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EXERCISES

Disclaimer: The following exercises are adapted and/or reproduced from the excellent textbook
by D.J. Griffiths, Introduction to Quantum Mechanics (Cambridge University Press). Several
copies of the book can be found at the University library.

— CHAPTER 1 —

Exercise 1.1: Normalization

Consider the wave function
P(x,t) = Ae el e Wt

where A, A\, and w are positive real constants. (We will see in Chapter 2 what potential V'
actually produces such a wave function.)

(a) Normalize 1.
(b) Determine the expectation values of x and 2.

(¢) Find the standard deviation o of z. Sketch the graph of |1, as a function of #, and mark
the points (z) + o and (x) — o, to illustrate the sense in which o represents the “spread” in
x. What is the probability that the particle would be found outside this range?

Exercise 1.2: Momentum

Ehrenfest’s theorem states that expectation values obey classical laws. Prove in particular that
dip) _ /_oV
dt ox |~
Exercise 1.3: The uncertainty principle

A particle of mass m is in the state
_ 2 /1
¢(:L’,7f) — Ae a(mzx /h+1t)’
where A and a are positive real constants.

(a) Find A. Hint: [T du e = /7.
(

)
b) For what potential energy function V(x) does 1 satisfy the Schrodinger equation?
(c) Calculate the expectation values of x, 22, p, and p?. Hint: fj;o duu?e v = V)2
)

(d) Find o, and op. Is their product consistent with the uncertainty principle?


https://www.cambridge.org/highereducation/books/introduction-to-quantum-mechanics/990799CA07A83FC5312402AF6860311E#overview
https://bu.unistra.fr/opac/.do

— CHAPTER 2 —

Exercise 2.1: Stationary states
Prove the following four theorems:

(a) For normalizable solutions, the separation constant E must be real. Hint: Write E in
Y(x,t) = p(z) e PN as Ey 4 i (with Ey and I real), and show that if

+oo
/ da |(a,t) =1

is to be hold for all ¢, I' must be zero.

(b) The time-independent wave function ¢(z) can always be taken to be real |unlike ¥(x,t),
which is necessarily complex.| This does not mean that every solution to the time-independent
Schrédinger equation is real; what it says is that if you’ve got one that is not, it can always
be expressed as a linear combination of solutions (with the same energy) that are. So you
might as well stick to ¢’s that are real. Hint: If ¢(x) satisfies

S8+ V(@)ele) = Bo(x) 1)
for a given F, so too does its complex conjugate, and hence also the real linear combination
v+ ¢ and i(p — @*).

(c) If V(z) is an even function [i.e., V(x) = V(—x)| then ¢(x) can always be taken to be either

even or odd. Hint: If p(x) satisfies Eq. (1), for a given E, so too does ¢(—x), and hence
also the even and odd linear combination ¢ (z) £+ ¢(—x).

Exercise 2.2: The harmonic oscillator

Find (z), (p), (x?), (p?), and (T) = (p?)/2m, for the nth stationary state of the harmonic oscil-
lator, using the method explicited in the lecture (cf. Example 2.5). Check that the uncertainty
principle is satisfied.

— CHAPTER 3 —

Exercise 3.1: Hilbert space

(a) For what range of v is the function f(z) = x” in Hilbert space, on the interval [0, 1]? Assume
v is real, but not necessarily positive.

. - . . . df
(b) For the specific case v = 1/2, is f(z) in Hilbert space? What about x f(z)? How about g7

Exercise 3.2: A few commutators
(a) Prove the following commutator identities:
A+ B,C] = [A,C] + [B,C]
[AB,C] = A[B,C] + [A,C] B.

(b) Show that

[z",p] = ihng" L.

(¢) Show more generally that

o
[f(x)ap] —Zha

for any function f(x) (which is differentiable, of course).

(d) Show that for the simple harmonic oscillator

[H, ai} = :I:hwai.



Exercise 3.3: Generalized uncertainty principle

Prove the uncertainty principle relating the uncertainty in position to the uncertainty in energy:
0,0 2> — .

Exercise 3.4: Time-evolution of expectation values

In the lecture we have learned that the time evolution of the expectation value of an operator
Q(x,p,t) is given by

@) i oQ

(ﬂ_h<[H’Q]>+<8t . (2)
Apply Eq. (2) to the following spectial cases: (a) @ =1, (b) @ = H, (¢) Q =z, and (d) Q = p.
In each case, comment on the result.

— CHAPTER 4 —

Exercise 4.1: Quantum mechanics in three dimensions

(a) Work out all of the canonical commutation relations for components of the operators r and
p, and show that

[ri,75] =0, [pi,pj] =0, [14, p;] = ihdyj,

where the indices stand for z, y, or z and rp, =z, 7y =y, and r, = 2.

(b) Confirm Ehrenfest’s theorem for three dimensions:

d{r) (p) d(p)

a  m’ a Vv

(Each of these, of course, stands for three equations—one for each component.) Hint: use
Eq. (2).
(c¢) Formulate Heisenberg’s uncertainty principle in three dimensions. Answer:

h h

O0z0p, = 57 OyOp, = 57 020p, Z -,

N | St

but there is no restriction on, say, 0,0, .



