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TD 5
Mécanique du solide

Équations du mouvement d’un corps solide

1 Tomber rapidement

Une tige sans masse et de longueur L est reliée à l’une de ses
extrémités à un pivot et à l’autre extrémité à une masse ponctuelle
m (voir Fig. 1). Où doit-on attacher une seconde masse à la tige de
telle sorte que cette dernière tombe le plus rapidement possible ?
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8.8 Exercises 341

8.38. Coin on a plane *
Auniform coin rolls down a plane inclined at an angle θ . If the coefficient
of static friction between the coin and the plane is µ, what is the largest
angle θ for which the coin doesn’t slip?

8.39. Accelerating plane *
Aball with I = (2/5)MR2 is placed on a plane inclined at an angle θ . The
plane is accelerated upwards (along its direction) with acceleration a;
see Fig. 8.45. For what value of a does the CM of the ball not move?

a

u

Fig. 8.45

Assume that there is sufficient friction so that the ball doesn’t slip with
respect to the plane.

8.40. Bowling ball on paper *
A bowling ball sits on a piece of paper on the floor. You grab the paper
and pull it horizontally along the floor, with acceleration a0. What is the
acceleration of the center of the ball? Assume that the ball does not slip
with respect to the paper.

8.41. Spring and cylinder *
The axle of a solid cylinder of mass m and radius r is connected to a
spring with spring constant k , as shown in Fig. 8.46. If the cylinder rolls

Mk

Fig. 8.46without slipping, what is the frequency of the oscillations?

8.42. Falling quickly *
A massless stick of length L is pivoted at one end and has a mass m
attached to its other end. It is held in a horizontal position, as shown in
Fig. 8.47. Where should a second mass m be attached to the stick, so m m

x
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pivot

Fig. 8.47

that the stick falls as fast as possible when dropped?

8.43. Maximum frequency *
Apendulum is made of a uniform stick of length L. It is allowed to swing
in a vertical plane. Where should the pivot be placed on the stick so that
the frequency of (small) oscillations is maximum?

8.44. Massive pulley *
Solve Problem 8.1 again, but now use force and torque instead of
conservation of energy.

8.45. Atwood’s with a cylinder **
Solve Exercise 8.27 again, but now use force and torque instead of
conservation of energy.

8.46. Board and cylinders **
Solve Exercise 8.28 again, but now use force and torque instead of
conservation of energy.

Fig. 1: c© D. Morin

2 Machine de Atwood (bis)

Reprendre l’Exercice 5 du TD 4 en utilisant cette fois-ci les notions de force et de couple, et
non pas la conservation de l’énergie.

3 Half-pipe

Une petite bille de rayon Rb, de masse m et de densité de masse
uniforme roule sans glisser près du fond d’un half-pipe de rayon
R (voir Fig. 2). Quelle est la fréquence des oscillations de la bille ?
On supposera que Rb � R.
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integrating the string’s force on the cylinder over the semicircle of con-
tact. (The N = T dθ result from the “Rope wrapped around a pole”
example in Section 2.1 will come in handy.)

8.13. Oscillating ball **
A small ball with radius r and uniform density rolls without slipping
near the bottom of a fixed cylinder of radius R (see Fig. 8.32). What is

R

Fig. 8.32

the frequency of small oscillations? Assume r ! R.

8.14. Oscillating cylinders **
A hollow cylinder of mass M1 and radius R1 rolls without slipping on
the inside surface of another hollow cylinder of mass M2 and radius
R2. Assume R1 ! R2. Both axes are horizontal, and the larger cylin-
der is free to rotate about its axis. What is the frequency of small
oscillations?

8.15. Lengthening the string **
A mass hangs from a massless string and swings around in a hori-
zontal circle, as shown in Fig. 8.33. The length of the string is then
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Fig. 8.33

very slowly increased (or decreased). Let θ , ", r, and h be defined as
shown.

(a) Assuming that θ is very small, how does r depend on "?
(b) Assuming that θ is very close to π/2, how does h depend on "?

8.16. A triangle of cylinders ***
Three identical cylinders with moments of inertia I = βmR2 are situated
in a triangle as shown in Fig. 8.34. Find the initial downward acceleration
of the top cylinder for the following two cases. Which case has a larger
acceleration?

RR

R

Fig. 8.34 (a) There is friction between the bottom two cylinders and the ground
(so they roll without slipping), but there is no friction between
any of the cylinders.

(b) There is no friction between the bottom two cylinders and the
ground, but there is friction between the cylinders (so they don’t
slip with respect to each other).

8.17. Falling chimney ****
A chimney initially stands upright. It is given a tiny kick, and it topples
over.At what point along its length is it most likely to break? In doing this
problem, work with the following two-dimensional simplified model of
a chimney. Assume that the chimney consists of boards stacked on top
of each other, and that each board is attached to the two adjacent ones
with tiny rods at each end (see Fig. 8.35). The goal is to determineFig. 8.35
which rod in the chimney achieves the maximum tension. Work in the

Fig. 2: c© D. Morin

4 Collision élastique

Une masse ponctuelle m en mouvement rectiligne uniforme se dirige perpendiculairement
vers une tige de longueur ` et de même masse m qui est initialement au repos. À quelle
position la masse ponctuelle doit-elle toucher la tige afin que cette dernière ait la même vitesse
que le centre de la tige ? On supposera que le choc est élastique.

5 Un cylindre sur un plan incliné relié à un poids

On considère le dispositif de la Fig. 3 : une corde s’enroule autour
d’un cylindre uniforme de masse M et de rayon R qui repose sur
un plan incliné. La corde (dont on négligera la masse) est reliée à
un poids de masse m par une poulie dont on négligera la masse.
On supposera également que le cylindre roule sans glisser et que
la corde est parallèle au plan incliné. Déterminez l’accélération
du poids de masse m. Quelle est la condition sur le rapport M/m
pour que le cylindre accélère vers le bas du plan incliné ?
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Everything up to this point is valid for arbitrary motion. The particles can
be moving relative to each other, and the various Li’s can point in different
directions, etc. But let’s now restrict the motion. In the present chapter, we are
dealing only with cases where L̂ is constant (taken to point in the z direction).
Therefore, dL/dt = d(LL̂)/dt = (dL/dt)L̂. If in addition we consider only rigid
objects (where the relative distances among the particles are fixed) that undergo
pure rotation around a given point, then L = Iω, which gives dL/dt = I ω̇ ≡ Iα.
Taking the magnitude of both sides of Eq. (8.46) then gives

τext = Iα. (8.47)

Invariably, we will calculate angular momentum and torque around either the
CM or a fixed point (or a point that moves with constant velocity, but this doesn’t
come up often). These are the “safe” origins, in the sense that Eq. (8.46) holds. As
long as you always use one of these safe origins, you can simply apply Eq. (8.46)
and not worry much about its derivation.

Remark: You’ll probably never end up invoking the third condition above, but it’s interesting
to note that there’s a simple way of understanding it in terms of accelerating reference frames.
This is the topic of Chapter 10, so we’re getting a little ahead of ourselves here, but the reasoning
is as follows. Let r0 be the origin of a reference frame that is accelerating with acceleration
r̈0. Then all objects in this accelerating frame feel a mysterious fictitious force of −mr̈0. For
example, on a train accelerating to the right with acceleration a, you feel a strange force of
ma pointing to the left. If you don’t counter this with another force (by grabbing a handle,
for example), then you will fall over. This fictitious force acts just like a gravitational force,
because it is proportional to the mass. Therefore, it effectively acts at the CM, producing a
torque of (R − r0) × (−M r̈0). This is the second term in Eq. (8.45). This term vanishes if the
CM is directly “above” or “below” (as far as the fictitious gravitational force is concerned) the
origin, in other words, if (R − r0) is parallel to r̈0. See Problem 10.8 for further discussion of
this in terms of fictitious forces.

There is one common situation where the third condition can be invoked. Consider a wheel
rolling without slipping on the ground. Mark a dot on the rim. At the instant this dot is in
contact with the ground, it is a valid choice for the origin. This is true because (R − r0) points
vertically. And r̈0 also points vertically, because a dot on a rolling wheel traces out a cycloid.
Right before the dot hits the ground, it is moving straight downward. And right after it hits the
ground, it is moving straight upward. But having said this, there’s usually nothing to be gained
by picking such an origin. So the safe thing to do is to always pick your origin to be either the
CM or a fixed point, even if the third condition holds.

For conditions that number but three,
We say, “Torque is dL by dt.”
But though they’re all true,
I’ll stick to just two;
It’s CM’s and fixed points for me! ♣

Example: A string wraps around a uniform cylinder of mass M , which rests on a
fixed plane. The string passes up over a massless pulley and is connected to a mass m,
as shown in Fig. 8.17. Assume that the cylinder rolls without slipping on the plane,

M
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Fig. 8.17 and that the string is parallel to the plane. What is the acceleration of the mass m?Fig. 3: c© D. Morin
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