Exam — Session 2

Duration: 2h

Documents, cell phones, computers, tablets, pocket calculators, etc., are not allowed The text contains 4 pages in total

1 Landau diamagnetism of a two-dimensional electron gas

The magnetic properties of a noninteracting electron gas are controlled by two phenomena: the Pauli *paramagnetism* due to the alignment of the electronic magnetic moments with the applied magnetic field, and the Landau *diamagnetism* induced by the orbital motion of the electronic charges. In this problem we aim at describing the second of these phenomena, using the one-electron Hamiltonian (in cgs units)

$$H = \frac{1}{2m} \left[\mathbf{p} + \frac{e}{c} \mathbf{A}(\mathbf{r}) \right]^2, \qquad (1.1)$$

where $\mathbf{A}(\mathbf{r})$ is the vector potential, -e the electronic charge (e > 0), and c the speed of light in vacuum. In Eq. (1.1), m is the (effective) mass of the charge carriers (i.e., the electrons).

In what follows, we consider a homogeneous magnetic field B parallel to the z axis ($B = \partial_x A_y - \partial_y A_x = \text{constant}$), and we assume that electrons are confined to a two-dimensional rectangular surface with area $\mathcal{A} = L_x L_y$, where L_x and L_y are the lateral dimensions of the electron gas in the x and y directions, respectively.

1.1 General results for noninteracting fermions

(a) Carefully demonstrate that the grand-canonical partition function for noninteracting fermions is given by

$$\Xi = \prod_{\lambda} \left[1 + e^{-\beta(\epsilon_{\lambda} - \mu)} \right],$$

where the product runs over quantum states λ with energy ϵ_{λ} . Here, $\beta = 1/k_{\rm B}T$ with T the temperature and $k_{\rm B}$ the Boltzmann constant, and μ is the chemical potential.

(b) Deduce from the previous result that the general expression of the grand potential for noninteracting fermionic particles is given by

$$\Omega = -k_{\rm B}T \sum_{\lambda} \ln\left(1 + e^{-\beta(\epsilon_{\lambda} - \mu)}\right).$$
(1.2)

1.2 Landau susceptibility

The energy spectrum of the Hamiltonian (1.1) corresponds to the one of a harmonic oscillator with (cyclotron) frequency $\omega_{\rm c} = eB/mc$ (we assume B > 0 from now on):

$$\epsilon_n = \hbar\omega_c\left(n + \frac{1}{2}\right), \qquad n \in \mathbb{N},$$

defining so-called *Landau levels*. Each Landau level is highly degenerate, with degeneracy factor (including the spin degeneracy)

$$g_n = \rho_0 \hbar \omega_{\rm c},$$

where $\rho_0 = m \mathcal{A} / \pi \hbar^2$ is the density of states of the two-dimensional electron gas at zero magnetic field.¹

¹Note that the degeneracy factor is in fact independent on n.

- (a) Give an expression of the grand-potential (1.2) in terms of a summation over Landau levels n and as a function of ρ_0 .
- (b) The Euler–MacLaurin formula allows one to approximate a discrete summation by the following expression:

$$a\sum_{n=0}^{\infty} f(a(n+1/2)) = \int_{0}^{\infty} \mathrm{d}x \ f(x) + \frac{a^2}{24} f'(0) + \mathcal{O}(a^3),$$

where f(x) is a function that decreases sufficiently fast when $x \to \infty$, where f'(x) is its derivative with respect to x, and where a is some dimensionless parameter. Use the above formula to show, in the limits $\beta \hbar \omega_c \ll 1$ and $\beta \mu \gg 1$, that

$$\Omega(B) \simeq \Omega(B=0) + \frac{\rho_0}{24} \left(\hbar\omega_{\rm c}\right)^2,$$

where the expression for $\Omega(B=0)$ involves an integral not to be calculated.

(c) Let us define the Landau susceptibility as

$$\chi_{\rm L} = -\frac{1}{\mathcal{A}} \lim_{B \to 0} \frac{\partial^2 \Omega}{\partial B^2}.$$

Show that

$$\chi_{\rm L} = -\frac{e^2}{12\pi mc^2}.$$

2 The Blume–Capel model

The Blume–Capel model describes a magnetic material with some nonmagnetic vacancies. Let us consider a lattice [we denote by $N(\gg 1)$ the number of lattice sites and by z the number of nearest neighbors] of spins S_i that can take the values -1, 0, and +1. A spin 0 corresponds to a vacancy (nonmagnetic impurity or empty site) and spins +1 or -1 correspond to the two different orientations of the magnetic species. We assume that the Hamiltonian of the system in presence of an homogeneous magnetic field h is given by

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j + \Delta \sum_{i=1}^N S_i^2 - h \sum_{i=1}^N S_i, \qquad (2.1)$$

where J > 0 is the exchange interaction and where Δ is a constant that can be either negative or positive. In the Hamiltonian above, $\langle i, j \rangle$ denotes a summation over nearest neighbors.

2.1 General discussion

- (a) Justify that $-\Delta$ is the energy of creation of a vacancy. In which case ($\Delta > 0$ or $\Delta < 0$) is it favorable to create a vacancy?
- (b) At T = 0 and h = 0, calculate the energy of the system in the three different states $\langle S_i \rangle = +1$, $\langle S_i \rangle = -1$, and $\langle S_i \rangle = 0$. Which state is selected at T = 0?
- (c) Which limit of Δ corresponds to the usual two-state Ising model? How would you call the $\Delta = 0$ model?

2.2 Mean-field approximation

We now aim at performing a mean-field approximation (MFA). We write $S_i = m + \delta S_i$, where $m = \langle S_i \rangle$ is the average magnetization and δS_i the fluctuations of the spin S_i around m.

(a) Define the spin-spin correlation function C_{ij} . What is the value of C_{ij} in the MFA?

(b) Show that within the MFA, it is possible to write the Hamiltonian (2.1) as

$$\mathcal{H} \simeq \frac{1}{2}NzJm^2 - (h + zJm)\sum_{i=1}^N S_i + \Delta \sum_{i=1}^N S_i^2.$$

- (c) Calculate the free energy F within the MFA.
- (d) Demonstrate that the average value $m = \langle S_i \rangle$ is given by the expression

$$m = -\frac{1}{N}\frac{\partial F}{\partial h}.$$

Deduce that, within the MFA, the magnetization obeys the self-consistent equation (SCE)

$$m = \frac{2\sinh\left(\beta[h+zJm]\right)}{\exp\left(\beta\Delta\right) + 2\cosh\left(\beta[h+zJm]\right)}$$

From now on, we consider the case of vanishing magnetic field, h = 0.

- (e) In the case $\Delta \to -\infty$, discuss the solutions of the SCE.
- (f) In the general case, show that m = 0 is a solution of the SCE.
- (g) We now aim at discussing graphically the solutions of the SCE. We define $t = k_{\rm B}T/zJ$ and $\delta = \Delta/zJ$.
 - (i) Express the SCE in term of the function

$$f(m) = \frac{2\sinh(m/t)}{\exp(\delta/t) + 2\cosh(m/t)}.$$

- (ii) What is the value of f(0)?
- (iii) What are the limits of f(m) when $m \to \pm \infty$?
- (iv) Calculate

$$\left. \frac{\mathrm{d}f}{\mathrm{d}m} \right|_{m=0}$$

and discuss graphically the number of solutions to the SCE. Show that there is a critical reduced temperature t_c defined by the equation

$$t_{\rm c} = \frac{2}{2 + \exp\left(\delta/t_{\rm c}\right)}$$

(v) On next page in figure 1 (colored lines) is plotted the function

$$g(t,\delta) = \frac{2}{2 + \exp\left(\delta/t\right)} \tag{2.2}$$

as a function of t for different values δ_i of δ . Which δ_i 's are positive and which of them are negative? Sort by ascending order the δ_i 's.

- (vi) Plot the curve $g(t, \delta)$ for the value of δ corresponding to the Ising model and give the corresponding t_c .
- (vii) Using your previous discussion and question 2.1(b), sketch the general behavior of t_c as a function of δ .

Figure 1: Colored lines: Plot of $g(t, \delta)$ as defined in Eq. (2.2) as a function of t for different values δ_i of δ . Black solid line: t.