
Université de Strasbourg Statistical Physics
Master de Physique & Magistère, M1–S1 c© T. Charitat, J. Farago, G. Weick

Problem Set 1
The ideal fermion gas

Let us consider a gas of N � 1 noninteracting, nonrelativistic fermions with mass m and
spin s confined in a cubic box of volume V = L3, with L the length of the sides. The gas is
maintained at a fixed temperature T . Fermions are half-integer spin particles, so they obey the
Fermi–Dirac statistics. The average occupancy of a quantum state λ with energy ελ is then
given, in the grand-canonical ensemble, by the Fermi–Dirac distribution

f(ελ) = 〈nλ〉 =
1

eβ(ελ−µ) + 1
, (1)

where β = 1/kBT and with µ the chemical potential.
Note that some useful definite integrals are given at the end of the text.

1 General results for noninteracting fermions

(a) If Aλ is the (eigen)value of a single-particle observable A in the quantum state λ, show that∑
λ

Aλ〈nλ〉 =
∫ ∞

0
dε ρ(ε)A(ε)f(ε), (2)

where the sum runs over quantum states λ with energy ελ (note that the ground state energy
has been chosen to be zero), and

ρ(ε) ≡
∑
λ

δ(ε− ελ) (3)

is the density of states. In Eq. (2), A(ε) is the value of Aλ for ε = ελ [assuming for the sake
of simplicity that ∀(λ, λ′), ελ = ελ′ ⇒ Aλ = Aλ′ ], and δ(ε) is the Dirac delta function. What
is the physical interpretation of the quantity in Eq. (2) (consider for instance the energy)?

(b) By solving the stationary Schrödinger equation (using periodic boundary conditions), show
that the possible energy levels of the particles are given by

εk =
~2|k|2

2m
, k =

2π
L

(nx, ny, nz) ,

where the three quantum numbers (nx, ny, nz) ∈ Z.

(c) Give the spin degeneracy gs of each eigenstate as a function of s.

(d) Show that the density of states (3) is given, in the limit V →∞, by

ρ(ε) = KV
√
εΘ(ε) with K =

gs
4π2

(
2m
~2

)3/2

,

and where Θ(ε) is the Heaviside step function. What is the ε-dependence of ρ(ε) in 2d? In
1d?

(e) Sketch the Fermi–Dirac distribution (1) as a function of the single-particle energy ελ for (i)
T = 0 and (ii) T 6= 0.

(f) Carefully demonstrate that the grand-canonical partition function for noninteracting fermions
is given by

Ξ =
∏
λ

[
1 + e−β(ελ−µ)

]
.
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(g) Deduce from the previous result that the general expression of the grand potential for
noninteracting fermionic particles is given by

Ω = −kBT
∑
λ

ln
(

1 + e−β(ελ−µ)
)
. (4)

2 Chemical potential

In the canonical ensemble, the number of particles N is fixed, and the chemical potential µ
adjusts itself to N . In the grand-canonical ensemble, µ is fixed and the number of particles
fluctuates. However, in the thermodynamic limit, both ensembles are equivalent, since the
fluctuations, that go as 1/

√
N , become negligible.

The realistic system which we consider here has a fixed number N of particles. Therefore, the
appropriate, “physical” statistical ensemble would be the canonical one. However, it is (very)
difficult to impose the constraint N = constant when computing the thermodynamic properties
of the system from the canonical partition function Z. The strategy to obtain the chemical
potential is then to calculate in the grand-canonical ensemble the average number of particles
for a fixed µ, 〈N〉(µ), and then, using the equivalence between ensembles when N → ∞, to
invert the obtained relation to get µ(N).

(a) By using Question 1(a), express in the grand-canonical ensemble 〈N〉 in terms of ρ(ε) and
f(ε).

(b) Introducing the fugacity ϕ = eβµ, show that the chemical potential is solution of the equation

n

K(kBT )3/2
= g(ϕ) (5)

with n = N/V the density, and where

g(ϕ) =
∫ ∞

0
dx

√
x

ex/ϕ+ 1
. (6)

(c) Sketch the function g(ϕ) defined in Eq. (6), and convince yourself from a graphical solution
of Eq. (5) that (i) it has a solution for any temperature T and/or density n and (ii) µ is a
decreasing function of T .

3 Equation of state

3.1 General results

(a) Show that the energy of the system is given by

E = KV

∫ ∞
0

dε
ε3/2

eβ(ε−µ) + 1
, with µ solution of Eq. (5). (7)

(b) Using Eqs. (4) and (7), demonstrate that

Ω = −2
3
E.

(c) Deduce from the two previous questions that the pressure of the gas is given by

P =
2
3
E

V
.

Then, calculating the pressure P amounts to evaluate Eq. (7), which, for an arbitrary
temperature, is not possible analytically. In what follows, we will thus consider various
limiting cases.
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3.2 Zero-temperature limit

Let us first consider the zero-temperature case T = 0.

(a) Demonstrate that the Fermi energy, defined as εF = µ(T = 0), is given in terms of the
density n by

εF =
(

3n
2K

)2/3

. (8)

Hint: Calculate first the (average) number of particles N at T = 0.

(b) Deduce from the above considerations that the pressure at T = 0 is given by

P (T = 0) =
2
15

(
4π2

gs

)2/3 ~2

m

(
3n
2

)5/3

. (9)

What is the physical interperation of this result? How does it compare to the pressure of
an ideal classical gas?

3.3 Low-temperature expansion

We now aim at obtaining the equation of state in the so-called degenerate limit, that is, when
T � TF, where TF = εF/kB is the Fermi temperature.

3.3.1 Sommerfeld expansion

Consider an integral of the type

I =
∫ +∞

−∞
dε h(ε)f(ε), (10)

where h(ε) is some regular function which is integrable and (infinitely) differentiable around the
chemical potential µ, and where f(ε) is the Fermi–Dirac distribution from Eq. (1).

(a) Introducing

H(ε) =
∫ ε

−∞
dε′ h(ε′),

show that the integral (10) can be written as

I =
∫ +∞

−∞
dεH(ε)

(
−∂f
∂ε

)
.

(b) Sketch −∂f/∂ε and convince yourself that (i) in the limit T → 0, −∂f/∂ε = δ(ε − µ) and
(ii) it is a very peaked function around µ of width ∼ kBT when T � TF.

(c) By Taylor-expanding the function H(ε) up to second order close to µ, show that in the limit
T � TF, the integral (10) can be approximated by

I ' H(µ) +
π2

6
(kBT )2H ′′(µ). (11)

(d) As we learned from Part 2 of this Problem Set, the chemical potential depends itself on
temperature (in the canonical ensemble). To get the full low-temperature expansion of
Eq. (11), we must thus determine µ(T ) in such a limit. Using the Sommerfeld expansion
(11) to calculate the (average) number of particles in the system, show that for T � TF,

µ(T ) ' εF

[
1− π2

12

(
T

TF

)2
]
, (12)

with εF the Fermi energy defined in Eq. (8).
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3.3.2 Low-temperature pressure

Using a Sommerfeld expansion, show that the low-temperature pressure of the degenerate
fermionic gas is given by

P (T � TF) ' P (T = 0)

[
1 +

5π2

12

(
T

TF

)2
]
,

with P (T = 0) the zero-temperature pressure given in Eq. (9).

3.4 High-temperature limit

(a) In the high-temperature, nondegenerate limit T � TF, show from Eq. (5) that the fugacity
is given by

ϕ =
2n

√
πK(kBT )3/2

.

(b) In the same limit, show from Eq. (7) that the equation of state is that of an ideal classical
gas, i.e.,

P (T � TF) = nkBT.

4 Heat capacity

From the considerations above, argue that the low-temperature heat capacity is linear in T .
How does this result compare with the high-temperature, classical case?

A few integrals

∫ +∞

0
dxx1/2 e−x =

√
π

2∫ +∞

0
dxx3/2 e−x =

3
√
π

4∫ +∞

−∞
dx

x2 ex

(ex + 1)2
=
π2

3

4


	General results for noninteracting fermions
	Chemical potential
	Equation of state
	General results
	Zero-temperature limit
	Low-temperature expansion
	Sommerfeld expansion
	Low-temperature pressure

	High-temperature limit

	Heat capacity

