Correlative study of hematite-based photoanodes for solar water splitting by transmission electron and X-ray microscopies $\underline{\text{L\'eon Schmidt}^1}$, Bilal Meddas 2 , Walid Baaziz 1 , Dana Stănescu 2 , Ștefan Stănescu 3 , Ovidiu Ersen 1 ¹Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS / Université de Strasbourg, France ²SPEC, CEA Saclay, CNRS, Gif-sur-Yvette, France ³Synchrotron SOLEIL, Saint-Aubin, France Scholarship from: European Microscopy Societ # **MOTIVATION** In the framework of renewable energies, use of hydrogen as an efficient energy storage is often discussed. Among the many candidates, Ti-doped hematite (Ti: α -Fe₂O₃) nanorods are extensively studied due to their high theoretical photocurrent, optimal band gap for solar light absorption, cost- and resource-efficiency. For an extensive characterization of such materials, we have decided to correlate two complementary microscopic techniques, which, together with photoelectrochemical measurements, allow us to improve the synthesis of the material. ### RESULTS AND DISCUSSION ## CONCLUSION AND PERSPECTIVES #### Influence of precursor ageing on final material - Aging of TiCl₃ precursor over time causes **oxidation** of Ti³⁺ to Ti⁴⁺ - This leads to partial **reduction** of the Fe^{3+} cation to Fe^{2+} by charge compensation, yielding a chemically modified but structurally similar hematite material - Such partially reduced samples perform poorly for solar water splitting #### Ni/Zn cocatalysts *In situ* measurements XAS spectra @ O K-edge of $Ti:\alpha$ - Fe_2O_3 in liquid cell **Future** work 500 nm Amorphous Ni layer, likely homogeneous To do: XPEEM! VB & CB Energy: +0.059 eV / pH @25°C (Nernst eq.) +0.3 eV shift for sample in NaOH vs. in H_2O