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Problem Set
Virial expansion in the grand-canonical ensemble

In this Problem, we aim at describing a classical fluid consisting of N particles with mass
m occupying a volume V at the temperature T . Let ri and pi be, respectively, the position
and momentum of the ith particle. We assume that the particles are interacting through a pair
potential, so that the full Hamiltonian of the system reads

H(rN ,pN ) = T (pN ) + U(rN ),

with

T (pN ) =
N∑
i=1

p2
i

2m
and U(rN ) =

1

2

N∑
i,j=1
(i 6=j)

u (rij) ,

where rij = |ri − rj |. Here, rN and pN are, respectively, a compact notation for (r1, r2, . . . , rN )
and (p1,p2, . . . ,pN ).

1 Appetizer

(a) Comment on the physical meaning of each term of the Hamiltonian above. Sketch the typical
shape of the pair potential u(r) in the case of a van der Waals fluid.

(b) Carefully justify that the canonical partition function reads

Z(N) =
1

N !Λ3N
T

∫
d3r1 . . . d

3rN e−βU(rN ),

with ΛT =
√

2π~2/mkBT and where β = 1/kBT .1 What is the dimension of ΛT ? What is
its physical meaning?

2 The ideal gas case

In this part of the Problem, we consider the case of an ideal gas and we denote by ZIG(N) the
corresponding partition function.

(a) Calculate ZIG(N).

(b) Deduce from the preceding question the equation of state of the ideal gas.

3 Virial expansion in the grand-canonical ensemble

In this third part of the problem we wish to go beyond the ideal gas approximation, and expand
the pressure P of the system in powers of the fluid density ρ as

P

kBT
=

∞∑
n=1

Bn(T )ρn. (1)

The quantity Bn(T ) is called the nth virial coefficient, and it depends only on temperature
and on the particular gas under consideration. The aim of the present part of the Problem is to
determine the three first virial coefficients B1(T ), B2(T ), and B3(T ). To this end, it is convenient
to work within the grand-canonical ensemble.

1Note that
∫ +∞
−∞ dx e−x2

=
√
π. Proof?
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(a) Demonstrate that the grand-canonical partition function Ξ(µ) can be expressed as

Ξ(µ) =
∞∑
N=0

eβµN Z(N),

where Z(N) is the N -body canonical partition function.

(b) Using the results above, and defining z = eβµ/Λ3
T , show that the grand-canonical partition

function can be written as an expansion in powers of z,

Ξ(µ) = 1 +
∞∑
N=1

IN
N !
zN ,

where we have introduced the integral

IN =

∫
d3r1d

3r2 . . . d
3rN e−βU(rN).

(c) Note that, obviously, U(rN ) = 0 for N = 1. Show then that I1 has a very simple expression
in terms of the volume V .

(d) Notice that, in practice, the N -body potential only depends on the N−1 relative coordinates
rij = rj − ri of the particles. Carefully justify that for N > 2,

IN = V

∫
d3r12 . . . d

3r1N
∏
i<j

[1 + f(rij)] ,

where we have introduced the Mayer function

f(r) = e−βu(r) − 1. (2)

(e) Using Euler’s relation Ω = −PV , with Ω the grand-potential, show that the pressure can be
expressed as a power series in z,

P =
kBT

V

∞∑
N=1

JN
N !

zN , (3)

where we have introduced the coefficients JN which have the same dimension as the IN ’s.2

In particular, show that

J1 = I1, J2 = I2 − I21 , J3 = I3 − 3I1I2 + 2I31 .

(f) Show that the average density of particles can be written as ρ = ∂P/∂µ. Use this result to
express ρ as a power series in z:

ρ =
1

V

∞∑
N=1

JN
(N − 1)!

zN . (4)

(g) We now have to eliminate z in favor of ρ in Eq. (3) in order to obtain the equation of state.
To do so, we notice that Eq. (4) suggests that z is a function of ρ, such that z =

∑∞
m=1Cmρ

m.
Deduce from the above considerations that

z = ρ− J2
V
ρ2 +

(
2J2

2

V 2
− J3

2V

)
ρ3 +O(ρ4).

2Notice that ln (1 + x) =
∑∞

n=1(−1)
n−1xn/n.
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(h) Use the results above in order to obtain the equation of state as a power series of the density
ρ up to order ρ3 [see Eq. (1)]. In particular, show that the three first virial coefficients read

B1 = 1, B2 =
1

2

(
V − I2

V

)
, B3 =

V 2

3
− I2 +

(
I2
V

)2

− I3
3V

.

(i) Show that

B2 = −1

2

∫
d3r f(r),

B3 = −1

3

∫
d3rd3r′ f(r)f(r′)f(|r− r′|).

4 Hard sphere gas

In this last part of the Problem, we consider that the particles correspond to spheres with a
diameter a. We assume that such particles interact via a hard-wall potential, which forbids two
particles to overlap.

(a) Sketch the hard-wall potential u (r) and the resulting Mayer function f (r) defined in Eq. (2).

(b) Calculate the coefficient B2 of the hard sphere gas.

(c) Determining the third virial coefficient B3 is somewhat harder. In order to achieve this, we
introduce the Fourier transform g̃(q) of a function g(r) as

g̃(q) =

∫
d3r e−iq·rg(r),

while the inverse transform reads

g(r) =
1

(2π)3

∫
d3q eiq·rg̃(q).

We recall that ∫
d3r ei(q−q

′)·r = (2π)3 δ
(
q− q′

)
,∫

d3q e−i(r−r
′)·q = (2π)3 δ

(
r− r′

)
.

(i) Show that the Fourier transform f̃(q) of the Mayer function (2) only depends on the
modulus of q, |q| = q, and reads

f̃(q) =
4π

q

∫ ∞
0

dr r sin (qr)f(r).

(ii) Show that

B3 = −1

3

∫
d3q

(2π)3
f̃(q)3.

(iii) One defines the Bessel function of the first kind J3/2 (x) as

J3/2 (x) =

√
2

πx

(
sinx

x
− cosx

)
,

and we give the integral ∫ ∞
0

dxx−5/2J3/2 (x)3 =
5

48
√

2π
.

Show that the third virial coefficient of the hard sphere gas is given by

B3 =
5

18
π2a6.
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