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Exercises

Disclaimer: The following exercises are adapted and/or reproduced from the excellent textbook
by D.J. Griffiths, Introduction to Quantum Mechanics (Cambridge University Press). Several
copies of the book can be found at the University library.

— Chapter 1 —

Exercise 1.1: Normalization

Consider the wave function
ψ(x, t) = A e−λ|x| e−iωt,

where A, λ, and ω are positive real constants. (We will see in Chapter 2 what potential V
actually produces such a wave function.)

(a) Normalize ψ.

(b) Determine the expectation values of x and x2.

(c) Find the standard deviation σ of x. Sketch the graph of |ψ|2, as a function of x, and mark
the points 〈x〉+ σ and 〈x〉 − σ, to illustrate the sense in which σ represents the “spread” in
x. What is the probability that the particle would be found outside this range?

Exercise 1.2: Momentum

Ehrenfest’s theorem states that expectation values obey classical laws. Prove in particular that

d〈p〉
dt

=

〈
−∂V
∂x

〉
.

Exercise 1.3: The uncertainty principle

A particle of mass m is in the state

ψ(x, t) = A e−a(mx
2/~+it),

where A and a are positive real constants.

(a) Find A. Hint:
∫ +∞
−∞ du e−u

2
=
√
π.

(b) For what potential energy function V (x) does ψ satisfy the Schrödinger equation?

(c) Calculate the expectation values of x, x2, p, and p2. Hint:
∫ +∞
−∞ duu2 e−u

2
=
√
π/2.

(d) Find σx and σp. Is their product consistent with the uncertainty principle?
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— Chapter 2 —

Exercise 2.1: Stationary states

Prove the following four theorems:

(a) For normalizable solutions, the separation constant E must be real. Hint: Write E in
ψ(x, t) = ϕ(x) e−iEt/~ as E0 + iΓ (with E0 and Γ real), and show that if∫ +∞

−∞
dx |ψ(x, t)|2 = 1

is to be hold for all t, Γ must be zero.

(b) The time-independent wave function ϕ(x) can always be taken to be real [unlike ψ(x, t),
which is necessarily complex.] This does not mean that every solution to the time-independent
Schrödinger equation is real; what it says is that if you’ve got one that is not, it can always
be expressed as a linear combination of solutions (with the same energy) that are. So you
might as well stick to ϕ’s that are real. Hint: If ϕ(x) satisfies

− ~2

2m

d2ϕ

dx2
+ V (x)ϕ(x) = Eϕ(x) (1)

for a given E, so too does its complex conjugate, and hence also the real linear combination
ϕ+ ϕ∗ and i (ϕ− ϕ∗).

(c) If V (x) is an even function [i.e., V (x) = V (−x)] then ϕ(x) can always be taken to be either
even or odd. Hint: If ϕ(x) satisfies Eq. (1), for a given E, so too does ϕ(−x), and hence
also the even and odd linear combination ϕ(x)± ϕ(−x).

Exercise 2.2: The harmonic oscillator

Find 〈x〉, 〈p〉, 〈x2〉, 〈p2〉, and 〈T 〉 = 〈p2〉/2m, for the nth stationary state of the harmonic oscil-
lator, using the method explicited in the lecture (cf. Example 2.5). Check that the uncertainty
principle is satisfied.

— Chapter 3 —

Exercise 3.1: Hilbert space

(a) For what range of ν is the function f(x) = xν in Hilbert space, on the interval [0, 1]? Assume
ν is real, but not necessarily positive.

(b) For the specific case ν = 1/2, is f(x) in Hilbert space? What about xf(x)? How about df
dx?

Exercise 3.2: A few commutators

(a) Prove the following commutator identities:

[A+B,C] = [A,C] + [B,C]

[AB,C] = A [B,C] + [A,C]B.

(b) Show that
[xn, p] = i~nxn−1.

(c) Show more generally that

[f(x), p] = i~
df

dx
for any function f(x) (which is differentiable, of course).

(d) Show that for the simple harmonic oscillator

[H, a±] = ±~ωa±.
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Exercise 3.3: Generalized uncertainty principle

Prove the uncertainty principle relating the uncertainty in position to the uncertainty in energy:

σxσH ≥
~

2m
|〈p〉| .

Exercise 3.4: Time-evolution of expectation values

In the lecture we have learned that the time evolution of the expectation value of an operator
Q(x, p, t) is given by

d〈Q〉
dt

=
i

~
〈[H,Q]〉+

〈
∂Q

∂t

〉
. (2)

Apply Eq. (2) to the following spectial cases: (a) Q = 1, (b) Q = H, (c) Q = x, and (d) Q = p.
In each case, comment on the result.

— Chapter 4 —

Exercise 4.1: Quantum mechanics in three dimensions

(a) Work out all of the canonical commutation relations for components of the operators r and
p, and show that

[ri, rj ] = 0, [pi, pj ] = 0, [ri, pj ] = i~δij ,

where the indices stand for x, y, or z and rx = x, ry = y, and rz = z.

(b) Confirm Ehrenfest’s theorem for three dimensions:

d〈r〉
dt

=
〈p〉
m
,

d〈p〉
dt

= 〈−∇V 〉.

(Each of these, of course, stands for three equations—one for each component.) Hint: use
Eq. (2).

(c) Formulate Heisenberg’s uncertainty principle in three dimensions. Answer:

σxσpx >
~
2
, σyσpy >

~
2
, σzσpz >

~
2
,

but there is no restriction on, say, σxσpy .
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