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1 Landau diamagnetism of a two-dimensional electron gas

The magnetic properties of a noninteracting electron gas are controlled by two phenomena:
the Pauli paramagnetism due to the alignment of the electronic magnetic moments with the
applied magnetic field, and the Landau diamagnetism induced by the orbital motion of the
electronic charges. In this problem we aim at describing the second of these phenomena, using
the one-electron Hamiltonian (in cgs units)

H =
1

2m

[
p +

e

c
A(r)

]2
, (1.1)

where A(r) is the vector potential, −e the electronic charge (e > 0), and c the speed of light in
vacuum. In Eq. (1.1), m is the (effective) mass of the charge carriers (i.e., the electrons).

In what follows, we consider a homogeneous magnetic field B parallel to the z axis (B =
∂xAy − ∂yAx = constant), and we assume that electrons are confined to a two-dimensional
rectangular surface with area A = LxLy, where Lx and Ly are the lateral dimensions of the
electron gas in the x and y directions, respectively.

1.1 General results for noninteracting fermions

(a) Carefully demonstrate that the grand-canonical partition function for noninteracting fermions
is given by

Ξ =
∏
λ

[
1 + e−β(ελ−µ)

]
,

where the product runs over quantum states λ with energy ελ. Here, β = 1/kBT with T the
temperature and kB the Boltzmann constant, and µ is the chemical potential.

(b) Deduce from the previous result that the general expression of the grand potential for
noninteracting fermionic particles is given by

Ω = −kBT
∑
λ

ln
(

1 + e−β(ελ−µ)
)
. (1.2)

1.2 Landau susceptibility

The energy spectrum of the Hamiltonian (1.1) corresponds to the one of a harmonic oscillator
with (cyclotron) frequency ωc = eB/mc (we assume B > 0 from now on):

εn = ~ωc

(
n+

1
2

)
, n ∈ N,

defining so-called Landau levels. Each Landau level is highly degenerate, with degeneracy factor
(including the spin degeneracy)

gn = ρ0~ωc,

where ρ0 = mA/π~2 is the density of states of the two-dimensional electron gas at zero magnetic
field.1

1Note that the degeneracy factor is in fact independent on n.
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(a) Give an expression of the grand-potential (1.2) in terms of a summation over Landau levels
n and as a function of ρ0.

(b) The Euler–MacLaurin formula allows one to approximate a discrete summation by the fol-
lowing expression:

a

∞∑
n=0

f
(
a(n+ 1/2)

)
=

(a�1)

∫ ∞
0

dx f(x) +
a2

24
f ′(0) +O

(
a3
)
,

where f(x) is a function that decreases sufficiently fast when x → ∞, where f ′(x) is its
derivative with respect to x, and where a is some dimensionless parameter. Use the above
formula to show, in the limits β~ωc � 1 and βµ� 1, that

Ω(B) ' Ω(B = 0) +
ρ0

24
(~ωc)

2 ,

where the expression for Ω(B = 0) involves an integral not to be calculated.

(c) Let us define the Landau susceptibility as

χL = − 1
A

lim
B→0

∂2Ω
∂B2

.

Show that

χL = − e2

12πmc2
.

2 The Blume–Capel model

The Blume–Capel model describes a magnetic material with some nonmagnetic vacancies. Let
us consider a lattice [we denote by N(� 1) the number of lattice sites and by z the number of
nearest neighbors] of spins Si that can take the values −1, 0, and +1. A spin 0 corresponds
to a vacancy (nonmagnetic impurity or empty site) and spins +1 or −1 correspond to the two
different orientations of the magnetic species. We assume that the Hamiltonian of the system
in presence of an homogeneous magnetic field h is given by

H = −J
∑
〈i,j〉

SiSj + ∆
N∑
i=1

S2
i − h

N∑
i=1

Si, (2.1)

where J > 0 is the exchange interaction and where ∆ is a constant that can be either negative
or positive. In the Hamiltonian above, 〈i, j〉 denotes a summation over nearest neighbors.

2.1 General discussion

(a) Justify that −∆ is the energy of creation of a vacancy. In which case (∆ > 0 or ∆ < 0) is
it favorable to create a vacancy?

(b) At T = 0 and h = 0, calculate the energy of the system in the three different states
〈Si〉 = +1, 〈Si〉 = −1, and 〈Si〉 = 0. Which state is selected at T = 0?

(c) Which limit of ∆ corresponds to the usual two-state Ising model? How would you call the
∆ = 0 model?

2.2 Mean-field approximation

We now aim at performing a mean-field approximation (MFA). We write Si = m + δSi, where
m = 〈Si〉 is the average magnetization and δSi the fluctuations of the spin Si around m.

(a) Define the spin-spin correlation function Cij . What is the value of Cij in the MFA?
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(b) Show that within the MFA, it is possible to write the Hamiltonian (2.1) as

H ' 1
2
NzJm2 − (h+ zJm)

N∑
i=1

Si + ∆
N∑
i=1

S2
i .

(c) Calculate the free energy F within the MFA.

(d) Demonstrate that the average value m = 〈Si〉 is given by the expression

m = − 1
N

∂F

∂h
.

Deduce that, within the MFA, the magnetization obeys the self-consistent equation (SCE)

m =
2 sinh (β[h+ zJm])

exp (β∆) + 2 cosh (β[h+ zJm])
.

From now on, we consider the case of vanishing magnetic field, h = 0.

(e) In the case ∆→ −∞, discuss the solutions of the SCE.

(f) In the general case, show that m = 0 is a solution of the SCE.

(g) We now aim at discussing graphically the solutions of the SCE. We define t = kBT/zJ and
δ = ∆/zJ .

(i) Express the SCE in term of the function

f(m) =
2 sinh (m/t)

exp (δ/t) + 2 cosh (m/t)
.

(ii) What is the value of f(0)?

(iii) What are the limits of f(m) when m→ ±∞?

(iv) Calculate
df
dm

∣∣∣∣
m=0

and discuss graphically the number of solutions to the SCE. Show that there is a
critical reduced temperature tc defined by the equation

tc =
2

2 + exp (δ/tc)
.

(v) On next page in figure 1 (colored lines) is plotted the function

g(t, δ) =
2

2 + exp (δ/t)
(2.2)

as a function of t for different values δi of δ. Which δi’s are positive and which of them
are negative? Sort by ascending order the δi’s.

(vi) Plot the curve g(t, δ) for the value of δ corresponding to the Ising model and give the
corresponding tc.

(vii) Using your previous discussion and question 2.1(b), sketch the general behavior of tc
as a function of δ.
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Figure 1: Colored lines: Plot of g(t, δ) as defined in Eq. (2.2) as a function of t for different
values δi of δ. Black solid line: t.

4


	Landau diamagnetism of a two-dimensional electron gas
	General results for noninteracting fermions
	Landau susceptibility

	The Blume--Capel model
	General discussion
	Mean-field approximation


