When one
increases the dielectric constant of the medium, the slope decreases (see Fig. 8.5) and
therefore γ0 decreases. We also notice that the smooth 1/a size dependence of the surface
plasmon linewidth remains valid even for a finite slope.
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Figure 8.7: Sketch of the metallic slab used to determine the slope s of the self-consistent
potential V in presence of a dielectric mismatch (εd, εm).

8.2 Steepness of the self-consistent potential with a
dielectric mismatch

In order to estimate the slope of the self-consistent potential, we consider the simpler
geometry of a metallic slab of dielectric constant εd, bounded by two interfaces at x =
±w/2 and with an infinite extension in the (y, z) plane, surrounded by a dielectric
medium with a constant εm (see Fig. 8.7). This geometry allows us to simplify the
problem to an effective one-dimensional system. It can be expected to provide a good
approximation for the shape of the potential near the interface for the sphere geometry.
Indeed, it seems reasonable that the effects of the curvature of the sphere on the potential
are negligible close to the surface.

We make the jellium approximation for the ionic density ni(x) = niΘ(w/2− |x|) and
work within the Thomas-Fermi approach, writing the local energy in the electrostatic
potential φ(x) as

ε =
p2(x)

2me

− eφ(x). (8.31)
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For the electrons, we assume the Fermi-Dirac distribution

f(x,p) =
1

exp
{
β
[

p2(x)
2me

− eφ(x)− µ
]}

+ 1
(8.32)

yielding the electronic density (at zero temperature)

ne(x) =

∫
d3p f(x,p)

=


1

3π2

(
2me

~2

)3/2

[µ+ eφ(x)]3/2 , µ > −eφ(x),

0, µ < −eφ(x),

(8.33)

with µ the chemical potential. The mean-field potential will simply be given by V (x) =
−eφ(x). The Thomas-Fermi approach to surfaces is known to have serious shortcomings
[118] (for instance, it predicts a vanishing work function). However, it will be useful
for our estimation of the slope of the mean field seen by the charge carriers. The self-
consistency is achieved through the Poisson equation

d2φ

dx2
=


4πe

εd
[ne(x)− ni] , |x| < w

2
,

4πe

εm
ne(x), |x| > w

2
.

(8.34)

In the following, we first consider, for pedagogical reason, the case where εd = εm = ε =
1, i.e., there is neither dielectric mismatch, nor a renormalization of the electronic charge.
In a second part, we consider the case where εd = εm = ε, that is, just a renormalization
of e. Finally, we consider the realistic realization of a dielectric mismatch (εd, εm).

8.2.1 First case: εd = εm = ε = 1

Inserting the electronic density (8.33) into the Poisson equation (8.34) in the case where
both, the dielectric constant characterizing the d-electrons and the dielectric constant
of the matrix are equal to one, we have

ϕ′′(x) =

{
α1ϕ

3/2(x)− β1, |x| < w/2,

α1ϕ
3/2(x), |x| > w/2.

(8.35)

In the above equation, we have defined

ϕ(x) = µ+ eφ(x), (8.36a)

α1 =
4e2

3π

(
2me

~2

)3/2

, (8.36b)

β1 = 4πe2ni. (8.36c)
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Imposing that there are no electrons at x = ∞, i.e., limx→∞ ne(x) = 0+, we have
limx→∞ ϕ(x) = 0+ according to (8.33), and then limx→∞ ϕ

′(x) = 0−. Thus there is
no electric field far away from the metallic slab. Furthermore, by imposing the charge
neutrality of the system slab plus matrix, we have ϕ′(0) = 0.

Integrating once (8.35), we obtain with the boundary conditions just exposed

ϕ′(x) =


−
√

4α1

5
[ϕ5/2(x)− µ5/2]− 2β1 [ϕ(x)− µ], |x| < w/2,

−
√

4α1

5
ϕ5/2(x), |x| > w/2.

(8.37)

The continuity of the electrical field at x = w/2 translates with our notations into
ϕ′(w−/2) = ϕ′(w+/2), which allows to obtain

s = −ϕ′
(w

2

)
=

√
4α1

5
µ5/4

(
1− 2α1

5β1

µ3/2

)5/4

. (8.38)

With the definitions (8.36), we have for the slope of the self-consistent field V (x) at the
boundary

s =
4e√
15π

(
2me

~2

)3/4

µ5/4

[
1− 2

5

(
µ

εF

)3/2
]5/4

, (8.39)

where εF is the Fermi energy of the free electron gas.

8.2.2 Second case: εd = εm = ε 6= 1

The calculations in this case are similar to the ones in the preceding section, up to a
replacement of the constants α1 and β1 by αε = α1/ε and βε = β1/ε. We thus obtain

s =
4e√
15π

(
2me

~2

)3/4
µ5/4

ε1/2

[
1− 2

5

(
µ

εF

)3/2
]5/4

. (8.40)

The chemical potential is fixed by the consistency condition√
εµ

8πe2ni

∫ 1

1− 2
5

“
µ

εF

”3/2

du√
2
5

(
µ
εF

)3/2

(u5/2 − 1)− (u− 1)

=
w

2
. (8.41)

This consistency equation is obtained by integrating twice the Poisson equation between
0 and w/2. If we do not have any dielectric constant (i.e., ε = 1), the same equation
is obtained but without the prefactor

√
ε. The integral in (8.41) is clearly dominated

by its prefactor. Then, assuming that the integral appearing in this equation does not
change appreciably when we have a dielectric constant, we find the scaling µ ≈ µ1/ε
with µ1 the chemical potential in the case where ε = 1. Thus, we obtain for (8.40)

s =
4e√
15π

(
2me

~2

)3/4
µ

5/4
1

ε7/4

[
1− 2

5ε3/2

(
µ1

εF

)3/2
]5/4

. (8.42)
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8.3 Surface plasmon linewidth with a dielectric mismatch

Therefore, we see with (8.42) that the slope at the interface is decreasing with increasing
values of the dielectric constant ε, a feature confirmed by our LDA calculations (see
Fig. 8.5).

8.2.3 Third case: εd 6= εm

In the case where we have a dielectric mismatch between the metallic slab and the
environment, the continuity of the normal component of the displacement field D gives
the condition

εdϕ
′
(
w−

2

)
= εmϕ

′
(
w+

2

)
(8.43)

Perturbatively, in the limit |εd − εm| → 0, we obtain

s =
4e√
15π

(
2me

~2

)3/4
µ

5/4
1

ε
1/2
m ε

5/4
d

[
1− 2

5ε
3/2
d

(
µ1

εF

)3/2
]5/4

×

{
1 +

εd − εm

2ε
5/2
d

(
µ1

εF

)3/2
[
1− 2

5ε
3/2
d

(
µ1

εF

)3/2
]}

, (8.44)

with the scaling µ ≈ µ1/εd, which can be justified in the same manner as for the case
of a single dielectric constant. The only difference is that in the case of a dielectric
mismatch, we obtain (8.41), up to a change of ε into εd. We then see that the slope s of
the confining mean-field potential at the interface is decreasing either with εd or εm (for
small |εd − εm|), in agreement with the LDA calculations.

This Thomas-Fermi approach to the mean-field potential of a metallic slab then pro-
vides an estimate of the slope of the potential near the interface between the slab and
the surrounding environment. It can be expected that these results are also applicable
to the more involved problem of the metallic sphere, up to some geometrical prefactors.
In the following section, we will incorporate our estimate of the self-consistent potential
slope in our evaluation of the surface plasmon lifetime.

8.3 Surface plasmon linewidth with a dielectric
mismatch

We can now use our estimate (8.44) for the slope of the self-consistent potential in our
evaluation (8.30) of the surface plasmon linewidth. In order to do that, we assume that
the chemical potential µ1 for ε = 1 is the Fermi energy εF of a free electron gas.

In the case where we have a charge renormalization (i.e., εd = εm = ε), we obtain by
inserting (8.42) into (8.30)

γ0 ' 9vF

10a

1

ε5/2

(
1− 2

5ε3/2

)5/2

. (8.45)
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Chapter 8 Surface plasmon linewidth with an inhomogeneous dielectric environment

This result qualitatively reproduces the decrease obtained from TDLDA for ~γ0 a/a0 as
a function of the dielectric constant ε as it can be seen on Figs. 8.3 and 8.4 (thin dotted
line). We notice that for ε = 1, we have γ0 ≈ vF/2a in the limit of large εF/~ωM, which
has to be compared with (8.1) giving 3vF/4a. This small discrepancy is not surprising,
regarding the various approximations we made here.

In the case where we have a dielectric mismatch, by inserting (8.44) into (8.30) and
making the expansion for small ∆ε = εd − εm, we obtain

γ0 ' γ0
(∆ε=0) + A(εd)∆ε (8.46)

for fixed εd and

γ0 ' γ0
(∆ε=0) −B(εm)∆ε (8.47)

for fixed εm. In the above two equations, A and B are two positive coefficients given by

A(εd) =
3vF

10a

1

ε
7/2
d

(
1− 2

5εd

)5/2
[
1 +

3

ε
3/2
d

(
1− 2

5ε
3/2
d

)]
, (8.48a)

B(εm) =
9vF

10a

1

ε
7/2
m

13

6
− 3

2
(
ε
3/2
m − 2/5

) − 1

ε
3/2
m

(
1− 2

5ε
3/2
m

) , (8.48b)

and γ0
(∆ε=0) is given by (8.45). These results confirm the behavior of the TDLDA calcu-

lations depicted on Figs. 8.3 and 8.4 around ∆ε = 0 (thin dotted line). For instance, if
we are at εm fixed, we see that when ∆ε > 0, (8.47) predicts that ~γ0 a/a0 decreases for
increasing values of εd.

8.4 Conclusion for Chapter 8

In this chapter, we have analyzed the surface plasmon linewidth in the case of noble-
metal nanoparticles embedded (or not) in a dielectric matrix. For such a situation, the
role of the d-electrons of the metal cannot be ignored, since they lead to a dielectric
mismatch between the nanoparticle and the surrounding matrix. We have shown that
the well-known Kubo formula for the surface plasmon linewidth predicts an increase
of this linewidth as the dielectric constants increase, a result in contradiction with the
numerical calculations of the time-dependent local density approximation. Furthermore,
the analytical prediction (8.1) overestimates the linewidth as deduced from experiments
on noble-metal clusters.

We have shown how to take into account the inhomogeneous dielectric environment in
our semiclassical model through the corrections in the slope of the mean-field potential.
Evaluating the slope with a simple Thomas-Fermi model, the resulting improved theory
is in qualitative agreement with the TDLDA calculations, themselves in good agreement
with existing experiments [115]. The use of semiclassical expansions and drastic approx-
imation has allowed us to clarify the main physical ingredients in the surface plasmon
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decay rate for the experimentally relevant case of noble-metal nanoparticles embedded
in inert dielectric matrices.

The case of noninert environments, where the matrix provides conduction electronic
states, is more complicated. In this situation, the conduction band of the matrix provides
additional decay channels, and the linewidth of the surface plasmon is increased (i.e.,
its lifetime is decreased), still presenting oscillations as a function of the size of the
cluster [81].

A possible experimental check of our prediction concerning the decrease of the surface
plasmon linewidth with increasing dielectric constants could be the following. Taking
noble-metal nanoparticles of a given size and of a given metal (i.e., of a given dielectric
constant εd) in a colloidal suspension (e.g., sugared water), one could significantly change
the index of refraction and thus εm by changing the sugar concentration of the solution.
For each concentration, one could measure the photoabsorption cross section of the
sample and then deduces the linewidth.
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Chapter 9

Concluding remarks and outlook

A moins d’être un crétin, on
meurt toujours dans l’incertitude
de sa propre valeur et de ses
œuvres.

(Gustave Flaubert, 1821-1880,
in Correspondance)

9.1 Summary

In this thesis we have studied collective excitations in metallic nanoparticles, the so-
called surface plasmons. More specifically, we have focused on the quantum dissipation
and decoherence of such excitations. We have chosen as a specific example the study
of spherical nanoparticles which have closed angular momentum shells, i.e., a “magic”
number of atoms.

Within the spherical jellium model, where the ionic structure of the nanoparticle
is replaced by a homogeneous positively charged background, we have decomposed,
by introducing the electronic center-of-mass and relative coordinates, the many-body
electronic Hamiltonian into three terms. A first term contains only the center-of-mass
degree of freedom, which is the natural coordinate to describe the oscillations of the
electronic cloud around its equilibrium position created by an external driving field.
The Hamiltonian for the center of mass is harmonic at a frequency redshifted by the
spill-out effect as compared to the classical Mie value. A second term is associated only
with the relative coordinates, and contains the electron-electron interaction that we have
treated within the mean-field approximation. Finally, a coupling appears between the
center-of-mass and relative-coordinate subsystems. We have linearized this coupling
assuming that the displacement of the center of mass is small compared to the size of
the nanoparticle. The coupling Hamiltonian arises from the Coulomb part of the single-
particle confinement created by the jellium background at the exterior of the cluster. The
coupling between the center of mass and the relative coordinates can be obtained in a
different manner, regarding the change in the electronic mean-field potential created by a
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displacement of the electronic cloud [16]. This approach has allowed us to generalize the
expression of the coupling to the case of a noble-metal nanoparticle (where the screening
of the s-electrons by the d-electrons has to be taken into account) possibly embedded
in a surrounding matrix. It turns out that the coupling Hamiltonian remains the same,
up to a renormalization of the classical Mie frequency by the dielectric constants of the
nanoparticle and of the matrix.

The decomposition of the electronic Hamiltonian presented in Chapter 2 is archetypal
of quantum dissipative systems: The system under study (the center of mass) is subject
to an environment (the relative coordinates) and dissipates its energy due to the coupling
to the environment. In our case, the environment is peculiar in the sense that it is not an
external but an internal environment: The environmental degrees of freedom belong to
the nanoparticle itself and moreover are finite in number. The coupling causes dissipation
and decoherence of the collective excitation by a Landau damping mechanism: The
surface plasmon decays by creating particle-hole excitations in the environment.

We have developed a density-matrix formalism to study the decoherence of the surface
plasmon excitation. By eliminating the environmental degrees of freedom, we obtained
the evolution of the reduced density matrix of the center of mass in presence of an ex-
ternal driving field. This has been done under the following assumptions. The coupling
between system and environment has been assumed to be weak, rendering possible a
perturbative expansion of the reduced density matrix. Furthermore, since the environ-
ment contains a large number of degrees of freedom, we have supposed that the dynamics
of the center of mass is Markovian, neglecting potential memory effects. We have also
added the influences of the environment and of the external driving field independently.
Those approximations have provided a tractable master equation for the dynamical evo-
lution of the surface plasmon excitation. Two parameters have appeared in the master
equation: the Landau damping rate γ, and the shift δ which renormalize the surface
plasmon frequency, an effect analogous to the Lamb shift in atomic systems. Thus,
the electronic environment has two effects. First, it yields a finite lifetime for the sur-
face plasmon excitation. Second, a redshift with respect to the classical Mie frequency
appears in addition to the one caused by the well-known spill-out effect.

The obtained master equation for the reduced density matrix of the center of mass
is the one of a driven damped harmonic oscillator. We have restricted ourselves only
to two levels for the description of the dynamics of the surface plasmon excitation.
The important parameter determining the temporal evolution of the center of mass is
the so-called saturation parameter. This is a measure of the ratio of the external field
intensity over natural damping of the system. In the case of a weak external driving field,
like it is for instance the case in photoabsorption experiments, we have shown that the
description in terms of only two levels is valid. However, when the saturation parameter
becomes large, we enter the nonlinear regime, and the two-level system approach might
be questionable, especially when the frequency of the laser field is at resonance with the
surface plasmon frequency. Thus, the double plasmon, which is the second collective
excited state of the center-of-mass system, may play a role in the context of pump-probe
experiments where the intensity of the pump laser field is particularly intense.

By means of a semiclassical expansion, we have evaluated the surface plasmon linewidth.
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To this end, we have assumed that the single-particle self-consistent states are perfectly
confined in a step-like mean-field potential. This particularly simple approximation ap-
pears to yield reliable results in the case of an alkaline-metal nanoparticle in vacuum. At
zero temperature, taking only into account the smooth semiclassical density of states of
the particles and of the holes, we have recovered the well-known size dependence of the
surface plasmon linewidth first found by Kawabata and Kubo [48]. The linewidth scales
with the inverse size of the nanoparticle, this due to the confinement of the self-consistent
states. Furthermore, we have recovered for the linewidth the frequency dependence of
Refs. 29 and 30. Taking into account the semiclassical oscillating density of states, we
have shown that the surface plasmon linewidth exhibits a nonmonotonic behavior as a
function of the size of the nanoparticle. This comes in addition to the smooth inverse-
size scaling. This oscillatory behavior is non-negligible for the smallest cluster sizes.
Comparing our semiclassical result for the surface plasmon linewidth with the numeri-
cal calculations of the time-dependent local density approximation (TDLDA), we have
obtained a quantitative agreement. Furthermore, this oscillating feature is consistent
with experiments [18, 101]. We have also extended our semiclassical expansion to the
case of finite temperature. By means of a low-temperature expansion, we have shown
that finite temperatures lead to a broadening of the surface plasmon resonance. This
effect has been found to be weak, consistently with the experiments [46,47,95,96].

The spill-out effect arising from the electronic density outside the nanoparticle has
been analyzed. With the help of a semiclassical expansion, we have shown that the ratio
of spill-out electrons over the total number scales as the inverse size of the nanoparti-
cle. Thus, the resulting redshift of the classical Mie frequency induced by the electronic
spill-out scales also with the inverse size of the cluster, in qualitative agreement with
the experiments. Introducing in our semiclassical expansion an effective radius for the
nanoparticle which takes into account the details of the self-consistent mean-field po-
tential near the jellium edge, we have obtained good agreement with LDA calculations.
By means of a Sommerfeld low-temperature expansion of the number of spill-out elec-
trons, we have shown that the redshift induced by the spill-out increases with increasing
temperature.

Comparing the surface plasmon resonance frequency deduced from the LDA number
of spill-out electrons with the maximum of the TDLDA absorption curve, we have con-
cluded that the spill-out effect is not sufficient to describe the redshift of the surface
plasmon resonance. This has been noticed experimentally a long time ago [11, 25], and
the failure of the local density approximation has been invoked to explain this discrep-
ancy. In this thesis, we have tested a mechanism which leads to an additional redshift
of the resonance frequency, namely the coupling of the surface plasmon excitation with
the electronic environment. This effect has been suggested in Refs. 60 and 102. We have
calculated the environment-induced redshift, and shown that it is of the same order of
magnitude as the spill-out-induced redshift. Thus, it has to be taken into account in the
description of the numerical and experimental results. With our semiclassical expansion,
we have demonstrated that this shift scales with the inverse size of the nanoparticle, and
is increased by the temperature, similarly to the shift induced by the spill-out effect.
Despite the various approximations of our model, our result implies an increase of the
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redshift of the surface plasmon frequency beyond the one caused by the spill-out effect.
However, we have not obtained a quantitative agreement compared to the calculated
resonance frequency within the TDLDA. Our semiclassical theory predicts that for the
smallest sizes of nanoparticles, the shift induced by the environment should present a
nonmonotonic behavior as a function of the size. This is confirmed by the numerical
calculations. No oscillations are expected for the redshift caused by the spill-out effect.
Thus we have two qualitatively different behaviors which could permit to distinguish
between both effects.

Our theory of the thermal broadening of the surface plasmon linewidth, together with
the temperature dependence of the resonance frequency, has permitted us to qualita-
tively explain the differential transmission curves measured in time-resolved pump-probe
experiments. Our findings could open the possibility to analyze relaxation processes in
excited nanoparticles.

We have addressed the question of the relevance and of the existence of the second
collective state in metallic nanoparticles (the double plasmon). We have neglected the
anharmonic effects which become noticeable for very small clusters [60,111], and deter-
mined the lifetime of this second collective state. Depending on the physical situation,
the double plasmon state can decay by two distinct mechanisms: Landau damping
and particle ionization. For the Landau damping, there are two processes of the first
and second order which leads to the decay of such a collective state. The first-order
process yields a linewidth which is twice the linewidth of the single surface plasmon
state. Extending our semiclassical expansions to the nonlinear case, we have shown
that the linewidth associated to the second-order process can be neglected. Calculat-
ing the linewidth induced by the ionization of the nanoparticle, we have obtained good
agreement with existing theoretical [71] and experimental works [72, 73], despite the
approximation we have been forced to make in order to address this difficult problem.
Our semiclassical calculations show that the double plasmon state is a well-defined ex-
citation, and an experimental observation of such a state could be in principle possible,
provided one can excite this state with a sufficiently strong laser excitation.

Exploring the effects of an inhomogeneous dielectric environment on the single surface
plasmon excitation (like it is for instance the case in embedded noble-metal nanopar-
ticles), we have shown that the simple analytical prediction implies an increase of the
surface plasmon linewidth with the dielectric constants, while the TDLDA calculations
predict a decrease of the same quantity. We have seen that this discrepancy is due to
the approximation of an infinitely steep self-consistent potential. As the LDA calcula-
tions show, the slope of the self-consistent potential decreases as the dielectric constants
increase. This has been confirmed with the help of a simple Thomas-Fermi model for
a metallic slab. Refining our semiclassical calculation of the linewidth by taking into
account the steepness of the mean-field potential, we have been able to obtain a quali-
tative agreement with the TDLDA calculations, themselves in accordance with existing
experiments.
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9.2 Outlook and future perspectives

In this section we present an outlook of the work presented in this thesis, as well as
possible further improvements.

All our analytical derivations have been carried out within the mean-field approx-
imation. Furthermore, the numerical calculations have been based on the local den-
sity approximation. Those two different approximations are reliable for relatively large
nanoparticles. For very small clusters, they become questionable. A way to test those
approximations is to use an “exact” diagonalization of the many-body electronic Hamil-
tonian. From the numerical diagonalization, one obtains the many-body eigenstates and
eigenenergies of the correlated system, and therefore can deduce the absorption spectrum
of the nanoparticle. Thus, one can extract for instance the linewidth and the resonance
frequency of the surface plasmon excitation. This is also a way to check if the surface
plasmon state is mainly a superposition of one particle-one hole excitations as described
in the random phase approximation, or if one has to consider more excitations to well
describe this collective state. Such an exact diagonalization approach has been carried
out in different works [119–123], adapting the nuclear shell model [6, 7] to the case of
metallic nanoparticles. It was shown that the surface plasmon remains a well defined
excitation even in very small clusters with a very small number of atoms (between 8 and
20). During this thesis, we also have performed such exact-diagonalization calculations.1

Restricting ourselves to spinless fermions, we have observed that the surface plasmon ex-
citation is indeed well-defined, already for only four interacting electrons. Furthermore,
the surface plasmon peak supports almost all the oscillator strength and its frequency
is redshifted with respect to the classical Mie value. It could be interesting to extend
these calculations to larger clusters, including the spin of the electron. This could be
a way to test our prediction concerning the oscillatory behavior of the surface plasmon
linewidth. However, even with the most modern computers, we are restricted to quite
small nanoparticles because of the very large number of Slater determinants required in
such an approach.

Our description of the dynamics of the surface plasmon excitation in terms of a reduced
density matrix approach has been based on several approximations. The Markovian
approximation has been used with the only justification that the environment contains
a large number of degrees of freedom. The fact that the dynamics is Markovian could be
tested by quantitatively evaluating the correlation function of the environment (3.25),
either numerically or with the help of semiclassical expansions as used in this thesis. A
preliminary semiclassical calculation shows that the correlation function decreases when
the size of the cluster increases. This is quite natural, since the size is of course related
to the number of electrons in the nanoparticle, and thus to the number of degrees of
freedom of the environment. However, the relevant dependence which is useful to assess
that we deal with a Markov process is the time dependence of the correlation function.
But there exists good indications that we deal with a Markov process. Indeed, within this
approximation, the obtained expression for the linewidth of the surface plasmon (that

1Not included in this thesis.
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one can equivalently obtained by virtue of Fermi’s golden rule) is in agreement with the
numerical calculations of the TDLDA. If the dynamics were radically non-Markovian,
this would not be the case.

The solutions of the master equation have been obtained, within a two-level approach,
with the help of the rotating wave approximation which assumes that the frequency of the
external driving field is close to the resonance energy of the system. We have seen in this
context that the detuning between the two above-mentioned frequencies plays a role on
the surface plasmon dynamics. However, we cannot pretend to describe accurately this
dynamics if we are far from resonance. The accuracy of the rotating wave approximation
could then be tested by solving numerically the master equation without appealing to
this assumption.

An improvement of our density matrix formalism could be to consider a dynamical
environment. Indeed, in our approach, we have assumed that the environment is in
a thermal equilibrium and does not evolve with time. Thus, it does not permit to
account for the cooling of the electronic temperature of the heat bath after an excitation
by a laser pulse. This would be of great interest for the description of pump-probe
experiments, where, as we have shown, the electronic temperature plays a crucial role in
the interpretation of the measured differential transmission curves. A time dependence
of the density matrix of the environment could be introduced via a time-dependent
electronic temperature which decreases as a function of time (as described, e.g., in the
two-temperature model). However, we expect that the introduction of a dynamical
environment renders the density-matrix approach much more involved than in the case
of a static environment.

Our prediction for the oscillatory behavior of the surface plasmon linewidth as a func-
tion of the size of the nanoparticle has been restricted to the case of zero temperature,
where the calculations are already quite involved. We expect that for increasing tem-
perature, this nonmonotonic behavior should be smoothed out because of the thermal
fluctuations. However, a quantitative estimate could be carried out to confirm our ex-
pectation.

In our semiclassical evaluation of the environment-induced redshift of the surface
plasmon frequency, we have not obtained a quantitative agreement with the resonance
frequency deduced from the TDLDA calculations. This could be due to the fact that
we have not accurately taken into account the single-particle self-consistent states of the
continuum which, contrarily to the linewidth, could presumably play a role. Such an
assumption has been done in order to simplify this difficult problem. An improvement
of the present calculations thus could be obtained by considering those extended states.
However, the inclusion of the states of the continuum in this calculation is quite difficult
analytically, considering the complexity of the dipole matrix elements in this case (see our
analysis of the decay of the double plasmon via ionization of an electron in Sec. 7.2). A
direct numerical calculation of the environment-induced redshift of the surface plasmon
frequency within the mean-field approximation could provide a way to test the role of
the extended states.

Finally, in all this thesis we have restricted ourselves to the case of spherical nanopar-
ticles. The spherical symmetry has allowed us to significantly simplify our approach by
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separating the angular and radial motions. In some sense, it represents an ideal theo-
retical framework. An extension of the present calculations to the case of nonspherical
nanoparticles could be of relevance, both for theoretical and experimental purposes.
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Appendix A

Three-level system

L’art de persuader consiste
autant en celui d’agréer qu’en
celui de convaincre.

(Blaise Pascal, 1632-1662, in De
l’esprit géométrique)

In this appendix, we discuss under which conditions the center-of-mass system, whose
Hamiltonian is given in (2.30), can be described by a two-level system. To show that the
two level approach can be relevant, the strategy is as follows. We consider a three level
system, including damping mechanisms in addition to the Landau damping. The Landau
damping linewidth is for the nth level of the harmonic oscillator at zero temperature
γn = nγ according to (3.39), γ = γ− being the width of the first excited state that
we calculate in Chapter 4. The additional damping mechanisms can be of two kinds:
(i) First order decay processes which lead to the decay of the second collective state
into the first one, as for instance the radiation damping [10, 11], or the coupling to the
surrounding matrix, and (ii) second order decay processes which result in the direct
decay from the second excited state to the ground state, like it is the case for example
for the ionization of an electron due to the intense laser field (see Chapter 7). These two
decay channels are illustrated on Fig. A.1.

In the following we denote by γ1 the width resulting from the additional first-order
damping mechanisms, and by γ2 the second order ones. We then write the master equa-
tion (3.49) for the three levels, and we include the additional decay channels according
to the Lindblad theory [88,89]:

ρ̇nm(t) = −iωsp(n−m)ρnm(t)− γ

[
n+m

2
ρnm(t)−

√
(n+ 1)(m+ 1)ρn+1,m+1(t)

]
− iΩR cos (ωLt)

[√
nρn−1,m(t) +

√
n+ 1ρn+1,m(t)−

√
mρn,m−1(t)−

√
m+ 1ρn,m+1(t)

]
+ 〈n|

∑
a=1,2

γa

(
LaρL

†
a −

1

2
L†aLaρ−

1

2
ρL†aLa

)
|m〉, (A.1)
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|0〉

|1〉

|2〉

γ

2γ γ1 γ2

Figure A.1: Schematics of the three-level system with additional damping mechanisms.
γ is the Landau damping linewidth resulting from the coupling to the elec-
tronic environment, while γ1 and γ2 accounts for additional damping mech-
anisms of the first and second order, respectively.

where ΩR is the Rabi frequency defined in (2.41). We choose the Lindblad operators as
L1 = |1〉〈2| and L2 = |0〉〈2|, which leads to transitions between the center-of-mass states
|2〉 and |1〉, and |2〉 and |0〉, respectively (see Fig. A.1). We then obtain in the rotating
wave approximation the following set of coupled differential equations:

˙̂ρ00 =− i
ΩR

2
(ρ̂10 − ρ̂01) + γρ̂11 + γ2ρ̂22, (A.2a)

˙̂ρ11 =− i
ΩR

2

[
ρ̂01 − ρ̂10 +

√
2 (ρ̂21 − ρ̂12)

]
− γρ̂11 + (2γ + γ1)ρ̂22, (A.2b)

˙̂ρ22 =− i
ΩR

2

√
2 (ρ̂12 − ρ̂21)−

(
2γ +

∑
a=1,2

γa

)
ρ̂22, (A.2c)

˙̂ρ01 =− iδLρ̂01 − i
ΩR

2

(
ρ̂11 − ρ̂00 −

√
2ρ̂02

)
− γ

2
ρ̂01 +

√
2γρ̂12, (A.2d)

˙̂ρ12 =− iδLρ̂12 − i
ΩR

2

[
ρ̂02 +

√
2 (ρ̂22 − ρ̂11)

]
− 1

2

(
3γ +

∑
a=1,2

γa

)
ρ̂12, (A.2e)

˙̂ρ02 =− 2iδLρ̂02 − i
ΩR

2

(
ρ̂12 −

√
2ρ̂01

)
− 1

2

(
2γ +

∑
a=1,2

γa

)
ρ̂02. (A.2f)

As in Chapter 3, we have used the notation ρnm = ρ̂nme−iωL(n−m)t, while δL = ωL−ωsp is
the detuning between the frequency of the external driving field and the surface plasmon
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frequency.

A.1 Rabi oscillations of a three-level system

As a first insight into the three-level system, we consider here the case where there is no
damping at all, i.e., γ = γ1 = γ2 = 0 in (A.2). The system therefore experiences Rabi
oscillations between the ground state and the two excited states due to the laser field
which is switched on at t = 0.

In the case where there is no detuning between the laser and surface plasmon frequen-
cies, it is possible to solve (A.2) analytically. Assuming that at t = 0, the system is in
its ground state, i.e., ρ00(0) = 1, ρ11(0) = ρ22(0) = 0, and all the coherences are equal
to 0, we obtain for the populations

ρ00(t) =
1

18

[
9 + 8 cos

(√
3

2
ΩRt

)
+ cos

(√
3ΩRt

)]
, (A.3a)

ρ11(t) =
1

6

[
1− cos

(√
3ΩRt

)]
, (A.3b)

ρ22(t) =
1

9

[
3− 4 cos

(√
3

2
ΩRt

)
+ cos

(√
3ΩRt

)]
. (A.3c)

We present the result of (A.3) in Fig. A.2. It is interesting to notice that the probability
to find the ground state unoccupied is never zero, while the second excited state cannot
be found occupied with a probability of one. The fact that the first excited state is, in
average, the less probable state comes from the fact that it is related via dipole matrix
elements to two states (namely |0〉 and |2〉), while the two other states are connected
only once. This feature is peculiar to the three-level system without any damping. In
the case of an infinite number of levels, all the excited states are connected twice.

When δL 6= 0, one can solve easily the system (A.2) with γ = γ1 = γ2 = 0 numerically.
In Fig. A.3, we show the population ρ22 of the second excited state for different values
of the detuning (scaled by the Rabi frequency ΩR). We see that as the detuning is
increased, the probability to find the state |2〉 occupied is in average lowered. The
detuning therefore plays a crucial role, and one might argue that for a reasonable value
of δL, one can neglect the second excited state. In experiments, there exists in most of
the cases a detuning between the surface plasmon frequency and the frequency of the
laser field. Thus it seems reasonable to approximate the center of mass by a two-level
system. Moreover, as it will be seen in the following section, the damping mechanisms
decrease the probability to find the second collective state occupied.
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Figure A.2: Population of the ground state ρ00 and of the two excited states ρ11 and
ρ22 as a function of time for δL = 0 (no detuning) and γ = γ1 = γ2 = 0 (no
damping).

158



A.2 Three-level system with additional damping mechanisms

0

0.2

0.4

0.6

0.8

1

ρ
2
2

ρ
2
2

0 5 10 15 20 25 30

ΩRtΩRt

δL/ΩR = 0

δL/ΩR = 0.5

δL/ΩR = 1

δL/ΩR = 1.5

δL/ΩR = 2

Figure A.3: Population of the second excited state ρ22 as a function of time for different
values of the detuning δL. There is no damping (γ = γ1 = γ2 = 0).

A.2 Three-level system with additional damping
mechanisms

We now consider the three-level system depicted in Fig. A.1 in presence of damping
mechanisms. In Sec. A.2.1, we consider the case where there is no additional damping
constant (γ1 = γ2 = 0), while in Sec. A.2.2, we move on to the description of the
complete model that we consider here.

A.2.1 Stationary solutions for the case γ1 = γ2 = 0 (no additional
damping constants)

For γ1 = γ2 = 0, the stationary populations of (A.2) are given by

ρst
00 =

s(s+ 2) + 8 + 8∆2(s+ 8) + 128∆4

3s(s+ 2) + 8 + 8∆2(3s+ 8) + 128∆4
, (A.4a)

ρst
11 =

s(s+ 4 + 16∆2)

3s(s+ 2) + 8 + 8∆2(3s+ 8) + 128∆4
, (A.4b)

ρst
22 =

s2

3s(s+ 2) + 8 + 8∆2(3s+ 8) + 128∆4
, (A.4c)
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Figure A.4: ρst
22 according to (A.4c) as a function of the saturation parameter s for

increasing values of the detuning ∆ = δL/γ.

where the saturation parameter s is defined in (3.59) and where the scaled detuning ∆
is given by (3.60). In Fig. A.4, we show ρst

22 as a function of s for increasing values of
∆. The population of the second excited state increases with s for a fixed detuning.
Thus, as the intensity of the laser field increases, the two-level system approach might
be less and less valid. However, the population of the second excited state decreases with
increasing detuning. As it is the case for the free Rabi oscillations (i.e., when there is
no damping at all, see Sec. A.1), we see that the detuning plays in favor of a description
of the center of mass by a two-level system.

A.2.2 Stationary solutions for the three-level system with additional
dampings

We now consider the case where γ1 and γ2 are finite in (A.2). As a simplifying hypothe-
sis, we assume that the two additional damping constants are equal, i.e., γ1 = γ2 = γadd.
In Fig. A.5, we show the stationary solution of (A.2) for the population of the second
excited state ρst

22 as a function of γadd/γ for different values of the detuning ∆. The figure
presents the case of a large saturation parameter (s = 100). It shows that for ∆ & 5, the
probability to find the second collective state occupied is less than 10% and is almost
constant as a function γadd. In the case ∆ < 5, ρst

22 decreases with γadd but is still quite
important. There, the assumption of a two-level system to describe the surface plasmon
dynamics might be questionable.
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Figure A.5: Stationary solution of (A.2) for the population of the second excited state
as a function of the additional damping constant γadd and for various values
of the detuning ∆. In the figure, the saturation parameter is s = 100.

In conclusion, we have shown in this appendix that for a rather small saturation
parameter, i.e., for a weak external laser field, the second collective state can be neglected
for the description of the surface plasmon dynamics. In the case of a large saturation
parameter, as it is for example the case in pump-probe experiments, this second collective
state can be neglected for finite values of the detuning between the frequency of the
pump laser and the resonance frequency. However, at resonance, the description in
terms of only two levels might be questionable even in presence of additional damping
mechanisms. Thus, the double plasmon state might play a role on the dynamics of the
surface plasmon excitation.
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Appendix B

Semiclassical physics

Chaque homme doit inventer
sont chemin.

(Jean-Paul Sartre, 1905-1980, in
Les Mouches)

The semiclassical approximation has been developed since the early stages of the quan-
tum theory in the 1920’s in order to solve problems that are too complex to treat in
a fully quantum mechanical fashion. These are, for instance, the determination of the
quantum spectrum of a particle in a complicated potential, the scattering properties of a
particle moving against a potential barrier, etc. In the 1970’s, a renewal of the interest in
the semiclassical theory occurred with the advent of quantum chaos.1 A chaotic system
is characterized by the sensibility of the classical trajectories to the initial conditions
(e.g., a particle bouncing in a stadium billiard) [94]. In such a system, the trajectory
of the particle diverges exponentially from its original path if the initial conditions are
changed even slightly. It turns out that the spectral properties of a complex quantum
system (for example a heavy nucleus) can be explained in terms of the features of a
generic classically chaotic system, using, e.g., the random matrix theory. It appeared at
that time that the spectral properties of “chaotic” quantum systems are universal [94].
More recently, the concepts of the semiclassical theory has been applied to the case of
mesoscopic systems [126], like the transport properties of quantum dots [127], or the
many-particle properties of nanoparticles [11,124].

1Quantum chaos is the theory studying the quantum properties — especially the spectrum — of
classically chaotic systems [4,94,124,125]. Rigorously, this denomination does not have much sense
since it seems to imply the existence of trajectories in quantum mechanics. This goes against
Heisenberg’s uncertainty principle. As we will see in the sequel of this appendix, this name is more
justified when one employs the semiclassical formalism, where trajectories are meaningful.
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B.1 Quantum propagator

The quantum propagator plays a key role in quantum mechanics. This object is im-
portant since it draws a link between quantum and classical mechanics [128] within the
formalism of Feynman’s path integrals [129].

One of the main problem of quantum mechanics is to solve the time-dependent
Schrödinger equation

i~
∂

∂t
|ψ〉 = H|ψ〉, (B.1)

where the state of the system |ψ〉 evolves in time under the influence of the Hamiltonian
H. We assume in the following that we have a conservative system, i.e., the Hamiltonian
is time-independent. The formal solution of (B.1) is

|ψ(t)〉 = e−iH(t−t0)/~|ψ(t0)〉, (B.2)

where t0 is the initial time. We can interpret this result as follows: Starting with the
initial state |ψ(t0)〉, the state of the system at a future time t is given by an evolution
operator acting on the initial state. This operator then contains all the information on
the time evolution of the system. Writing (B.2) in position representation, one obtains

ψ(r, t) =

∫
ddr0K(r, r0; t− t0)ψ(r0, t0), (B.3)

with the propagator2

K(r, r0; t) = 〈r|e−iHt/~|r0〉. (B.4)

This quantity is the matrix element (in position representation) of the evolution operator.
Then the knowledge of the initial state and of the propagator provides the state of the
system at a later time.

B.2 Feynman’s path integrals

Feynman’s formalism of quantum mechanics [129] is equivalent to the ones of Schrödinger
and Heisenberg. It permits to interpret the quantum propagator in terms of trajectories,
by virtue of the so-called path integrals or functional integrals. Within this formalism,
the propagator (B.4) reads [4, 129,130]

K(r, r0; t) =

∫
D[r]eiR[r]/~, (B.5)

where

R(r, r0; t) =

∫ t

0

dt′L (ṙ(t′), r(t′), t′) (B.6)

2d is the dimension of the real space.
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is the Hamilton principal function.3 The Lagrangian of the system is L = T−V where T
and V are the kinetic and potential energies, respectively, and r(t) stands for a trajectory.
The symbol D[r] represents the measure of the functional integral, and this quantity is
extremely difficult to evaluate in the general case. However one can interpret the result
(B.5) obtained in 1948 by Feynman in the following way: The propagator is the sum
over all possible trajectories between r0 and r of the exponential of a phase given by the
Hamilton principal function divided by the Planck constant ~. We will see in the next
section that one can evaluate the quantum fluctuations around the classical paths, and
that the classical contributions dominate in the limit “~ → 0”: This is the semiclassical
approximation.

B.3 Semiclassical approximation of the propagator and
of the Green function

We are now interested in the semiclassical limit of the propagator (B.5). This means that
we are concerned with leading order in 1/~ contributions, for “~ → 0”, this statement
becoming meaningful in the sequel.

B.3.1 Free propagator and van Vleck’s approximation

For the sake of clarity, let us first examine the propagator of a free particle, that is when
V = 0. One can easily show [124] that the exact quantum propagator of a free particle
of mass µ is

Kfree(r, r0; t) =
( µ

2πi~t

)d/2

e(iµ/2~t)(r−r0)2 . (B.7)

Now, the quantity appearing in the exponential is exactly i/~ times the Hamilton prin-
cipal function of a free particle, Rfree(r, r0; t). Furthermore if one calculates the deter-
minant of the second (negative) variation of Rfree, one obtains

det

(
−∂

2Rfree

∂r∂r0

)
=
(µ
t

)d

. (B.8)

Then, one can write the propagator (B.7) as

Kfree(r, r0; t) =

(
1

2πi~

)d/2
√

det

(
−∂

2Rfree

∂r∂r0

)
eiRfree(r,r0;t)/~. (B.9)

Van Vleck proposed in 1928 the following prescription in order to obtain an approxi-
mate propagator of a particle moving in the potential V [128]: replace Rfree in (B.9) by

3We reserve the name of action to the quantity S(ε) = R + εt =
∫

dr · p, Legendre transform of the
Hamilton principal function at fixed energy.
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R, the Hamilton principal function of a particle in the potential V . He then obtained
the following expression:

KvanVleck(r, r0; t) =

(
1

2πi~

)d/2√
detC eiR(r,r0;t)/~, (B.10)

with C the matrix defined by its elements

Cij(r, r0; t) = − ∂2R

∂ri∂r0,j

, ∀(i, j) = 1, ..., d. (B.11)

As we will see in the sequel, Gutzwiller [94] added some important phases of quantum
origin to van Vleck’s result (B.10) to obtain the semiclassical propagator.

B.3.2 Gutzwiller’s approximation to the propagator and the Green
function — Semiclassical expansions

In the following we only present the principal ideas of the approximation due to Gutzwiller.
His work in the 1970’s was principally inspired by van Vleck’s previous idea. The inte-
grand in Feynman’s expression of the propagator (B.5) is a highly oscillating functional
in the space of trajectories since, in general, the variations of R are much larger than ~.
It is then appropriate to use the stationary phase approximation that we briefly present
in the next paragraph.

The stationary phase approximation

The stationary phase approximation is maybe the most widely used approximation in
semiclassical physics. Let us here present this method for the simpler case of an ordinary
integration [130]: Consider the following one-dimensional integral

I(α) =

∫ b

a

dxg(x)eiαf(x) (B.12)

in the limit of a large parameter α. The function g(x) is assumed to be sufficiently smooth
compared to the term in the exponential. The principal idea of this approximation is
that the integral I(α) is dominated by the region of integration where the phase f(x) is
stationary. Outside this region, the phase oscillates very rapidly and consequently the
contribution to the total integral is negligible to the leading order in α.

In the following we suppose that there is only one stationary point x̄ — given by the
condition f ′(x̄) = 0 — and that this point belongs to the interval ]a, b[. We can therefore
expand the function f(x) around the stationary point x̄ as

f(x) ' f(x̄) +
1

2
f ′′(x̄)(x− x̄)2, (B.13)
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and replace g(x) by g(x̄) in (B.12). Therefore the integral (B.12) has the approximate
expression

I(α) ' g(x̄)eiαf(x̄)

∫ b

a

dx eiαf ′′(x̄)(x−x̄)2/2. (B.14)

Since one restricts the expansion of the function f(x) up to the quadratic order, one can
reasonably replace the boundaries of the integral by ±∞ 4 and one has only to evaluate
the Gaussian integral given by∫ +∞

−∞
dx eiax2

=

√
π

|a|
eiπsign(a)/4. (B.15)

Within the stationary phase approximation, one thus obtains

I(α) '

√
2π

|αf ′′(x̄)|
g(x̄) ei{αf(x̄)+sign[αf ′′(x̄)]π/4}. (B.16)

This method is also extended to functions of several variables f(x1, · · · , xd). In this
case, one has to be aware that it is necessary to diagonalize the terms of order 2 in the
development of the function f , in order to get d Gaussian integrals.

Gutzwiller’s semiclassical derivation

We are now able to apply the stationary phase approximation in our case of interest,
i.e., when the variations of Hamilton’s principal function R are much larger than ~.5

Consequently, regarding (B.5), the trajectories that contribute the most to the path
integral are those for which the first variation of R vanishes, δR = 0. These are, by
virtue of the Hamilton-Jacobi principle [131, 132], the classical paths which contribute
the most to the quantum propagator. The quantum fluctuations are of higher order
in ~. Gutzwiller [94, 125] then arrived to the following conclusion: One has to sum
the propagator of (B.5) over all the classically allowed paths between r0 and r, but
taking into account the following subtlety: It can occur that the determinant of the
matrix C defined in (B.11) vanishes at certain points, the so-called conjugated points, the
physical meaning of that type of points becoming clearer in the sequel, and consequently
the stationary phase approximation is no longer valid. This has the consequence to
introduce an additional phase factor in the exponential appearing in the expression of
the propagator. Finally, the semiclassical propagator is

K(r, r0; t) =

(
1

2πi~

)d/2∑
λ

√
|detCλ| eiRλ(r,r0;t)/~−iκλπ/2, (B.17)

4This is not the case when the stationary point coincides with one of the two boundaries (x̄ = a or b).
If so, one has to treat specifically this point.

5Note that the stationary phase method can only be used here by an adequate parametrization of the
paths in the functional integral, which leads to an ordinary multidimensional integral [94].
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where λ stands for the classical trajectories, and where κλ counts the number of conju-
gated points for the trajectory λ. Rλ is the classical Hamilton principal function, which
means that one takes only into account the classical trajectories between r0 and r. One
shows easily that

Cλ = − ∂
2Rλ

∂r∂r0

=

(
∂r

∂p0

)−1

λ

, (B.18)

with p0 = −∂Rλ/∂r0 the initial momentum of the particle. Consequently, a conjugated
point, defined by the fact that detCλ = 0, is a point for which several trajectories with
different initial momenta attain this same point in the same trajectory time t.

The next stage, which will provide us the so-called Gutzwiller trace formula for the
semiclassical density of states, is to switch from a fixed-time representation to a fixed-
energy representation. Indeed, most of the physical systems that one studies are con-
servative systems, and it is then more appropriate to work at constant energy than at
a fixed time. In other words, one is now interested in a semiclassical approximation for
the retarded Green function which is the Fourier transform of the propagator (B.4) for
positive times, namely

G(r, r0; ε) = − i

~

∫ ∞

0

dt eiεt/~K(r, r0; t) (B.19a)

=
∑
n

ψn(r)ψ∗n(r0)

ε− εn + i0+
. (B.19b)

In the above expression, εn is the single-particle eigenenergies associated to the wave
function ψn(r), while n = (n1, n2, · · · ) are the quantum numbers of the system. Inserting
the semiclassical propagator (B.17) into (B.19a), one obtains

G(r, r0; ε) =
2π

(2πi~)d/2+1

∑
λ

e−iκλπ/2

∫ ∞

0

dt
√
|detCλ| ei[Rλ(r,r0;t)+εt]/~. (B.20)

One then sees appearing in the exponential the classical action

Sλ(r, r0; ε) = Rλ(r, r0; t) + εt =

∫ r

r0

dq.p. (B.21)

In order to be coherent with the approximation which was done previously for the
propagator, one has now to evaluate the integral over the time t with the help of the
stationary phase method. Then, if t̄ is the time for which the phase is stationary, one
obtains the following condition:

∂

∂t
[Rλ(r, r0; t) + εt]

∣∣∣∣
t=t̄

= −εt̄ + ε = 0, (B.22)

that is t̄ is the time taken by the system to go from r0 to r along the particular trajectory
q(t) where its energy is ε = εt̄. Finally, after this approximation, one obtains for the
semiclassical retarded Green function the result [94, 125]

G(r, r0; ε) =
2π

(2πi~)(d+1)/2

∑
λ

√
|Dλ| eiSλ(r,r0;ε)/~−iσλπ/2. (B.23)
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Here Dλ is the determinant of a (d+ 1)× (d+ 1) matrix, and is given by

Dλ(r, r0; ε) = (−1)d∂
2Sλ

∂ε2
detCλ =

∣∣∣∣∣∣∣
∂2Sλ

∂r0∂r

∂2Sλ

∂r0∂ε
∂2Sλ

∂ε∂r

∂2Sλ

∂2ε

∣∣∣∣∣∣∣ , (B.24)

for all classical paths λ. σλ counts the number of conjugated points at the fixed energy
ε for the trajectory λ.

General results in one-dimensional systems

Before we pursue with Gutzwiller’s trace formula, let us apply the approximations de-
tailed here for the case of a one-dimensional system. As an example, we consider a
particle confined in a well V (x) which can have arbitrary shape, except that we exclude
in the present discussion the presence of one or several hard walls [125].

The momentum of the particle is written as p(x) =
√

2µ[ε− V (x)]. Let x− and x+

be the classical turning points, respectively on the left and on the right of the classically
accessible region, solutions of ε = V (x±): These are the only and unique conjugated
points in this one-dimensional problem. In the following we assume that x− < x0 < x <
x+. The classical trajectories between x0 and x are of four types, i.e., there are four
different ways to travel between these two points:

1. x0 −→ x;

2. x0 −→ x− −→ x;

3. x0 −→ x+ −→ x;

4. x0 −→ x− −→ x+ −→ x.

Each of these trajectories contains its fundamental trajectory plus all the repetitions
of closed orbits. In (B.23), the prefactor Dλ is reduced in this one-dimensional motion
simply to the product [p(x0)/µ

2]−1/2[p(x)/µ2]−1/2 for the four families of trajectories.
The indices σλ are for each family

1. σ = 2r̃;

2. σ = 2r̃ + 1;

3. σ = 2r̃ + 1;

4. σ = 2r̃ + 2,

where r̃ if the number of repetitions of the closed orbit. The summation in (B.23)
pertains only to the four families, just as to the number of repetitions r̃ running from 1
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to ∞. The summation over r̃ leads to a geometrical series, and finally one obtains for
x0 < x

G(x, x0; ε) = −
2 cos

[
1/~

∫ x0

x−
dx′p(x′)− π/4

]
cos
[
1/~

∫ x+

x
dx′p(x′)− π/4

]
~[p(x0)/µ2]1/4[p(x)/µ2]1/4 cos

[
1/~

∫ x+

x−
dx′p(x′)

] . (B.25)

From (B.19b), the poles of (B.25) give the semiclassical spectrum εn. Setting the cosine
in the denominator to zero, one then has the condition

S(ε) =

∮
dx p(x) = 2

∫ x+

x−

dx p(x) = 2π~
(
n+

1

2

)
, (B.26)

with n a positive integer,6 and one recovers the well-known quantization condition of
Wentzel, Kramers and Brillouin (WKB quantization) [53]. Let us notice that these poles
are directly related to the phases at the classical turning points.

In order to find the residues, and in order to check that the poles of the Green function
are really simple poles, one expands the cosine of the denominator in (B.25) in powers
of ε − εn, and finally, to the first leading order in 1/~, one finds for the semiclassical
wave function, and this because of (B.19b),

ψsc
n (x) =

2 cos
{

1/~
∫ x

x−
dx′
√

2µ [εn − V (x′))]− π/4
}

√
τ {2 [εn − V (x)] /µ}1/4

, (B.27)

with τ = ∂S/∂ε the period of the closed orbit. Once again, this result is exactly the
one given by the WKB theory, except that we have only here the wave functions in the
classical accessible region, while the WKB wave functions also exist in the two forbidden
classical regions (on the left and on the right hand side of the well) by virtue of the
connection formulae [53]. We notice that the WKB theory fails to correctly describe
the quantum system in the vicinity of the classical turning points where the momentum
vanishes and consequently the wave functions diverge. We also point out that the wave
functions (B.27) are automatically normalized, this due to the square root of the period
τ appearing in the denominator, which is not the case in the standard WKB theory.

B.4 Semiclassical density of states: Gutzwiller’s trace
formula

We now return to the more general case of a d-dimensional space. In order to obtain
a semiclassical approximation to the density of states, we are now interested in the
trace of the Green function (B.23). Indeed, from the definition of the density of states
%(ε) =

∑
n δ(ε− εn), and from the expression (B.19b) of the Green function, we have

%(ε) = − 1

π
=Tr G = − 1

π
=
∫

ddrG(r, r; ε), (B.28)

6The classical action is a positive definite quantity. Consequently, n can only be a positive integer.
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where = represents the imaginary part and Tr the trace.
Instead of detailing the whole derivation that one can find in the references already

cited, we highlight here the crucial points of the development in order to obtain the semi-
classical density of states %(ε) = −1/π=TrG. First of all, the trace of the semiclassical
retarded Green function is evaluated by virtue of the stationary phase approximation.
Thence one imposes that the first variation of S with respect to r vanishes:[

∂S(r, r0; ε)

∂r
+
∂S(r, r0; ε)

∂r0

]
r=r0=r′

= p− p0 = 0. (B.29)

This means that the classical trajectories which contribute to the density of states are
those with the same initial and final momentum at the same point r′, i.e., only the
periodic trajectories contribute to the density of states.

One shows afterwards that the semiclassical density of states is decomposed into a
smooth and an oscillating part,

%(ε) = %0(ε) + %osc(ε), (B.30)

where %0(ε) is the Thomas-Fermi term [124], that is the available volume in phase space

%0(ε) =

∫
ddpddr

hd
δ(ε−H(r,p)). (B.31)

We remark that in the semiclassical theory, this smooth density of states comes from
the zero-length trajectories. The oscillating part of the density of states is given by the
Gutzwiller trace formula [94,125]

%osc(ε) =
1

π~
∑

λ∈ppo

∞∑
r̃=1

τλ√
|det (Mλ − I2d−2)|

cos

[
r̃

(
Sλ

~
− νλ

π

2

)]
, (B.32)

where ppo means primitive periodic orbits, r̃ being the number of repetitions. τλ =
∂Sλ/∂ε is the period of the primitive periodic orbit λ associated to the classical action
Sλ and νλ is the Maslov index, which is equal to the sum σλ +φλ, with σλ the number of
conjugated points at fixed energy, and φλ comes from the stationary phase approximation
in the transverse directions to the motion. Mλ is the stability matrix of the trajectory
and I2d−2 is the identity matrix in (2d − 2) dimensions. As its name indicates, Mλ

measures the stability of an orbit, i.e., the sensibility of the trajectory to a modification
of the initial conditions of the motion. In other words, the stability matrix measures
the degree of instability of a given orbit. Notice that in one dimension, the determinant
appearing in the trace formula (B.32) is equal to one.

Gutzwiller’s trace formula is only valid for isolated orbits, that is for nondegenerate
ones, in the sense that there are not several trajectories with the same classical action.
For instance, in a disk with hard walls (disk billiard), the diametral trajectory is in-
finitely degenerate due to the continuous axial symmetry of the disk. Different works
have permitted to extend this semiclassical formalism to systems presenting continu-
ous symmetries, notably the works of Balian and Bloch [133] and also of Berry and
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Tabor [134, 135]. In this extended theory, the summations are not any more over the
trajectories, since their number is infinite, but over a torus in the action-angle space,
canonical transforms of the variables in phase space [131, 132]. We emphasize the fact
that in one dimension, there does not exist any system presenting degenerated trajecto-
ries: All the periodic orbits are isolated.

Finally, the semiclassical approximation to the density of states (B.30) is remarkable
in the sense that it provides, for all systems without classically degenerated orbits, a
valuable approximation of the density of states. This is one of the great successes of
this approach. We emphasize as well a critical point of this approximation, namely
the convergence of the infinite series appearing in (B.32). Indeed, the series does not
necessarily converge. But one notices in practice that it is sufficient to perform a partial
summation, the first repetitions r̃ of the primitive periodic orbits sufficing to give a rather
good approximation to the density of states. In mesoscopic physics [1,2], the trajectory
cutoff is implemented through the factor exp (−Lppo/Lϕ), with Lϕ the phase coherence
length and Lppo the length of the primitive periodic orbit. The physical justification for
such an approach arises from the consideration of environmental degrees of freedom that
introduce further scattering mechanisms for timescales (or lengths Lϕ) larger than the
typical ones imposed by the Hamiltonian we are considering [127].
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Appendix C

Semiclassics with radial symmetry

Tous les moyens sont bons
quand ils sont efficaces.

(Jean-Paul Sartre, 1905-1980, in
Les Mains sales)

As it has been mentioned in Appendix B, the Gutzwiller trace formula (B.32) is only
applicable when the classical trajectories in the potential are not organized in families
degenerate in action. For a system having circular or spherical symmetry (like for
instance the disk billiard), we cannot use (B.32) to determine the semiclassical spectrum
of the considered system. Since it is an integrable problem the quantization can be
readily done from the WKB scheme, and the resulting density of states can be obtained
from the Berry-Tabor approach [124,134,135].

As an alternative route in the case of problems with radial symmetry, like the one we
treat in this work, it is tempting to take advantage of the separability into radial and
angular coordinates in order to reduce the dimensionality of the trajectories contributing
to the semiclassical expansions. However there are technical difficulties introduced by
the singularity at the origin of the centrifugal potential, and this is probably the reason
why the radial symmetry is often not fully exploited in semiclassical expansions. On
the other hand, the well-known Langer modification [136] is a prescription to avoid the
above-mentioned difficulties and provides a route to the semiclassical quantization of
spherically symmetric systems (which has been recently extended to higher orders [137]).

In this appendix, we start from the Langer modification in order to obtain the partial
(or angular momentum dependent) density of states %l(ε) that we need for instance in
our evaluation of the surface plasmon lifetime (see Chapter 4). As a check of consistency,
we verify in a few simple examples that when %l(ε) is summed (in a semiclassical way)
over the angular momentum quantum number l and its projection along the quantization
axis m, we recover the well-known Berry-Tabor formula for the total density of states
[133–135].
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C.1 Langer modification and partial density of states

We consider a system presenting spherical symmetry, where the natural coordinates are
the spherical coordinates r = (r, θ, ϕ). For a central potential V (r), the Schrödinger
equation is separable into angular and radial parts. The wave function can be written
as

ψklm(r) =
ukl(r)

r
Y m

l (θ, ϕ), (C.1)

where Y m
l (θ, ϕ) are the spherical harmonics, and where ukl(r) satisfies[

− ~2

2µ

d2

dr2
+

~2l(l + 1)

2µr2
+ V (r)

]
ukl(r) = εklukl(r), (C.2)

with the conditions ukl(0) = 0 and limr→∞ ukl(r)/r = 0. In the radial Schrödinger
equation, µ is the mass of the particle. It is important to notice that the variable r
is limited to positive values and that the centrifugal potential possesses a singularity
at r = 0. This significant difference between (C.2) and a standard one-dimensional
Schrödinger equation prevents us from a näıve application of the WKB approximation
to treat this radial problem.

The change of variables

x = ln r, (C.3a)

χkl(x) =ex/2ukl(r) (C.3b)

in (C.2) results in the one-dimensional Schrödinger equation[
d2

dx2
+ Π2

l (x)

]
χkl(x) = 0, (C.4)

with

Π2
l (x) =

2µ

~2
e2x [εkl − V (ex)]−

(
l +

1

2

)2

. (C.5)

Using the WKB approximation for χkl(x) amounts to change the centrifugal potential
in (C.2) according to the Langer modification [136,138]

l(l + 1) =⇒
(
l +

1

2

)2

. (C.6)

The modified effective radial potential thus reads

V eff
l (r) =

~2(l + 1/2)2

2µr2
+ V (r) (C.7)

for a three-dimensional system. The resulting WKB quantization provides for instance
the exact spectrum for the hydrogen atom, as well as for the three-dimensional isotropic
harmonic oscillator.
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The same kind of considerations in two-dimensional systems with a circular symmetry
lead to the following substitution in the centrifugal potential [124,138]:(

m− 1

4

)2

=⇒ m2, (C.8)

with m the eigenvalue of the Lz operator. This substitution yields an exact WKB
spectrum for the cases of the isotropic harmonic oscillator as well as for the hydrogen
atom in two dimensions. In this two-dimensional case, the semiclassical radial potential
is then

V eff
m (r) =

~2m2

2µr2
+ V (r). (C.9)

As it has been explained in Appendix B, the semiclassical approximation provides
a method to calculate the leading ~ contributions to the density of states in the limit
of large quantum numbers, and decomposes the density of states into a smooth and
an oscillating part. The smooth term is simply the Weyl contribution [124] and the
oscillating term is given, in the case where the periodic orbits are not degenerate in
action, by the Gutzwiller trace formula (B.32) as a sum over the primitive periodic
orbits.

In the case of multidimensional integrable systems, the periodic orbits belonging to
a torus of the phase space are degenerate, and the oscillating part of the density of
states is given by the Berry-Tabor formula as a sum over rational tori [134, 135]. In
one-dimensional problems, or in the radial coordinate of a spherically symmetric case,
the trajectories are not degenerate, and therefore the semiclassical approximation to the
density of states at fixed angular momentum l is given by

%l(ε) = %0
l (ε) + %osc

l (ε), (C.10)

with

%0
l (ε) =

τl(ε)

2π~
, (C.11a)

%osc
l (ε) =

τl(ε)

π~

∞∑
r̃=1

cos

[
r̃

(
Sl(ε)

~
− νc

π

2
− νrπ

)]
, (C.11b)

where Sl and τl = ∂Sl/∂ε are the action and period referring to the motion in the
effective (l-dependent) radial potential; νc (νr) is the number of classical turning points
of the primitive periodic orbits against the smooth (hard) walls, while r̃ is the number
of repetition of the periodic orbit.

We note the essential difference between conjugated and reflection points, as it appears
in the phase of the trace formula (C.11b). For this effective one-dimensional problem,
the conjugated points are the classical turning points in the effective potential V eff

l (r),
except when the potential is a hard wall. For the conjugated points, the momentum of the
particle vanishes at those locations, and thus acquires a phase of π/2. For the reflection
points, the momentum of the particle just changes its sign, the particle acquiring then
a phase of π.
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C.2 Total density of states and Berry-Tabor formula for
systems with radial symmetry

Using the selection rules for the decay of the surface plasmon, its lifetime can be ex-
pressed in terms of the partial density of states %l(ε) whose semiclassical expression is
given by (C.10) and (C.11). It is then important to verify that the semiclassical sum
over angular momenta (that we use throughout our calculations), when applied to %l(ε),
is able to reproduce the total density of states. Rather than working the most general
case, we perform our test for three particular examples: the three dimensional billiard
(like the one we treat in the text), the disk billiard (where the calculations are partic-
ularly simple), and the isotropic spherical harmonic oscillator (where the semiclassical
spectrum coincides with the exact one).

C.2.1 Spherical billiard

A spherical billiard is defined by its radial potential

V (r) =

{
0, r < a,

∞, r > a,
(C.12)

where a is the radius of the sphere. First, we determine the exact quantum mechanical
spectrum of this system, while in a second part, we calculate the corresponding semi-
classical spectrum. As we will show, the semiclassical approximation is very accurate,
provided that one uses the Langer modification for the radial effective potential (C.7).
At the end of this section, we will show how it is possible to recover the total density of
states (Berry-Tabor formula) from the knowledge of the angular momentum restricted
density of states %l(ε).

Exact spectrum

For r 6 a, the radial Schrödinger equation (C.2) reads with the radial potential (C.12)[
d2

dr2
− l(l + 1)

r2
+ k2

]
ukl(r) = 0, (C.13)

where the wavenumber is defined as k =
√

2µεkl/~. Since the radial potential is infinite
outside of the sphere, the radial wave functions must satisfy ukl(r > a) = 0. The general
solution of (C.13) reads [93]

ukl(r) =
√
r
[
AJl+ 1

2
(kr) +BYl+ 1

2
(kr)

]
, (C.14)

where Jν(z) and Yν(z) are the Bessel functions of the first and second kind, respectively,
and where A and B are normalizing constants. The boundary condition ukl(0) = 0 leads
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Figure C.1: Effective, l-fixed, radial potential V eff
l of the spherical cavity as a function

of the radial coordinate r.

to the elimination of the solution Yl+ 1
2
(kr) which diverges at the origin. Furthermore,

the condition of continuity at r = a ensures that

Jl+ 1
2
(ka) = 0. (C.15)

The quantum mechanical spectrum of the spherical billiard is thus given by the zeros
of Bessel functions of the first kind, which are not known analytically, except in some
asymptotic limits. If one wants the exact spectrum of this system, one has to resort to
some numerical search of zeros. This was not necessarily easy in the 1960’s, and the
semiclassical quantization of Keller and Rubinow [139] was thus a great success at that
time, since it provides a route to the semiclassical quantization of integrable systems.

Semiclassical spectrum

The determination of the trace formula (see Eqs. C.10 and C.11) requires the knowledge
of two classical quantities, namely the classical action of the periodic orbit in the effective,
l-fixed radial potential, and the corresponding period of the classical periodic motion. In
order to determine the action, one has to know the classical turning points. The turning
point on the left of the classically allowed region is given by the condition V eff

l (r−) = ε,
i.e., r− = ~(l + 1/2)/

√
2µε. On the right of the classical region, we have a reflection

point at r = a (see Fig. C.1).
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The classical action at energy ε is given by

Sl(ε) = 2

∫ a

r−

dr
√

2µ
[
ε− V eff

l (r)
]
. (C.16)

The integrand of the above integral is simply the conjugated momentum to the variable
r, i.e., pr. With (C.7) and (C.12), we obtain

Sl(ε) = 2~

√(ka)2 −
(
l +

1

2

)2

−
(
l +

1

2

)
arccos

(
l + 1/2

ka

) . (C.17)

The period of the classical motion at energy ε is thus given by τl = ∂Sl/∂ε, i.e.,

τl(ε) =
~
√

(ka)2 − (l + 1/2)2

ε
. (C.18)

We now determine the WKB quantization condition, which is modified by the presence
of the hard wall at r = a: Since the radial potential V eff

l (r) is infinite at this point, the
semiclassical wave function (B.27) vanishes and thus

cos

{
1

~

∫ a

r−

dr′
√

2µ
[
εnl − V eff

l (r′)
]
− π

4

}
= 0, (C.19)

that is
Sl(ε)

2~
− π

4
=
π

2
+ nπ, (C.20)

with n a positive integer, which is the number of nodes of the wave function of the quan-
tum level |n, l,m〉. Rearranging the above equation, we obtain the WKB quantization
in presence of a hard wall:

Sl(ε) = 2π~
(
n+

3

4

)
. (C.21)

More generally, one shows [124, 134, 135, 139] that the quantization condition for a po-
tential having νc conjugated points and νr reflection points reads

S(ε) = 2π~
(
n+

νc

4
+
νr

2

)
. (C.22)

In the case of the spherical billiard, we find with (C.17) and (C.21)√
(ka)2 −

(
l +

1

2

)2

−
(
l +

1

2

)
arccos

(
l + 1/2

ka

)
= π

(
n+

3

4

)
. (C.23)

This result is the one found by Keller and Rubinow in Ref. 139. It has to be compared
with the exact quantization condition (C.15). We first note that it is numerically much
easier to find the roots of (C.23) than the zeros of Bessel functions. Second, in Fig. C.2,
one can remark the accuracy of the Keller and Rubinow quantization condition: We
show as a function of ka the absolute error between the exact spectrum from (C.15) and
the semiclassical one (C.23) for different values of the angular momentum l. The error is
decreasing with increasing energy, as it is expected from the semiclassical approximation
(high energy limit).
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Figure C.2: Absolute error between the exact spectrum of the spherical billiard (C.15)
and the semiclassical spectrum (C.23) as a function of ka, for l = 0, 1, 2.

Berry-Tabor formula for the density of states

In this paragraph, we will show how it is possible to recover the full (three-dimensional)
density of states from the knowledge of the density restricted to a fixed angular mo-
mentum l. To this end, we sum the semiclassical density of states from (C.10) over the
angular momentum quantum numbers,

%(ε) =
lmax∑
l=0

+l∑
m=−l

%l(ε). (C.24)

In the above equation, lmax is the maximal angular momentum quantum number allowed
at the energy ε. It is given by the condition V eff

lmax
(a) = ε, i.e., lmax = ka− 1/2.

With (C.11a), the smooth part of the full density of states is given by

%0(ε) =
1

2π~

lmax∑
l=0

(2l + 1)τl(ε). (C.25)

For lmax = ka − 1/2 � 1 (high energy limit), we can replace the summation over l by
an integral to obtain

%0(ε) =
1

2π~

∫ ka−1/2

−1/2

dl(2l + 1)τl(ε). (C.26)
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Replacing the period τl by its expression (C.18), we obtain

%0(ε) =
2µka3

3π~2
, (C.27)

which reads

%0(ε) =
1

4π2

(
2µ

~2

)3/2√
εV , (C.28)

with V = 4πa3/3 the volume of the sphere. We thus recover with this resummation
procedure the Thomas-Fermi term, which corresponds to the first term of the Weyl
expansion, of order 1/~2 [124].

In order to find the oscillating term of the density of states, we use the Poisson
summation rule [140]

b∑
l=a

fl =
+∞∑

m̃=−∞

∫ b+1/2

a−1/2

dl e2πim̃lfl. (C.29)

With (C.11b), we thus have

%osc(ε) =
1

π~

+∞∑
m̃=−∞

∞∑
r̃=1

∫ ka−1/2

−1/2

dl e2πim̃l(2l + 1)τl(ε) cos

[
r̃

(
Sl(ε)

~
− 3π

2

)]
, (C.30)

where we have used the fact that we have νc = 1 conjugated point in r− and νr = 1
hard wall at the boundary a. Note that the upper bound of the integral over l should be
ka according to the Poisson summation rule. However, the integrand is not defined for
l > ka − 1/2, since the semiclassical Green function at a given energy vanishes outside
of the classically allowed region of the effective radial potential. We can rewrite (C.30)
as

%osc(ε) =
1

2π~

+∞∑
m̃=−∞

∞∑
r̃=1

∑
σ=±

∫ ka−1/2

−1/2

dl (2l + 1)τl(ε)e
iφm̃r̃

l,σ (ε) (C.31)

with the phases

φm̃r̃
l,±(ε) = 2πm̃l ± r̃

(
Sl(ε)

~
− 3π

2

)
. (C.32)

The integral over l is evaluated by virtue of the stationary phase approximation explained
in Appendix B.3.2. The stationarity condition

∂φm̃r̃
l,±(ε)

∂l

∣∣∣∣∣
l̄±

= 0 (C.33)

implies, using (C.17), that

arccos

(
l̄± + 1/2

ka

)
= ±πm̃

r̃
. (C.34)
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Since the inverse cosine function is positive, the above expression imposes that m > 0
and m 6 0 for the two families of stationary points l̄+ and l̄−, respectively. Inverting
(C.34) gives the stationary points

l̄± = ka cosϕr̃m̃ −
1

2
, (C.35)

with ϕr̃m̃ = πm̃/r̃. The stationarity condition is then only valid if the stationary points
belong to the interval of integration, i.e., l̄± ∈ ]−1/2, ka− 1/2[. Imposing that condition,
we find that r̃ > 2 |m̃| for the two families of stationary points.

The stationarity condition (C.35) reads ~(l̄± + 1/2) = pa cosϕr̃m̃, p being the mo-
mentum of the particle of mass µ. This guarantees that the trajectories selected by the
stationary phase approximation are the classical trajectories inside the spherical billiard.
Indeed, it is easy to show that the only possible trajectories in the billiard are such that
r̃ > 2 |m̃| with r̃ the number of instance that the particle bounces against the surface
of the sphere, and m̃ the winding number around the center of the sphere. Moreover,
pa cosϕr̃m̃ is precisely the classical kinetic momentum associated with the trajectory
(r̃, m̃), and ϕr̃m̃ is the bisection of the angle formed by the polygons (r̃, m̃). We note
also that Lr̃m̃ = 2r̃a sinϕr̃m̃ is the length of the orbit labeled with the indices (r̃, m̃),
that we have thus identified with Berry-Tabor’s topological indices [134,135].

Coming back to (C.31), we obtain with the stationary phase approximation

%osc(ε) =
1

2π~

∞∑
m̃=1

∑
r̃>2m̃

(2l̄+ + 1)τl̄+(ε)e
iφm̃r̃

l̄+,+
(ε)
∫ +∞

−∞
dl exp

 i

2

∂2φm̃r̃
l,+(ε)

∂l2

∣∣∣∣∣
l̄+

l2

 (C.36)

+
1

2π~

−1∑
m̃=−∞

∑
r̃>−2m̃

(2l̄− + 1)τl̄−(ε)e
iφm̃r̃

l̄−,−(ε)
∫ +∞

−∞
dl exp

 i

2

∂2φm̃r̃
l,−(ε)

∂l2

∣∣∣∣∣
l̄−

l2

,
where we have used the change of variables (l − l̄±) → l. Evaluating the two Gaussian
integrals, rearranging the sum over m̃ in the second term on the r.h.s. of the above
expression, and calculating explicitly all terms, we finally obtain

%osc(ε) =
2µa2

~2

√
ka

π

∑
m̃>1
r̃>2m̃

(−1)m̃ sin (2ϕr̃m̃)

√
sinϕr̃m̃

r̃
cos Φr̃m̃ (C.37)

with Φr̃m̃ = kLr̃m̃ + π/4− 3r̃π/2. Lr̃m̃ and ~kLr̃m̃ are the length and the action of the
classical trajectory (r̃, m̃), respectively. With our resummation technique of the angular
momentum restricted density of states, we thus recover the well-known Berry-Tabor
formula for the oscillating part of the density of states of a spherical billiard [124,134,135].

In Fig. C.3, we show the oscillating component (C.37) of the density of states as
a function of ka. We have only retained the triangular and the square trajectories
(3, 1) and (4, 1): These are the major contributions to the oscillating density of states
[124]. Indeed, those trajectories have, in the Fourier spectrum in real space, the largest
amplitudes. When r̃ and m̃ increase, the amplitudes become negligible. The beating
pattern in Fig. C.3 is due to the interferences that occur between the triangular and
square trajectories, as it has been shown in Ref. 133 by Balian and Bloch.
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Figure C.3: Oscillating component of the density of states of a spherical billiard as a
function of ka. We have only retained the trajectories (3, 1) and (4, 1).

C.2.2 Disk billiard

A disk billiard is defined by the radial potential (C.12) in the two-dimensional case.
The effective radial motion is governed by the potential given in (C.9). The classical
primitive periodic orbits have νc = νr = 1 since there is one turning point at the (smooth)
kinetic barrier and another at the (hard) wall for r = a. For a given energy ε we have
mmax =

√
2µεa/~ = ka. Since the calculations are very similar to those performed in the

case of the spherical cavity, Sec. C.2.1, we will not give all the details of the derivation
leading to the Berry-Tabor formula for the density of states of the disk billiard.

The action and period of the periodic orbit with energy ε and angular momentum m
are given by

Sm(ε) = 2~
[√

(ka)2 −m2 −m arccos
(m
ka

)]
, (C.38a)

τm(ε) =
~
√

(ka)2 −m2

ε
, (C.38b)

respectively. The smooth part of the density of states is

%0(ε) =
+mmax∑

m=−mmax

%0
m(ε) =

1

4π

(
2µ

~2

)
A, (C.39)

with A = πa2 being the disk area. We have replaced the sum by an integral and obtained
the Weyl part of the density of states. For the oscillating part we make use of the Poisson
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summation rule and write

%osc(ε) =
1

2π~

+∞∑
m̃=−∞

∑
r̃>1
σ=±

∫ mmax

0

dmτm(ε) eσiφm̃r̃
m (ε) (C.40)

with the phase

φm̃r̃
m (ε) = 2πm̃m+ r̃

(
Sm(ε)

~
− 3π

2

)
. (C.41)

Consistently with the semiclassical expansions, we perform a stationary phase approx-
imation. The stationary points are given by m̄ = ka cosϕr̃m̃, with ϕr̃m̃ = πm̃/r̃ and
the condition r̃ > 2m̃ > 0, which yields just the classical angular momenta of the peri-
odic orbits labeled by the topological indices (r̃, m̃). We then recover for the oscillating
density of states the well-known result [133–135]

%osc(ε) =
2µa2

~2

1√
πka

∞∑
m̃=1

∑
r̃≥2m̃

fr̃m̃
sin 3/2ϕr̃m̃√

r̃
cos Φr̃m̃, (C.42)

where fr̃m̃ = 1 if r̃ = 2m̃ and fr̃m̃ = 2 if r̃ > 2m̃, Φr̃m̃ = kLr̃m̃ − 3rπ/2 + π/4 and
Lr̃m̃ = 2r̃a sinϕr̃m̃ is the length of the orbit (r̃, m̃). The oscillating component (C.42) of
the density of states is represented in Fig. C.4 as a function of ka. Here, we have retained
the diametral trajectory (2, 1) which gives the major contribution, plus the triangle and
square trajectories, as in the case of the spherical billiard.

We also notice that the quantization of the radial problem leads to the well-known
Keller and Rubinow condition [139]

√
(ka)2 −m2 −m arccos

(m
ka

)
= π

(
n+

3

4

)
, (C.43)

from which the Berry-Tabor formula can be readily obtained. It has to be compared with
the exact spectrum given by the zeros of Jm(ka). As in the case of the spherical billiard,
(C.43) is a very good approximation to the exact quantum mechanical spectrum.

C.2.3 Isotropic spherical harmonic oscillator

The isotropic harmonic oscillator in three dimensions is an integrable system without
hard wall boundaries and therefore the Berry-Tabor quantization is very difficult to
implement. The radial approach that we develop clearly overcomes this difficulty. The
effective potential is

V eff
l (r) =

~2(l + 1/2)2

2µr2
+

1

2
µω2r2, (C.44)

where ω is the frequency of the harmonic confinement. At a given ε, we have lmax =
−1/2+ε/~ω. The classical action is given by Sl(ε) = επ/ω−π~(l+1/2) and the period
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Figure C.4: Oscillating component of the density of states of a disk billiard as a function
of ka. We have only retained the trajectories (2, 1), (3, 1) and (4, 1).

is τ = π/ω. Using (C.10) with νc = 2 and νr = 0 (no hard wall) gives the density of
states at fixed orbital momentum

%l(ε) =
1

2~ω

{
1 + 2

∞∑
r̃=1

cos

[
πr̃

(
ε

~ω
− l − 3

2

)]}
(C.45)

For the smooth part of the density of states, the sum over l can be performed exactly,
but to be consistent with the semiclassical approximation we have to take the limit
ε/~ω � 1: %0(ε) ' ε2/2(~ω)3. Writing the Poisson summation rule for the oscillating
part and performing a stationary phase approximation, we have the condition on topo-
logical indices r̃ = 2m̃ and m̃ > 1. Finally we obtain for the total density of states the
trace formula [141]

%(ε) =
ε2

2(~ω)3

[
1 + 2

∞∑
m̃=1

(−1)m̃ cos
(
2πm̃

ε

~ω

)]
, (C.46)

which has to be compared with the exact trace formula given in Ref. 124, where the
prefactor is shifted by the quantity −1/8~ω, negligible at the (high energy) semiclassical
limit. One also notices that the WKB quantization rule yields the exact quantum
spectrum of the harmonic oscillator: εnl = ~ω(2n+ l + 3/2).

In Fig. C.5, we show the number of single-particle states having an energy below ε,

N (ε) =

∫ ε

0

dε′%(ε′). (C.47)

184



C.2 Total density of states and Berry-Tabor formula for systems with radial symmetry

0

2 · 103

4 · 103

6 · 103

8 · 103

1 · 104

NN

0 10 20 30 40

ε/h̄ωε/h̄ω

Figure C.5: Number N of single-particle states of a three-dimensional harmonic oscil-
lator having an energy smaller than ε, as a function of ε/~ω. It is plotted
for m up to mmax = 50.

With (C.46), we have

N (ε) =
1

6

( ε

~ω

)3

(C.48)

+
∞∑

m̃=1

(−1)m̃

4(πm̃)3

{
2πm̃

ε

~ω
cos
(
2πm̃

ε

~ω

)
+

[
2
(
πm̃

ε

~ω

)2

− 1

]
sin
(
2πm̃

ε

~ω

)}
.

It reproduces very accurately the quantum mechanical spectrum of the three-dimensional
isotropic harmonic oscillator. As expected, the single-particle states are separated by an
energy ~ω. Moreover, the semiclassical trace formula (C.46) reproduces the degeneracy
of a state |n, l,m〉 of the spherical harmonic oscillator in three dimensions.

In this appendix, we have demonstrated the usefulness of the radial decomposition
for the semiclassical expansion of the density of states. Even in the case of degener-
ate classical periodic trajectories, one is able to find the semiclassical density of states
by using the appropriate symmetry of the system, without requiring the action-angle
quantization of Berry and Tabor.

185





Appendix D

Second-order perturbation theory:
Fermi’s golden rule

Je cherche l’or du temps.

(André Breton, 1896-1966, in
Discours sur le peu de réalité)

In this appendix, we present the second order perturbation theory that we use in our
determination of the linewidth of the double plasmon, as well as for the ionization rate
via the second surface plasmon state in Chapter 7. The second order time-dependent
perturbation theory will yield the Fermi golden rule of (7.1).

Our goal is here to solve approximately the time-dependent Schrödinger equation

i~|ψ̇(t)〉 = (H0 + λHp) |ψ(t)〉 (D.1)

in the limit λ� 1.1 In our special case of interest, i.e., the decay of collective excitations
in metallic nanoparticles, we identify H0 = Hcm +Hrel, while λHp = Hc is the coupling
Hamiltonian between the center-of-mass system and the relative coordinates. Assuming
that H0|n〉 = εn|n〉, the general solution of (D.1) is given by

|ψ(t)〉 =
∑

n

cn(t)e−iεnt/~|n〉 (D.2)

where the time-dependent coefficients cn(t) remain to be determined. If the perturbation
vanishes, i.e., λ = 0, we have cn(t) = cn which is independent of time. For λ � 1, we
thus assume |ċn(t)| � 1.

Inserting the general solution (D.2) into the Schrödinger equation (D.1), and doing
the scalar product with a state |m〉 (〈m|n〉 = δmn), we obtain

i~ċm(t) = λ
∑

n

〈m|Hp|n〉eiωmntcn(t) (D.3)

1The dot denotes the derivative with respect to the time t.
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with ωmn = (εm − εn)/~. Making the perturbative assumption

cn(t) = c(0)
n + λc(1)n (t) + λ2c(2)

n (t) +O(λ3), (D.4)

and solving order-by-order, we get the evolution

i~ċ(1)
m (t) =

∑
n

〈m|Hp|n〉eiωmntc(0)n , (D.5a)

i~ċ(2)
m (t) =

∑
n

〈m|Hp|n〉eiωmntc(1)n (t), (D.5b)

for the first- and second-order coefficients, respectively.
Let us now assume that for t < 0, there is no perturbation, and the system described

by H0 is in its initial state |i〉. The perturbation is switched on at t = 0, until the time
τ for which it is switched off. The question we address is then: What is the probability
to find the system in the final state |f〉 after the application of the perturbation? If we

work in a case where the first-order processes are suppressed, i.e., c
(1)
f = 0, and under

the assumption that the final state is nondegenerate, the transition probability is simply
|c(2)

f (τ)|2.2 Integrating the equations of motion (D.5) with the initial condition c
(0)
n = δni,

we obtain ∣∣∣c(2)
f (τ)

∣∣∣2 =
1

~2

sin2 (ωfiτ/2)

(ωfi/2)2

∣∣∣∣∣∑
n

〈f |Hp|n〉〈n|Hp|i〉
εi − εn

∣∣∣∣∣
2

. (D.6)

In the above equation, we have neglected a highly oscillating term as a function of n,
which is vanishing once the summation over n is performed.

We now assume that the time τ over which the perturbation acts is sufficiently large
compared to the inverse difference in energy between the initial and final state ωfi to
guarantee Heisenberg’s uncertainty principle. In practice, taking the limit τ → ∞ in
(D.6), we obtain ∣∣∣c(2)

f (τ)
∣∣∣2 =

2π

~2
τδ(ωfi)

∣∣∣∣∣∑
n

〈f |Hp|n〉〈n|Hp|i〉
εi − εn

∣∣∣∣∣
2

. (D.7)

We have used the well-known identity [78]

δ(x) = lim
ε→0

[
ε

π

sin2 (x/ε)

x2

]
(D.8)

to obtain this result.
The rate γ

(2)
f of the second-order transition |i〉 → |f〉 is given by the derivative of

(D.7) with respect to τ . If one has several possible final states, one has to sum over all
those states to obtain the rate

γ(2) =
2π

~
∑

f

∣∣∣∣∣∑
n

〈f |Hp|n〉〈n|Hp|i〉
εi − εn

∣∣∣∣∣
2

δ(εf − εi), (D.9)

2We have set λ = 1 for convenience.
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given by Fermi’s golden rule to the second order in the perturbation Hp. In the specific
example of the Landau damping rate of the double plasmon state, we use |i〉 = |2, Irel〉,
|n〉 = |1, F ′rel〉 and |f〉 = |0, Frel〉 to finally obtain the golden rule (7.1).
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[4] T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zwerger,
Quantum transport and dissipation (Wiley-VCH, Weinheim, 1998).

[5] W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and
M. L. Cohen, Electronic shell structure and abundances of sodium clusters, Phys.
Rev. Lett. 52, 2141 (1984).

[6] A. Bohr and B. R. Mottelson, Nuclear structure (Benjamin, Reading, 1975).

[7] P. Ring and P. Schuck, The nuclear many-body problem (Springer-Verlag, New
York, 1980).

[8] R. D. Woods and D. Saxon, Diffuse surface optical model for nucleon-nuclei scat-
tering, Phys. Rev. 95, 577 (1954).

[9] N. W. Ashcroft and N. D. Mermin, Solid state physics (Harcourt, Orlando, 1976).

[10] W. A. de Heer, The physics of simple metal clusters: Experimental aspects and
simple models, Rev. Mod. Phys. 65, 611 (1993).

[11] M. Brack, The physics of simple metal clusters: Self-consistent jellium model and
semiclassical approaches, Rev. Mod. Phys. 65, 677 (1993).

[12] H. A. Jahn and E. Teller, Stability of polyatomics molecules in degenerate electronic
state. I. Orbital degeneracy, Proc. R. Soc. London A 161, 220 (1937).

[13] U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag,
Berlin, 1995).

[14] H. Haberland, ed., Clusters of atoms and Molecules I, vol. 52 of Springer Series
in Chemical Physics (Springer-Verlag, Berlin, 1994).

191



Bibliography

[15] H. Haberland, ed., Clusters of atoms and Molecules II, vol. 56 of Springer Series
in Chemical Physics (Springer-Verlag, Berlin, 1994).

[16] G. F. Bertsch and R. A. Broglia, Oscillations in finite quantum systems (Cam-
bridge University Press, Cambridge, 1994).

[17] G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Damping of nuclear excitations,
Rev. Mod. Phys. 55, 287 (1983).
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[62] V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, Electron dynamics in
silver nanoparticles: Comparison between thin films and glass embedded nanopar-
ticles, Phys. Rev. B 60, 11738 (1999).

[63] J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, Electron dynamics in metallic
nanoparticles, Chem. Phys. 251, 181 (2000).

[64] N. D. Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, Electron
dynamics and surface plasmon nonlinearities in metal nanoparticles, Chem. Phys.
251, 215 (2000).

[65] C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, Ultrafast electron dynamics
and optical nonlinearities in metal nanoparticles, J. Phys. Chem. B 105, 2264
(2001).

[66] P.-A. Hervieux, A. Benabbas, V. Halté, and J.-Y. Bigot, Electronic temperature
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M. Pfeiffer, O. Schwalb, H. Löhner, et al., First observation of the Coulomb-excited
double giant dipole resonance in 208Pb via double-γ decay, Phys. Rev. Lett. 70, 533
(1993).

[110] F. Catara, P. Chomaz, and N. V. Giai, Two-plasmon excitation in metallic clusters,
Phys. Rev. B 48, 18207 (1993).

[111] K. Hagino, Anharmonicity of the dipole resonance of metal clusters, Phys. Rev. B
60, R2197 (1999).

[112] M. Koskinen and M. Manninen, Photoionization of metal clusters, Phys. Rev. B
54, 14796 (1996).

[113] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products (Aca-
demic Press, San Diego, 2000), 6th ed.

[114] F. Abelès, ed., Optical properties of solids (North-Holland, Amsterdam, 1972).
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