
Université de Strasbourg Statistical Physics
Master de Physique & Magistère, M1–S1 c© T. Charitat, J. Farago, G. Weick

Problem Set
Quantum statistics

1 Two-dimensional electron gas

A confined electron gas can form at the interface between two doped semiconductors (e.g.,
GaAs/AlGaAs). The confinement is such that one can consider that the gas is strictly two-
dimensional. Electron-electron interactions will be neglected in the following and we will adopt
the effective mass approximation. We call n the electronic density of the gas and A = LxLy
its surface (which we assume to be very large as compared to all the other length scales of the
problem). Here, Lx and Ly are the lateral dimensions of the gas in the x and y directions,
respectively. We recall that the electrons are spin-1/2 fermions, and thus obey the Fermi–
Dirac statistics. The average occupancy of an energy state ε is then given by the Fermi–Dirac
distribution function

f(ε) =
1

eβ(ε−µ) + 1
, (1)

where β = 1/kBT , with T the temperature of the gas, and where µ = µ(T ) is the chemical
potential.

(a) Plot the Fermi–Dirac distribution (1). In particular, analyze the T = 0 case.

(b) Using periodic boundary conditions (why can you do so?), solve Schrödinger’s equation and
show that the electronic dispersion is given by

εk =
~2|k|2

2m
,

where the wavevector k = (kx, ky) is quantized according to kx = 2πnx/Lx and ky =
2πny/Ly, with nx and ny integer numbers.

(c) Show that the electronic density of states ρ(ε) is energy-independent and is given by ρ(ε) =
1/∆, where ∆ = π~2/mA.

(d) Give an expression for the average number N of electrons in the gas. Deduce from the
previous result that the chemical potential reads

µ(T ) = kBT ln
(

eTF/T − 1
)
,

where TF is the Fermi temperature, defined through the Fermi energy as EF = kBTF. What
is the definition of the Fermi energy? Give an expression of EF as a function of N and ∆.
Interprete this result. Plot µ as a function of T .

(e) Give a formal expression of the average energy E of the system in terms of an integral over
ε, that we will not explicitly calculate. Show that the grand-canonical potential reads

Ω = −kBT

∆

∫ ∞
0

dε ln
(

1 + e−β(ε−µ)
)
.

Deduce from the previous two results that Ω = −E.

(f) Show that the two-dimensional pressure P of the gas is related to the average energy via
the expression P = E/A.

(g) Using your answers to questions (e) and (f) above, derive the equation of state at T = 0.
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(h) At low temperature (T � TF), expand the average energy to second order in T/TF so as to
obtain the equation of state. Notice that∫ +∞

−∞
dx

x2ex

(ex + 1)2
=
π2

3
.

(i) Calculate the equation of state at high temperature (T � TF). Comment your result.

(j) (Optional question) Calculate now the equation of state for an arbitrary temperature. One
gives ∫ ∞

0
dx

x

ex/a+ 1
= −Li2(−a),

where a is a constant, and where Lis(z) =
∑∞

k=1 z
k/ks is the polylogarithm function of order

s.

(k) Compare all the results of this problem to the three-dimensional case encountered in the
lecture.

2 Bose–Einstein condensation

Let us consider a system of N bosons with mass m and spin s (s ∈ N) occupying a volume V .
In the following, the interactions between the bosons are neglected. Accessible energy levels are
denoted by εk, and the ground state energy is set to zero.

(a) What is the average occupancy n(ε) of a state of energy ε at temperature T? Show that the
density of states takes the form d(ε) = KV

√
ε, where K is a constant. Give the expression for

K. What is the sign of the chemical potential µ? How is µ determined in the thermodynamic
limit?

(b) Plot on the same graph n(ε) as a function of ε for two different chemical potentials µ1 < µ2

while T is being kept fixed. On another graph, plot n(ε) as a function of ε for two different
temperatures T1 < T2 while µ is being kept fixed. Considering that the number of particles
is fixed, show that (

∂µ

∂T

)
N

< 0.

(c) By introducing the fugacity ϕ = eβµ as well as the function

f(ϕ) =
∫ ∞

0
dx

√
x

ex/ϕ− 1
,

determine graphically the chemical potential µ. What happens when the temperature is
lowered? Show that there exists a critical temperature TB, called the Bose temperature, for
which µ = 0. Note that ∫ ∞

0
dx
√
x

ex − 1
=
√
π

2
ζ

(
3
2

)
,

where ζ(z) is the Riemann zeta function, which is defined for any complex number z such
that Re(z) > 1 by the Riemann series ζ(z) =

∑∞
n=1 n

−z. In particular, ζ(3/2) ' 2.61 and
ζ(5/2) ' 1.34.

(d) We now consider that T < TB and we assume N to be fixed. Show that the number of
particles in the ground state is given by

N0 = N

[
1−

(
T

TB

)3/2
]
.

Is it possible to condensate photons?
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(e) Give an expression of the average energy E of the system in terms of an integral over ε that
we will not explicitly calculate. Show that the grand-canonical potential Ω reads

Ω = KV kBT

∫ ∞
0

dε
√
ε ln
(

1− e−β(ε−µ)
)
.

Deduce from the two previous results that Ω = −2E/3. Then, show that the pressure of
the Bose gas is given by P = 2E/3V .

(f) Derive an expression for the pressure of the system at T < TB. Note that∫ ∞
0

dx
x3/2

ex − 1
=

3
√
π

4
ζ

(
5
2

)
.

(g) We now consider that T is kept constant, instead of V (N remains fixed throughout). What
happens when the volume of the system is decreased? Show that the Bose condensation
takes place for

VB =
1

(2s+ 1)ζ(3/2)
NΛ3

T ,

where ΛT = (2π~2/mkBT )1/2 is the thermal de Broglie wavelength. Plot a few isothermal
curves in a P -V diagram. Discuss your results.

(h) Liquid 4He presents a superfluid transition at 2.17 K. Compare such an experimental result
to the Bose temperature. Parameters for liquid 4He are: spin s = 0, density 0.12 g/cm3, and
m = 4×mproton = 6.7×10−27 kg. We recall that ~ = 1.0×10−34 J.s and kB = 1.4×10−23 J/K.
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