Computation of the hyperfine structure of lanthanide-organic complexes used for Quantum Information Processing

<u>Denis Jankovića, Marter Antoine Hartmanna, Hervé Molique</u>, Johann Bartel^c, Paul-Antoine Hervieuxa

^a Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Strasbourg, France ^b Fakultät für Chemie und Biowissenschaften, Karlsruher, Germany ^c Institut Pluridisciplinaire Hubert Curien, Strasbourg, France

denis.jankovic@ipcms.unistra.fr

Motivation

- Lanthanide-organic complexes \Rightarrow Quantum Information Processing.^[1]
- High nuclear spin \Rightarrow high number of states.
- Ln^{3+} in Ln-based complexes = 4f valence electrons \Rightarrow interesting optical and magnetic properties.^[2]
- Nuclear properties + electronic properties \Rightarrow individually addressable hyperfine levels = qudits.^[3,4]
- Complexes with $Ln^{2+} =$ additional 6s valence electron \Rightarrow penetration inside the nucleus \Rightarrow even larger hyperfine spacings.
 - Playground to study the effect the internal structure of the nucleus has on electronic levels.

TbPc ₂	as	a q	u-4- i	it (from	[5]).
-------------------	----	-----	---------------	------	------	-------

Quantum Information			formation	Table 1: Comparison of the informationdensity between bases of information.		Proton charge density inside 159Tb 0.0620 0.0558 0.0496	Nuclear aspect				
	#	# bits qubits		qudits $(d = 4)$		0	Spherical Harmonics Expansion				
	1	0 ou 1	$\alpha_1 0 angle+lpha_2 1 angle$	$\alpha_1 0\rangle + \alpha_2 1\rangle + \alpha_3 2\rangle + \alpha_4 3\rangle$		-5	$\frac{1}{1} = \sum_{k=1}^{\infty} \frac{r_{\leq}^{k}}{k+1} \mathbf{C}^{(k)}(\theta_{1},\phi_{1}) \mathbf{C}^{(k)}(\theta_{2},\phi_{2}) \qquad \bigcirc \qquad $				
	2	00,01,10 or 11	$\begin{array}{l} \alpha_1 00\rangle + \alpha_2 01\rangle \\ + \alpha_3 10\rangle + \alpha_4 11\rangle \end{array}$	$\begin{array}{l} \alpha_1 0000\rangle + \alpha_2 0001\rangle + \cdots \\ + \alpha_{16} 1111\rangle \end{array}$	-1	0.0124 0.0062	$ \boldsymbol{r}_e - \boldsymbol{r}_N \sum_{k=0}^{n} r_{>}^{n+1} (if if i$				
	:	:		:		Figure 1: Skyrme–Hartree–	$Q_{in,q}^{(k)}(r) := \int_{R=0}^{r} \rho(\mathbf{R}) R^{k} C_{q}^{(k)}(\Theta, \Phi) d^{3}\mathbf{R} \qquad \text{Electric Potential}$				
	N	1 of 2 ^N combinaisons	2 ^N probability amplitudes	d^N probability amplitudes		Fock calculations : charge density inside ¹⁵⁹ Tb.	$Q_{ex,q}^{(k)}(r) \coloneqq \int_{R=r}^{+\infty} \frac{\rho\left(R\right)}{R^{k+1}} C_q^{(k)}(\Theta, \Phi) d^3 R \qquad $				
$\bullet d = 4: \text{Grover's algorithm in only one molecule}^{[4]}. \text{Also useful}_{\text{for Q.E.C.*}} \phi(r) = \left(\frac{1}{r}Q_{in,0}^{(0)}(r) + Q_{ex,0}^{(0)}(r)\right) + C_0^{(2)}(\theta,\phi)\left(\frac{1}{r^3}Q_{in,0}^{(2)}(r) + r^2Q_{ex,0}^{(2)}(r)\right) + \dots$											
* Quantum Error Correction M_{in}^{(1)}(r) = \frac{1}{2} \int_{R=r}^{r} R \times \mathbf{j}(R) d^{3}R $M_{ex}^{(1)}(r) = \frac{1}{2} \int_{R=r}^{+\infty} \frac{R \times \mathbf{j}(R)}{R^{3}} d^{3}R$ Mag. Vector Potential $A(r) = \frac{\mu_{0}}{4\pi} \int \frac{\mathbf{j}(R)}{ r-R } d^{3}R$ $A(r) = \frac{1}{2} \frac{M_{in}^{(1)}(r) \times r}{2} + \frac{1}{2} (M_{er}^{(1)}(r) \times r) + \dots$											
Ha = [+ s /m	am Enc stru iole	codes the symucture of the decule	imetry crystal $k = q = -k$ so c^{n}	(q ~ q) $(\Phi) d^3 R$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

Figure Electronic 4: densities of the 9 Cl⁻ ions surrounding the central Pr³⁺ ion inside the PrCl₃ crystal (via DFT).

Configuration Mixing

Electrical control of the nuclear spin.^[5]

- Optical f f transitions.^[2]
- Optical control of the nuclear spin ?

Non symmetric molecule

 \Rightarrow States of undefined spatial parity.

Acknowledgments: Thank you to Mario Ruben (KIT) my PhD supervisor on the German side. Also special thanks to Fernand Aguilar-Galindo¹ and Sergio Diaz-Tendero² for their help on the quantum chemical side and providing us with the densities shown in Figure 4 for example.

Figure 2: Different contributions to the total mag. vector pot. of the nucleus.

Figure 3: Charge & current density of the protons inside ¹⁵⁹Tb (S-H-B calc.).

Hyperfine Anomaly

• "How does the finite size of the nucleus" influence the electronic energy levels ?"

 $H_{HF} = A_{dip}\mathbf{I} \cdot \mathbf{J} + B_{quad} \frac{6(\mathbf{I} \cdot \mathbf{J})^2 + 3\mathbf{I} \cdot \mathbf{J} - 2I^2 J^2}{4I(2I-1)J(2J-1)}$ Hamiltonian

 $A_{dip} \propto \int_{0}^{+\infty} P_{n,\kappa} \mathbf{A}_{z}(r) Q_{n,\kappa}(r) dr \quad B_{quad} \propto \int_{0}^{+\infty} [P_{n,\kappa}^{2}(r) + Q_{n,\kappa}^{2}(r)] \phi(r) dr$

Figure 5: Relative error in A_{dip} between realistic and point-like magnetizations for hydrogen-like ¹⁶¹Dy⁶⁵⁺ (left) and ¹⁶³Dy⁶⁵⁺ (right), for different electronic levels, with individual contributions from each source of magnetization shown in different colors.

¹ Donosta Internation Physics Center, San Sebastian, ² Universidad Autónoma de Madrie

Table 2: Correction factors to the hyperfine dipole constant A_{dip} from point-like to realistic models.

Future Prospects

- Pursue the computation of ligand field parameters via multipole expansion.
- $A_{dip} \& B_{quad}$ only in *H*-like free ions (single electron) for now...
 - Compute them with multi-electronic ions/atoms.
 - Go past the free ion Hamiltonian and add the ligand field.
- Compute f f transition intensities.
- Take into account the excitations of the ligand.
- Compute the coherence times / oscillator strengths.
- Help experimental team... to implement a physical quantum error correcting code or other algorithms with qudits.

[1] A. Kinos, D. Hunger, R. Kolesov et al. *arXiv* [3] H. Biard, E. Moreno-Pineda, M. Ruben et *preprint,* 2021, **arXiv:2103.15743** al. Nature Communications, 2021, 12, 4443 [2] K.S. Kumar, D. Serrano, A.M. Nonat et al. [4] C. Godfrin, A. Ferhat, R. Ballou et al. Nature Communications, 2021, 12, 2152 *Physical. Review Letters*, 2017, **119**, 187702

[5] S. Thiele, F. Balestro, R. Ballou et al. *Science*, 2014, **344(6188)**, 1135 [6] R. Hussain, G. Allodi, A. Chiesa et al. JAm. Chem. Soc. 2018, 140, 31, 9814–9818

