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The text contains 4 pages in total, and the 2 exercices are independent from each other.

1 A simple model for a superconductor

Superconductors are materials whose resistivity abruptly vanishes below a critical temperature
Tc. We propose a simple model to describe these superconducting properties. We assume that
the free electrons of the conductor have a mass me, are close in energy to the Fermi level, and
have the possibility to associate in pairs to form a bound state known as a Cooper pair. These
Cooper pairs behave like particles with mass 2me and spin s = 1.

The first two parts of this exercise recall some general properties of the perfect gases of
fermions and bosons. The third part describes the superconducting phase.

1.1 Fermion gas: General questions

(a) Which statistical distribution is appropriate to describe the free electron gas of a conductor?
Explain your answer.

(b) Recall the expression for the Fermi-Dirac distribution nFD (ε) and give its shape as a function
of energy ε for different temperatures. Give without demonstration the expression for the
energy εk of a quantum state with wave vector k?

(c) Consider an electron gas in dimension 3, occupying a volume V at a temperature T . Find
the expression for the density of states ρ, as a function of k, then as a function of energy.

(d) Assume that we can place ourselves in the limit T = 0. What is the chemical potential in
this approximation? Give the relation for calculating the number of electrons in the system,
and derive the expression for the Fermi energy EF as a function of the electron density ne.
In what temperature range is the T = 0 approximation correct (give a numerical estimate
for a free electron gas with mass me = 9.1 · 10−31 kg).

1.2 Boson gas: General questions

Consider a perfect gas of N bosons of mass m and spin 1 in contact with a thermostat at a
temperature T .

(a) Recall the expression for the Bose-Einstein distribution nBE (ε) and sketch its shape as a
function of ε for different temperatures. What condition must the chemical potential satisfy?

(b) Sketch qualitatively the curve of the chemical potential as a function of T . The temperature
at which the chemical potential cancels out will be denoted TB. Explain qualitatively what
happens for T < TB. One reminds that TB is defined by the relation
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1.3 Superconductivity

Superconductivity is interpreted in a simple model as the possibility for two electrons near the
Fermi level to form a bound state called a Cooper pair. We denote ∆ the binding energy of a
pair and assume that the energy of a Cooper pair of wave vector k is given by

E = 2EF −∆ +
~2k2

4me
, (1.1)

where EF is the Fermi energy of a gas of N electrons.
So we have the coexistence of a gas of free electrons (1) and a gas of Cooper pairs (2). It

is assumed that the free electron gas is composed of N1 electrons of chemical potential µ1 at
temperature T1, and that the Cooper pair gas is composed of N2 pairs of electrons of chemical
potential µ2 at temperature T2. Interactions between free electrons, between Cooper pairs, and
between free electrons and Cooper pairs are all neglected.

(a) Discuss the Cooper pair energy expression (1.1). Why do we have to choose ∆ > 0?

(b) Explain why the Cooper pair gas can be treated as a perfect gas of bosons.

(c) Write the relations between T1, T2, µ1 and µ2 at thermodynamic equilibrium.

(d) Carefully justify that Bose-Einstein condensation for Cooper pairs occurs when µ2 = 2EF−
∆. What is the value of the chemical potential µ1?

(e) Assuming that the free electrons can be treated as a degenerate Fermi gas, and using the
density of state expression given in section 1.1 above (entitled “Fermion gas: General ques-
tions”), show that the maximum number of free electrons Ne is given by

Ne = N

(
1− 3∆

4EF

)
.

(f) What is the number of Cooper pairs? Deduce that the Bose condensation temperature TB

of the Cooper pairs is given by

2.612

(
4πmkBTB

h2

)3/2

=
3

8

∆

EF

N

V
.

2 Ising model and Bethe-Peierls approximation

We consider a d dimensional Ising model consisting of N � 1 Ising spins si = ±1 at temperature
T , arranged at the nodes of a hypercubic lattice. Let us denote β = 1/kBT , where kB is the
Boltzmann constant. Let h be the external magnetic field (in energy units) and consider only
interactions between nearest neighbors. The Hamiltonian of the system can be written as

H = −J
∑
〈i,j〉

sisj − h
N∑
i=1

si, (2.1)

where J > 0, and where
∑
〈i,j〉 denotes a sum over all nearest neighbor pairs of spins (si, sj).

2.1 Mean field approximation

(a) What do the different terms of the Hamiltonian (2.1) correspond to? We note z the number
of first neighbors of a site. Express z as a function of the dimension of the space d.

(b) We neglect in this question the interactions between the spins. Calculate the partition
function and the free energy of the system. Deduce the mean magnetization m = 〈s〉 per
site. Plot m as a function of h.

2



(c) Spin interactions are now taken into account. Show that the effective field seen by a spin
in the mean-field approximation is heff = h+ hm, where hm = zJm is called the molecular
field. Briefly justify this name. Show that the mean magnetization m = 〈s〉 per site is the
solution of a self-consistent equation, which will be explicitely written.

(d) Assume a vanishing external magnetic field (h = 0). Show that there is a paramagnetic-
ferromagnetic phase transition for a critical temperature Tc, whose value will be given in
terms of the various parameters of the problem. What does the approximation predict for
the case d = 1? For the case d = 2?

2.2 Bethe-Peierls approximation

To improve the results of the mean-field approximation, Bethe and Peierls proposed a somewhat
more sophisticated approach in 1935. Consider a subsystem C of the spin lattice, consisting of a
spin denoted s0 and its ring of nearest neighbors denoted si with i = 1, . . . , z. We note n+ the
number of spins in this ring that are in the state si = +1 and n− the number of spins in the
si = −1 state.

The Hamiltonian of the system is described as follows:

• On the one side, the interactions between the spin s0 and its nearest are described exactly.

• On the other side, the interactions between the spins si (i = 1, . . . , z) and the rest of the
system, are described as in the mean field, by a molecular field hm, which we do not know
a priori.

(a) Give a simple relationship between n+, n− and z.

(b) Show that the energy HC of the subsystem C can be expressed as −βHC (n+, n−, s0) =
(H +Hm +Ks0) (n+ − n−)+Hs0, where we have defined the dimensionless quantities K =
βJ,H = βh and Hm = βhm.

(c) We define the joint probability P (s0 = s, n+ = n) which allows to keep in the probability
reference to both s0 = s and n+ = n. Calculate the partition function ZC from C and show
that we have

P (s0 = s, n+ = n) =
z!

n!(z − n)!

1

ZC
e(H+Hm+Ks)(2n−z)+Hs. (2.2)

(d) Show that 〈s0〉 =
∑z

n=0 [P (s0 = +1, n+ = n)− P (s0 = −1, n+ = n)].

(e) Now we want to express the average magnetization at a site in terms of the joint probabilities
P (s0 = s, n+ = n). We define the quantity S as S =

∑z
i=1 si.

(i) Show that 〈S〉 = z〈s0〉. Justify carefully.

(ii) Express S as a function of n+ and z. Derive an expression for the mean of S (〈S〉)
as a function of P (s0 = s, n+ = n) (do not attempt to compute the discrete sum that
appears in the result).

(iii) Deduce from the two previous relations the equation

z

z∑
n=0

P (s0 = 1, n+ = n) =

z∑
n=0

n [P (s0 = +1, n+ = n) + P (s0 = −1, n+ = n)] . (2.3)

(f) Using the equation (2.3) and the expression for the joint probabilities (2.2), show that the
molecular field Hm must satisfy the relation

Hm

z − 1
=

1

2
ln

(
cosh (Hm +H +K)

cosh (Hm +H −K)

)
.
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(g) It is now assumed that the external magnetic field is zero (H = 0). Graphically discuss the
solutions of the self-consistent equation for the molecular field hm. In particular, show that
there is a phase transition for a critical temperature Tc, given by

kBTc

J
=

2

ln
(

d
d−1

) .
(h) Recall that the exact resolution of the Ising model in dimension d = 2 gives kBTc/J =

2/ ln (1 +
√

2). Numerical methods calculate exact values for kBTc/J given in Table 1. Fill
in the table and discuss the obtained results.

Table 1: Values of kBTc/J as a function of d for a hypercubic lattice.

d Exact value Mean-Field prediction Bethe-Peierls prediction

1

2

3 4,54545

4 20/3

Mathematical Formulæ

• tanhx ' x− x3/3 for x� 1

• tanh−1 x = 1
2 ln

(
1+x
1−x

)
.

•
∑N

n=0
N !

n!(N−n)! x
n yN−n = (x+ y)N

•
∑N

n=0
N !

n!(N−n)! nx
n yN−n = Nx (x+ y)N−1
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