Exam — Session 2

Duration: 2h

Documents, cell phones, computers, tablets, pocket calculators, etc., are not allowed

The text contains 3 pages in total

1 Ising dimer

Let us consider two Ising spins $s_i = \pm 1$ (i = 1, 2) forming a dimer. The two spins are subject to a uniform magnetic field H, and interact through a ferromagnetic exchange interaction J. The dimer is connected to a heat reservoir which maintains its temperature T constant. In what follows, we denote $\beta = 1/k_{\rm B}T$, with $k_{\rm B}$ the Boltzmann constant. The Hamiltonian of the system then reads

$$\mathcal{H} = -(s_1 + s_2)H - Js_1s_2.$$

- (a) What is the sign of J? Justify your answer.
- (b) At vanishing magnetic field (H=0) and zero temperature (T=0), what are the spin configurations?
- (c) Calculate the exact canonical partition function Z and the free energy F of the system.
- (d) The average magnetization per spin $m = \langle s_i \rangle$ of the system is given by

$$m = -\frac{1}{2} \frac{\partial F}{\partial H}. ag{1.1}$$

- (i) Justify expression (1.1).
- (ii) Show that

$$m = \frac{\sinh(2\beta H)}{\cosh(2\beta H) + \exp(-2\beta J)}.$$
 (1.2)

- (iii) Without interaction between the two spins (J=0), prove that Eq. (1.2) recovers the paramagnetic behavior $m = \tanh(\beta H)$.
- (iv) For a given value of J, plot m as a function of H for various temperatures. What happens in the T=0 limit? Does the system present a phase transition?
- (e) The zero-field magnetic susceptibility is defined as

$$\chi = \left. \frac{\partial m}{\partial H} \right|_{H=0}.$$

Calculate χ and comment on the T=0 limit.

2 Van der Waals equation of state

Let us consider a system of $N\gg 1$ classical particles with mass m occupying a three-dimensional volume V at the temperature T. The particles have no internal degrees of freedom. The Hamiltonian of the system reads

$$\mathcal{H} = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2m} + U(\mathbf{r}_1, \dots, \mathbf{r}_N),$$

where \mathbf{r}_i and \mathbf{p}_i are the position and momentum of the i^{th} particle, and U is the interaction energy of the system.

2.1 Semiclassical partition function

We recall that the canonical partition function of the system is given, in the dilute limit, by

$$Z = \frac{1}{(2\pi\hbar)^{3N}N!} \int d^3\mathbf{r}_1 \dots d^3\mathbf{r}_N d^3\mathbf{p}_1 \dots d^3\mathbf{p}_N e^{-\beta\mathcal{H}},$$

Using the result

$$\int_{-\infty}^{+\infty} \mathrm{d}u \, \mathrm{e}^{-u^2} = \sqrt{\pi},$$

show that

$$Z = \frac{1}{N! \Lambda_T^{3N}} \int d^3 \mathbf{r}_1 \dots d^3 \mathbf{r}_N e^{-\beta U(\mathbf{r}_1, \dots, \mathbf{r}_N)}, \qquad (2.1)$$

where $\Lambda_T = (2\pi\hbar^2/mk_{\rm B}T)^{1/2}$ is the thermal de Broglie wavelength.

2.2 The ideal gas case

Let us first consider the case of an ideal gas, for which it is assumed that $U(\mathbf{r}_1, \dots, \mathbf{r}_N) = 0$.

- (a) In the noninteracting case, calculate the partition function (2.1) and the free energy F in the thermodynamic limit.¹
- (b) Deduce from the previous question the equation of state of the system.
- (c) In a P-V diagram, sketch the isothermal curves. Does the ideal gas model enable one to describe the liquid-gas phase transition?

2.3 Role of the molecular interactions

Let us now consider the interactions between pairs of molecules only, so that the interaction energy in Eq. (2.1) reads

$$U(\mathbf{r}_1, \dots, \mathbf{r}_N) = \frac{1}{2} \sum_{\substack{i,j=1\\(i \neq j)}}^N u(r_{ij}),$$

where $u(r_{ij})$ is the potential energy between two pairs of molecules separated by the distance $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$. In what follows, we assume that u(r) is a Lennard–Jones potential that takes the form

$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]. \tag{2.2}$$

The Lennard–Jones potential has a minimum at $r = r_0 = 2^{1/6}\sigma$, for which it takes the value $u(r_0) = -\varepsilon$.

- (a) Sketch the Lennard–Jones potential (2.2) as a function of r, and indicate on your graph where are the repulsive and attractive part of the interaction.
- (b) Let us first consider the attractive part $\propto -r^{-6}$ of u(r) and neglect the correlations between the particles. Within a mean-field approximation, assuming that the density of particles is uniform, show that

$$U(\mathbf{r}_1, \dots, \mathbf{r}_N) \simeq -\frac{aN^2}{V},$$

with

$$a = -\frac{1}{2} \int \mathrm{d}^3 \mathbf{r} \, u(r).$$

¹We recall Stirling's formula $\ln n! \simeq n \ln n - n$ for $n \gg 1$.

- (c) Close to a given particle, the approximation above is not valid any longer and one has to take into account the repulsive part $\propto r^{-12}$ of the pair potential (2.2). To this end, we assume that the particles are hard spheres of radius R and that each particle has an excluded volume b. Give an expression of b as a function of R. Justify that when integrating over the particle positions in Eq. (2.1), one has to integrate over V Nb instead of V, as was done in the ideal gas case.
- (d) Considering the appriximations of questions (b) and (c) above, show that Eq. (2.1) takes the form

$$Z \simeq rac{(V - Nb)^N}{N! \Lambda_x^{3N}} \; \mathrm{e}^{eta a N^2/V},$$

and calculate F in the thermodynamic limit.

(e) Deduce from the above results the van der Waals equation of state

$$\left(P + a\frac{N^2}{V^2}\right)(V - Nb) = Nk_{\rm B}T.$$
(2.3)

2.4 Isothermal curves

- (a) Sketch the isothermal curves (2.3) in a P-V diagram. In particular, show that there exists a critical temperature T_c below which the isothermal curves are no longer monotonic functions.
- (b) For the critical isothermal curve, there exists an inflection point (P_c, V_c) called the critical point. Give the expressions of P_c , V_c , and T_c as a function of a and b.
- (c) Plot the free energy F as a function of V for $T > T_c$ and $T < T_c$.
- (d) One can show that a thermodynamical system for which $(\partial P/\partial V)_T > 0$ is unstable. What are the regions in the P-V and F-V diagrams which correspond to thermodynamically unstable states?
- (e) Qualitatively explain how to remedy to this incoherence of the van der Waals model, and how to describe the liquid-gas transition.