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General considerations

➢ General relativity is our best current theory describing (1) the gravitational

interaction and (2) the geometric aspects of space-time. The fact that these two

themes go hand in hand is characteristic of the theory's physical content.

Gravity = geometric aspects of space-time

➢ The theory made some astonishing predictions: black holes, gravitational

waves, expansion of the universe, gravitational redshift and time dilation.

They have all been verified! One of the last:

➢ The merger of two neutron stars was detected on August 17, 2017 in the galaxy

NGC 4993, both as gravitational waves and as light. In all, in addition to LIGO

and Virgo, some 70 observatories on the ground and in space took part in

monitoring the event. This is the first time that gravitational waves have been

detected with an electromagnetic counterpart. This detection reinforces the

hypothesis that gamma-ray bursts, or at least some of them, are the result of the

merger of two neutron stars. This detection verified with an accuracy of one part

in 1015 GR's prediction that the two signals are moving at the same speed, thus

ruling out a large number of other theories which gave different predictions.



General considerations

Obtained using dimensional analysis based on the

three universal constants, gravitation, quantum and

special relativity.

To this day, this theory has never been proven wrong!

➢ The theory's validity is limited by the fact that it does not take quantum effects into

account. These are expected at scales of Planck length.

➢ Likely to be crucial at the center of black holes at the end of their evaporation

(Hawking radiation) and at the very beginning of the universe.

➢ Gravity is described by a field theory like electromagnetism; but this field also

determines what we call the properties of space-time.

➢ It represents the length scale at which a classical - non-quantum - description of

gravitation ceases to be valid, and quantum mechanics must be taken into

account.



General considerations

Fields

Complete theory

Maxwell's electromagnetic field theory

General relativity (GR)

➢ compatible with the principle of 

special relativity; inv. / Lorentz transf.

➢ the interaction propagates at the 

speed of light c

Coulomb law

Newton law

➢ compatible with the principle of 

Galilean relativity; inv. / Galilean transf.

➢ the interaction propagates 

instantaneously (                  

Static limit 



General considerations

→ Need for a field theory
Electromagnetism General relativity

Field

Equation of motion for 

a particle of mass m

Field equations

Vector potential Metric tensor or gravitational potential

Lorentz force Geodesic equation

Maxwell equation Einstein equation

Spin 2

Graviton

Quadrupolar coupling

Spin 1

Photon

Dipolar coupling

Covariant formulation!



General considerations

In theoretical physics, general covariance (or general invariance) is the

invariance of the form of physical laws under any differentiable coordinate

transformation. The principle behind this notion is that there are no a priori

coordinates in Nature, only mathematical devices used to describe it, and

which should therefore play no role in the expression of the fundamental

laws of physics. In other words, according to the principle underlying the

notion of general covariance, physical laws do not a priori relate directly to

Nature, but to an abstract differential variety. A physical law that is general

covariant takes the same mathematical form in any coordinate system and is

generally expressed in terms of tensor fields. The theories of

electrodynamics formulated at the beginning of the 20th century are

examples of this.

COVARIANCE (1)



General considerations

Albert Einstein proposed this principle for his special relativity. However, it

only models coordinate systems in space-time that are linked by uniform (not

accelerated) relative motion, the inertial frame of reference. Einstein

established that the generalized principle of relativity must also apply to

accelerated relative motion and used tensor calculus, a new mathematical

tool at the time, to extend the general Lorentz invariance of special relativity

(which applies only to inertial reference frames) to local Lorentz invariance

(which applies to all reference frames). This extension enabled him to create

general relativity.

COVARIANCE (2)



General considerations

Tools to be developed

: tensors

→ Tensor calculus

metric electromagnetic Ricci

Levi-Civita connection

Stress-energy

→ Riemannian geometry /differential geometry

➢ Gravity is the result of distortions in space-time 

created by mass and energy



General considerations
Einstein Equivalence Principe (EEP)

@Eddie Boyes

➢ No force acts on the spaceship

➢ No force acts on man

➢ The man can't see outside the spaceship

➢ The man is pushed towards the ground

with a force equivalent in amplitude to

that which would attract him to the

ground on earth

➢ The reaction force R gives him the

sensation of his weight

R



General considerations
Einstein Equivalence Principe (EEP)

These two situations 

are indistinguishable

earth

R

→ Gravity is the same as accelaration

➢ This principle is at the heart of gravitation theory, for it is possible to argue

convincingly that if EEP is valid, then gravitation must be a curved-space time

phenomenon, that is, must satisfy the postulates of the Metric Theories of Gravity.

These postulates state:

▪ Spacetime is endowed with a metric.

▪ The world lines of test bodies are geodesics of that metric.

▪ In local freely falling frames, the nongravitational laws of physics are those of special

relativity.



General considerations

Gravity =  Accelaration

Acceleration =  Curvature
Gravity = Curvature



General considerations
Einstein Equivalence Principe (EEP)

➢ It was Einstein who added the key element to WEP that revealed the path to GR.

➢ If all bodies fall with the same acceleration in an gravitational field, then to an

observer in a freely falling elevator in the same gravitational field the bodies should be

unaccelerated exept for possible tidal effects due to inhomogeneities in the

gravitationnal field.

➢ In "The Meaning of Relativity", Einstein wrote:

“Let now K be an inertial system. Masses which are sufficiently far from each other and from

other bodies are then, with respect to K, free from acceleration. We shall also refer these

masses to a system of coordinates K', uniformly accelerated with respect to K. Relatively to

K' all the masses have equal and parallel accelerations; with respect to K' they behave just

as if a gravitational field were present and K' were unaccelerated. Overlooking for the

present the question as to the "cause" of such a gravitational field, which will occupy us

latter, there is nothing to prevent our conceiving this gravitational field as real, that is, the

conception that K’ is "at rest" and a gravitational field is present we may consider as

equivalent to the conception that only K is an "allowable" system of coordinates and no

gravitational field is present. The assumption of the complete physical equivalence of the

systems of coordinates, K and K', we call the "principle of equivalence" this principle is

evidently intimately connected with the law of the equality between the inert and the

gravitational mass, and signifies an extension of the principle of relativity to coordinate

systems which are non-uniform motion relatively to each other.”



General considerations
Einstein Equivalence Principe (EEP)

Parabolic flights
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Degrees of freedom
1) Degrees of freedom (discrete number)

The position of a material point in space →

x

z

y

velocity acceleration

Definition: the number of independent quantities required to determine univocally the

position of a system is called the number s of degrees of freedom (DL) of the system

➢ for N material points in d-dimensional space we need N radius vectors, 

i.e. d x N coordinates→ s = d*N

x0 x1

x2

x3

m3m2m1

d = 1; N = 3 → s = 3
x

y

0

A1
A2

A3

d = 2; N = 3 → s = 6
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Degrees of freedom
➢ The DLs are not necessarily the Cartesian coordinates of the point!

➢ It is often more convenient to use another coordinate system

fully characterize the system's position

➢ These are the generalized coordinates {q}

➢ These are the generalized velocities

Examples: a) Material point moving on a sphere of radius r

2 DL → s = 2 → (q,f)   -spherical pendulum-

b) Planar pendulum

l

m

1DL → s = 1 → f

f
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Degrees of freedom
c)

f

l 2 DL → s = 2 → (l,f) ou (yB, zB)

more "physical" parameterization

d) Coupled planar pendulums

e) Mass-spring system

2 DL → s = 2 → (y1,y2)

2 DL → s = 2 →
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Degrees of freedom
Experience shows that: knowledge of coordinates and velocities determines the state

of the system and allows us to predict its final motion.

Definition: the relationships linking accelerations to coordinates and velocities are called 

equations of motion.

These are second-order differential equations.

Examples: a)

b)

1 DL

2 DL
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Principle of least action

2) Principle of least action

It's the Hamilton principle

(1805 – 1865)

Every mechanical system is characterized by a defined function:

At times t1 and t2 the system occupies specific positions  {q(1)} et {q(2)}

Between these two instants, the system moves in such a way that the integral

has the smallest possible value.

L: Lagrange function of the system or Lagrangian [L] = E

S: action of the system [S] = E.T

The 2s quantities constitute a set of dynamical variables
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Lagrange equations
➢ L does not contain higher derivatives

(i.e motion is completely determined by coordinates and velocities)

➢ Using variational calculus, we obtain:

1 DL

s DL 

These are the Lagrange equations.

It is a system of s second-order differential equations

with s unknown functions qi(t). 

q(1)

q(2)

d S = 0 « real » trajectory

s=2Ex:
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Galileo's principle of relativity

➢ In an IFR (Inertial frame of reference), all free movement takes place at a 

constant speed in magnitude and direction. This is the law of inertia.

➢ Galileo's principle of relativity (one of the most important principles of mechanics!)

Let's consider two IFRs translating rectilinearly and uniformly with respect to

each other. In these systems, the properties of space and time are the same,

as are all the laws of mechanics

➢ Galileo's transformations
z

x

y

x’

y’

z’

0 0’

Lagrange equations are invariant / to these transformations

→ Covariance
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Closed system of material points
Lagrange function of a closed system of material points

➢ Consider a system of material points interacting with each other, 

but isolated from any foreign body; such a system is said to be closed (isolated).

T is the system's kinetic energy and V is its potential energy.

- V depends only on the distribution of material points at the same time.

→ the interaction propagates instantaneously (only true in GaR / # in GR Einstein)

- Lagrange equations are reversible in time ( t → -t ) 

→ Newton's equations

Force acting on the point a



N-body problem in gravitation 

O

m1

m4

m3

m2

m5

m6

G = 6.6743 × 10-11 m3 kg-1 s-2

always attractive
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Lagrangian in generalized coordinates

Examples:

a) Cylindrical coordinates

b) Spherical coordinates

(*) metric tensor: The dynamical system can be associated with a Riemannian 

space

(*)
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Noether's theorem

➢ Any infinitesimal transformation that leaves the action integral invariant corresponds 

to a quantity that remains constant! Symmetry → conserved quantity  

Noether's theorem

External space-time symmetries

→ Space and time translations, space rotation

Note: There are also "internal" symmetries (gauge).

(1882-1935)

➢ Energy: time translation invariance

➢ Linear momentum: space translation invariance

➢ Angular momentum: space rotation invariance



Concept of field

➢ In the thinking of Coulomb, Ampère and Faraday,

inherited from Newton we only know the forces exerted by

one material system on another (the notion of "material

system" includes electrical matter or fluid capable of

exerting or undergoing such forces).

➢ The notion of FIELD (electric or magnetic), which is

widely used (notably by Faraday) has no other meaning

than that of a virtual force that only becomes real when

and where a charged body, or a magnet, or an electric

current element is present.

➢ Ultimately, the field is no more than a convenient

calculation intermediary...

The problem (since Newton) of instantaneous action at a distance...

Before James Clerk Maxwell

(1831-1879)



« …With J. Clerk Maxwell, a new scientific scientific era opened… »  

Albert Einstein

« Imagine his emotion when the equations he had formulated

revealed that electromagnetic fields propagate as polarized

waves, and at the speed of light! Few men in the world can

claim to have had such an experience. » Albert Einstein

(1873)



Concept of field

Vector field (tensor of rank 1; one indice n)

Tensor field (tensor of rank 2; two indices n and n)

➢ Formulation in terms of partial differential equations.

➢ This leads naturally to the idea of a finite speed of propagation and wave equation (em waves).

➢ For Newton, the (continuous) space between two bodies was irrelevant.

Maxwell’s equations in vacuum

Maxwell-Ampère



Tidal currents map

Maxwell gives birth to a new being in mathematical physics:

The vector field!

Concept of field

Vector field



Continuous number of degrees of freedom

Continuous number of degrees of freedom (application to em)

➢ As in the discrete case, the generalized coordinates and velocities are 

defined by 

and constitute a set of dynamical variables for the system.

➢ The state of the system is now determined by a continuous rather than

discrete number of dynamical variables. This extension is necessary insofar

as we want to study a vector field that is defined by its value at all points in

space. We will now consider generalized coordinates that depend on a

continuous index (denoted by the current point in 3-dimensional space)

and a discrete index j (j varying from 1 to N).

continous index
discret index 

vector components



➢ The Lagrangian formulation of classical electrodynamics based on the principle 

of least action was realized by Karl Schwarzschild in 1903.

Principle of least action for the field

➢ Schwarzschild provided the first exact solution to the Einstein field equations

of general relativity, for the limited case of a single spherical non-rotating mass,

which he accomplished in 1915, the same year that Einstein first introduced

general relativity. The Schwarzschild solution, which makes use of Schwarzschild

coordinates and the Schwarzschild metric, leads to a derivation of the

Schwarzschild radius, which is the size of the event horizon of a non-rotating

black hole.

(1873-1916)



Principle of least action for the field

NEW



Discrete to continuous: scalar field

Chain of coupled identical harmonic oscillators

qn-1=0 qn=0 qn+1=0

a a

x



Discrete to continuous



Discrete to continuous



Discrete to continuous



Discrete to continuous
q(x,t) is a scalar field in one dimension



Discrete to continuous



Scalar field theory

➢ Noether’s theorem: Bailin & Love 3.2, page 18



Lagrangian for em field

Non-relativistic (NR) lagrangian of the system « fields + particles »



Lagrangian for em field

relativistic notation (later)

ith particle

jth component of the ith particle 



Gauge invariance – internal symmetry

= 0



Gauge invariance – internal symmetry



Lorentz equation

➢ The Lorentz equation is obtained with the particle dynamic variables

Note:

Lorentz force

Proof in this book



Poisson and Ampère equations



Noether's theorem for the em field

➢ a) Energy: time translation invariance

➢ b) Linear momentum: space translation invariance

➢ c) Angular momentum: space rotation invariance



Noether's theorem for the em field

➢ a) Energy: time translation invariance

➢ b) Linear momentum: space translation invariance

➢ c) Angular momentum: space rotation invariance



Noether's theorem for the em field

➢ a) Energy: time translation invariance

➢ b) Linear momentum: space translation invariance

➢ c) Angular momentum: space rotation invariance

➢ Noether's theorem for continuous fields in four-dimensional space–time

corresponds to the conservation law for the stress–energy tensor (crucial for

GR).

Angular momentum of the particles Field angular momentum



Euler-Lagrange (most general)

1. Generalized with higher derivatives of the field (em: only first derivative).

2. Relativistic extension (Minkowski space).

3. Generalized for curved space (gmn). g=det(gmn).

4. In Lorentz coordinates g=-1 and d4x=dVdt (e.g. em).



Wir müssen wissen. Wir werden wissen.

(We need to know. We will know.)

David Hilbert (1862-1943)
The father of the XXIII problems

On August 8, 1900, at the Second International Congress of Mathematicians in

Paris, he set out the future of mathematics in the form of 23 problems to be

solved by the 20th century. Five remain unsolved to this day, including...the

Riemann conjecture.

The action of general relativity

R is the curvature


