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Problem Set
The Blume—-Emery—Griffiths model

At low temperature, pure *He changes from a normal fluid to a superfluid phase (the so-called
A transition). When 3He atoms are added, the transition is modified. In this Problem, we shall
describe such a 3He-*He mixture. To do so, we will use a lattice model proposed by Blume,
Emery, and Griffiths in 1971 [1]. Each of the N sites of the lattice is occupied by a *He or *He
atom, and has z nearest neighbors. To each site is associated a fictitious spin S;, taking the
values 0 and £1. A 3He atom at site i corresponds to S; = 0 and a *He atom to S; = +1. The
spin degree of freedom describes the nature of the system: if m = (S;) = 0, the fluid is normal,
while if m #£ 0, it is a superfluid.

1 Preliminaries

(a) Show that the number of 3He and “He atoms are given by N3 = Zi]\il(l — 5%) and Ny =
Zij\il S2, respectively, with N = N3 + Nj.

(b) Show that the average fraction = of 3He atoms on the lattice is given by z = 1 — (S?).

2 Model Hamiltonian

We first introduce an Ising Hamiltonian with an external field H and a coupling constant —.J
between nearest neighbors which describes the tendency of the system to be superfluid at low

temperature,
N
Hi=-J» SiS;—HY Si
(4,9 =1

Here, (i,7) denotes a sum over nearest neighbor spins.

(a) Briefly justify the use of the above Hamiltonian to describe the 3He-*He mixture. What is
the sign of J?

(b) We then want to describe the interactions between nearest neighbor atoms. Let us denote
—u33, —U44, and —ugqy = —uygz the interaction energy between each type of pairs (3He—3He,
4He-*He, *He-*He and *He->He, respectively). Show that

Hint = —tas Y S787 —ugg » (1= 87) (1—87) —uaa »_ [S7 (1-57) + 57 (1-57)].
(4,9 (4,9) (6,3)

(c) Finally, we take into account the chemical potentials p3 and g4 of the two species (*He
and *He, respectively). The full Hamiltonian then reads H = Hj + Hint — u3N3 — g Ny,
where N3 and Ny are the number of *He and “He atoms, respectively. Show that the above
Hamiltonian takes the form

N N
H=-J> SiSj—K» S}S—HY Si—AY Si+C. (1)
(3,9) (i) i=1 i=1

Give the expressions of the constants K, A, and C as a function of the parameters of the
problem. In what follows, we set C'= 0. Why can we do so?
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Figure 1: Phase diagram calculated from Eqs. (2) for H = 0 and K = 0. The tricritical point

A separates the regions where first- and second-order phase transitions occur. Reproduced from
Ref. [1].
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3 Mean field approximation

Let us decompose the spin S; into its average value (S;) and the fluctuations 4.5; around the
latter: S; = (S;) + 6S;. Let us further decompose S? into (S?) and §52, the fluctations of S?
around (S?): S? = (S5?) + 652

(a) We define the two correlation functions Cj; = (S;S;) — (S;)(S;) and C;; = <5'ij2> - (Sf)(S?)
Show that Cj; = (§5;05;) and Cy; = <5sz25532>- What are the values of Cy; and C;; within
the mean field approximation (MFA)?

(b) In the MFA, show that the Hamiltonian (1) reads

Nz N N
Hoe - [Jm? + K(1—2)*] = (H+2Jm) Y S — [A+zK(1—x)] ) _S7.
=1 =1

(c) Deduce from the previous question an expression for the grand-canonical partition function
= and the grand potential €.

(d) Show that the two self-consistent equations determining m and x are given by

o 2exp (B[A 4+ 2K (1 — z)]) sinh (B[H + zJm))
1+ 2exp (B[A + 2K (1 — x)]) cosh (B[H + zJm))
1
T 11 2exp (B[A + 2K (1 — z)]) cosh (B[H + zJm])’

(2a)

(2b)

where § = 1/kpT.

The numerical solution of Egs. (2), at vanishing external field (H = 0) and for K = 0 (which
typically corresponds to the experimental situation; why?), give the phase diagram of Fig. 1.

4 Description of the phase transition

In the following, we aim at better understanding the phase diagram displayed in Fig. 1. We there-
fore look at the properties of the system close to the phase transition, i.e., the order parameter
m is close to zero. From now on, we consider the case where K = 0.



(a)

(b)

()

(d)

(e)
(f)

130
1250}
1200}
1150}
oo}
1050}
1000}
950}
900}
850}
800R =777

750 L= L s L o
60 65

T(millidegrees K)
o
o

920}
slof b
900}
890}
ssof ]
s7of
860}

850}

L

65

66 68

X (mole % He3)

64
Figure 2: Experimental phase diagram. Reproduced from Ref. [2].

Let us introduce the potential G(m) = Q(H) + Hm. Justify the use of such a potential in
order to study the phase transition at vanishing external field (H = 0).

We now aim at expanding G(m) in powers of the order parameter m as
1 1
G(m) = G(0) + §am2 gcm6 + O(m®).
Limiting the expansion above to second order in m, show that a = dkpT — zJ, where we set
§ =1+ e P#2/2. Hint: Expand Eq. (2a) for both BH < 1 and m < 1 in order to obtain H
as a series expansion in m.

In what follows, we will admit that b = B762(1 — 2) and ¢ = BI3(1 — 30 4 30%)

1
+me4+

Let us assume that ¢ > 0. Sketch AG(m) = G(m) — G(0) as a function of m when b > 0.
Then show that there exists a second-order phase transition at the critical temperature
Te(z) = Tc(0)(1 — ), with kgTc(0) = zJ.

Sketch AG(m) for b < 0. What happens in this case? Show that the equation for the
first-order phase transition line is given by a = 3b?/16¢.

Show that there exists a tricritical point (7%, z¢). Calculate Ty and .

Compare your theoretical predictions with the experimental results in Fig. 2.
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