Correlative study of hematite-based photoanodes for solar water splitting by transmission electron and X-ray microscopies

 $\underline{\text{L\'eon Schmidt}^1}$, Bilal Meddas 2 , Walid Baaziz 1 , Dana Stănescu 2 , Ștefan Stănescu 3 , Ovidiu Ersen 1

¹Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS / Université de Strasbourg, France ²SPEC, CEA Saclay, CNRS, Gif-sur-Yvette, France ³Synchrotron SOLEIL, Saint-Aubin, France

Scholarship from: European Microscopy Societ

MOTIVATION

In the framework of renewable energies, use of hydrogen as an efficient energy storage is often discussed. Among the many candidates, Ti-doped hematite (Ti: α -Fe₂O₃) nanorods are extensively studied due to their high theoretical photocurrent, optimal band gap for solar light absorption, cost- and resource-efficiency.

For an extensive characterization of such materials, we have decided to correlate two complementary microscopic techniques, which, together with photoelectrochemical measurements, allow us to improve the synthesis of the material.

RESULTS AND DISCUSSION

CONCLUSION AND PERSPECTIVES

Influence of precursor ageing on final material

- Aging of TiCl₃ precursor over time causes **oxidation** of Ti³⁺ to Ti⁴⁺
- This leads to partial **reduction** of the Fe^{3+} cation to Fe^{2+} by charge compensation, yielding a chemically modified but structurally similar hematite material
- Such partially reduced samples perform poorly for solar water splitting

Ni/Zn cocatalysts *In situ* measurements XAS spectra @ O K-edge of $Ti:\alpha$ - Fe_2O_3 in liquid cell **Future** work 500 nm Amorphous Ni layer, likely homogeneous To do: XPEEM!

VB & CB Energy:

+0.059 eV / pH

@25°C (Nernst eq.)

+0.3 eV shift for

sample in NaOH vs. in

 H_2O