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Problem Set
The Blume–Emery–Griffiths model

At low temperature, pure 4He changes from a normal fluid to a superfluid phase (the so-called
λ transition). When 3He atoms are added, the transition is modified. In this Problem, we shall
describe such a 3He-4He mixture. To do so, we will use a lattice model proposed by Blume,
Emery, and Griffiths in 1971 [1]. Each of the N sites of the lattice is occupied by a 4He or 3He
atom, and has z nearest neighbors. To each site is associated a fictitious spin Si, taking the
values 0 and ±1. A 3He atom at site i corresponds to Si = 0 and a 4He atom to Si = ±1. The
spin degree of freedom describes the nature of the system: if m = 〈Si〉 = 0, the fluid is normal,
while if m 6= 0, it is a superfluid.

1 Preliminaries

(a) Show that the number of 3He and 4He atoms are given by N3 =
∑N

i=1(1 − S2
i ) and N4 =∑N

i=1 S
2
i , respectively, with N = N3 +N4.

(b) Show that the average fraction x of 3He atoms on the lattice is given by x = 1− 〈S2
i 〉.

2 Model Hamiltonian

We first introduce an Ising Hamiltonian with an external field H and a coupling constant −J
between nearest neighbors which describes the tendency of the system to be superfluid at low
temperature,

H1 = −J
∑
〈i,j〉

SiSj −H
N∑
i=1

Si.

Here, 〈i, j〉 denotes a sum over nearest neighbor spins.

(a) Briefly justify the use of the above Hamiltonian to describe the 3He-4He mixture. What is
the sign of J?

(b) We then want to describe the interactions between nearest neighbor atoms. Let us denote
−u33, −u44, and −u34 = −u43 the interaction energy between each type of pairs (3He-3He,
4He-4He, 3He-4He and 4He-3He, respectively). Show that

Hint = −u44

∑
〈i,j〉

S2
i S

2
j − u33

∑
〈i,j〉

(
1− S2

i

) (
1− S2

j

)
− u34

∑
〈i,j〉

[
S2
i

(
1− S2

j

)
+ S2

j

(
1− S2

i

)]
.

(c) Finally, we take into account the chemical potentials µ3 and µ4 of the two species (3He
and 4He, respectively). The full Hamiltonian then reads H = H1 + Hint − µ3N3 − µ4N4,
where N3 and N4 are the number of 3He and 4He atoms, respectively. Show that the above
Hamiltonian takes the form

H = −J
∑
〈i,j〉

SiSj −K
∑
〈i,j〉

S2
i S

2
j −H

N∑
i=1

Si −∆
N∑
i=1

S2
i + C. (1)

Give the expressions of the constants K, ∆, and C as a function of the parameters of the
problem. In what follows, we set C = 0. Why can we do so?
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at a temperature T, and concentration x, such that

T,/T, (0) = I - x, =-,' . (S.21)

.4

.3

.2

Experimentally, ' T,/T~(0) is 0. 4 but 1—x, is 0. 331
+ 0. 005.
For 4 &4„as T is decreased, G reaches the

form shown in Fig. 2 before A becomes equal to
zero. Minima occur at two points, M = 0 and Mp
with the same free energy, and the mixture sep-
arates into two phases. The He'-rich phase has
M= 0. Near T„Eq. (3. 13) may be used and G has
to be

G= G + CM'(M' M')'- (3. 22)

I
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He4
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x= I-Q He

on the phase-separation curve, so that it has the
form shown in Fig. 2. This requires

FIG. 1. Phase diagram for He3-He4 mixtures as pre-
dicted by the mean-field calculation with X=0. The tri-
critical point A separates the second-order transition re-
gion from the first-order region. A line of constant 6 is
shown. For T slightly above and below the transition
temperature, this line is extremely close to the phase-
separation curves and is indistinguishable from them on
the figure.

A and B by comparison with Eqs. (3. 12) and (S. 13).
In this way

(S. 15)

c= (I/5P)(2 5'- 8 5'+4'0 5'),
where

6=1+ —,'e (s. Is)
Equation (3. 13) is the form assumed in Landau's

theory of phase transitions. '2 From Eq. (3. 12),
when II = 0, t" has to be a minimum with respect to
variations of M. When A & 0, B& 0, the minimum
occurs at M=O. When A&0, M=0 is a maximum
and the equilibrium M has a finite value. Thus the
"superfluid" ordering temperature, T~(x) in Fig.
1, is determined by A=0 or, from Eqs. (3. 15)
and (3.9),

(3. 19}

B =4AC, (3.23)
which replaces A = 0 as the condition which gives
for the superfluid ordering temperature T~ as a
function of &. Since C& 0, it follows that A & 0 at
T~ and for 4 & 4, the phase-separation curve lies
above the line given in Eq. (3. 20). Differentiating
Eq. (S.23) with respect to 6 and letting T- T„

(
~A 8A ~Tg
8+ ~Ts c

(3. 24)

I I I I I I

determines the slopeof Tz(n) for T, = T,—.But it
is also given by the same equation (obtained by dif-
ferentiating A = 0)when T = T,+. Hence 8 T~/96 is
continuous at T,. Then from Eqs. (3. 19) and
(3.20), which refer to the He'-rich end of the phase-
separation curve since they assume M= 0, ST&/Sx
is continuous at T,. This is a feature of classical
theories of second-order phase transitions' and
apparently does not agree with experiment. It is
undoubtedly a consequence of the molecular field
approximation made here, and the actual behavior
of the nearest-neighbor spin-1 Ising model may well
differ from that obtained in the molecular field ap-
proximation.
The phase boundaries T = T~(x) and T = To(x)

(s. 2o)
In particular, at x= 0, Tz(0) =g in our approxima-
tion. As the He' concentration x is increased, T~
decreases linearly from its value P for pure He .
If & were prescribed instead of x, pure He' would
correspond to &=—~, and T~ would decrease as &
increased. Eventually, when x and T have critical
values x, and T„Bbecomes equal to zero as well
as A=0, and the transition changes to one of first
order. 7 From Eqs. (3. 16) and (3. 19), this occurs

FIG. 2. Free energy as a function of the order param-
eter M for the temperature at which a first-order transi-
tion occurs. The phase with M=0 is in equilibrium with
the phase at the minimum of G(M) with M &0.

Figure 1: Phase diagram calculated from Eqs. (2) for H = 0 and K = 0. The tricritical point
A separates the regions where first- and second-order phase transitions occur. Reproduced from
Ref. [1].

3 Mean field approximation

Let us decompose the spin Si into its average value 〈Si〉 and the fluctuations δSi around the
latter: Si = 〈Si〉 + δSi. Let us further decompose S2

i into 〈S2
i 〉 and δS2

i , the fluctations of S2
i

around 〈S2
i 〉: S2

i = 〈S2
i 〉+ δS2

i .

(a) We define the two correlation functions Cij = 〈SiSj〉−〈Si〉〈Sj〉 and C̃ij = 〈S2
i S

2
j 〉−〈S2

i 〉〈S2
j 〉.

Show that Cij = 〈δSiδSj〉 and C̃ij = 〈δS2
i δS

2
j 〉. What are the values of Cij and C̃ij within

the mean field approximation (MFA)?

(b) In the MFA, show that the Hamiltonian (1) reads

H ' Nz

2
[
Jm2 +K(1− x)2

]
− (H + zJm)

N∑
i=1

Si − [∆ + zK(1− x)]
N∑
i=1

S2
i .

(c) Deduce from the previous question an expression for the grand-canonical partition function
Ξ and the grand potential Ω.

(d) Show that the two self-consistent equations determining m and x are given by

m =
2 exp (β[∆ + zK(1− x)]) sinh (β[H + zJm])

1 + 2 exp (β[∆ + zK(1− x)]) cosh (β[H + zJm])
(2a)

x =
1

1 + 2 exp (β[∆ + zK(1− x)]) cosh (β[H + zJm])
, (2b)

where β = 1/kBT .

The numerical solution of Eqs. (2), at vanishing external field (H = 0) and for K = 0 (which
typically corresponds to the experimental situation; why?), give the phase diagram of Fig. 1.

4 Description of the phase transition

In the following, we aim at better understanding the phase diagram displayed in Fig. 1. We there-
fore look at the properties of the system close to the phase transition, i.e., the order parameter
m is close to zero. From now on, we consider the case where K = 0.
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to the main He4 bath. The resonant frequency
of each oscillator was -13 MHz, with a short-
term stability of -5 Hz.
Two resistance thermometers were placed

in the sample chamber. They were calibrat-
ed against the T62 He' vapor-pressure scale
of Roberts, Sherman, and Sydoriak. ' A bal-
last chamber of -0.05-cc volume was used
to provide an easily controlled liquid-vapor
interface slightly above the interior of the sam-
ple cell.
The sample was cooled below 1.1'K by means

of a conventional Hes refrigerator. The tem-
perature was controlled to allow warming and
cooling rates of several millidegrees Kelvin
per hour. These slow rates were employed
to insure temperature and concentration equi-
librium in the sample. Nonequilibrium effects
were observed when the warming rate was in-
creased to several millidegrees per minute.
During a typical run, the oscillator frequen-

cies were monitored by external frequency
counters. As the sample chamber was filled
by condensation, a large drop in frequency
(-200 kHz) was observed. This served to cali-
brate the relative sensitivities of the capaci-
tors. Absolute concentration sensitivity was
determined by applying the Clausius-Mossot-
ti relation to the known molar volumes of He~-
He4 solutions, ' assuming that the polarizabil-
ities of He' and He4 are the same. It was found
that for the range of interest, the response
of the oscillators was nearly linear in He~
molar concentration, with only small correc-
tions necessary for changes in 8 V~/&X with
X and in V~ with T, where V is the molar
volume of the mixture, X the molar concentra-
tion of He~, and T the absolute temperature.
As the full cavity was cooled, the frequen-

cies of both oscillators decreased slightly with
temperature, reflecting small changes in mo-
lar density of the homogeneous mixture. When
the phase separation temperature was reached,
a dramatic change took place. The frequency
of one oscillator varied rapidly but continuous-
ly in one direction, while the other jumped
to a value corresponding to the concentration
on the other branch of the phase separation
curve and then varied continuously in the op-
posite direction. This behavior made "hom-
ing in" on the peak of the phase-separation
curve very easy; the frequency jumps for a
number of different mixtures were observed
until the absence of a jump indicated that the

critical concentration corresponding to the peak
had been reached.
Phase-separation data are shown in Figs.

2(a) and 2(b). Measurements relative to the
peak can be resolved to +0.05 mole/o in X and
+0.1 mdeg K in T. However, the absolute lo-
cation of the peak is not known to better than
+0.5 mole lo and +3 mdeg K. Furthermore, un-
certainties in frequency calibration introduce
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FIG. 2. (a) Phase diagram of Hes-He liquid mix-
tures. The small circles are phase separation points
obtained from dieleetrie-constant data. The large cir-
cles are A, temperatures from thermal-equilibrium
time-constant measurements. The squares are points
given by T. R. Roberts and S. G. Sydoriak, Phys. Flu-
ids 3, 6 (1960), based on their sound-attenuation mea-
surements, corrected to the T82 scale. The dashed
line is an extension of the straight line determined by
points near the peak. (b) Details near the peak of the
He3-He4 liquid phase-separation curve. The small cir-
cles show the apparent He concentrations in the lower
and upper capacitors during the warm-up. The large
circles are A. transition points. The error bars repre-
sent uncertainties relative to the peak. The absolute
location of the peak of the curve is 66.9+0.5 mole% He3
and 872+3 mdeg K.

418

Figure 2: Experimental phase diagram. Reproduced from Ref. [2].

(a) Let us introduce the potential G(m) = Ω(H) + Hm. Justify the use of such a potential in
order to study the phase transition at vanishing external field (H = 0).

(b) We now aim at expanding G(m) in powers of the order parameter m as

G(m) = G(0) +
1
2
am2 +

1
4
bm4 +

1
6
cm6 +O(m8).

Limiting the expansion above to second order in m, show that a = δkBT − zJ , where we set
δ = 1 + e−β∆/2. Hint: Expand Eq. (2a) for both βH � 1 and m� 1 in order to obtain H
as a series expansion in m.

In what follows, we will admit that b = kBT
8 δ2(1− δ

3) and c = kBT
12 δ

3(1− 3δ
4 + 3δ2

20 ).

(c) Let us assume that c > 0. Sketch ∆G(m) = G(m) − G(0) as a function of m when b > 0.
Then show that there exists a second-order phase transition at the critical temperature
Tc(x) = Tc(0)(1− x), with kBTc(0) = zJ .

(d) Sketch ∆G(m) for b < 0. What happens in this case? Show that the equation for the
first-order phase transition line is given by a = 3b2/16c.

(e) Show that there exists a tricritical point (Tt, xt). Calculate Tt and xt.

(f) Compare your theoretical predictions with the experimental results in Fig. 2.
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