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General considerations

» General relativity is our best current theory describing (1) the gravitational
interaction and (2) the geometric aspects of space-time. The fact that these two
themes go hand in hand is characteristic of the theory's physical content.

Gravity = geometric aspects of space-time

» The theory made some astonishing predictions: black holes, gravitational
waves, expansion of the universe, gravitational redshift and time dilation.
They have all been verified! One of the last:

» The merger of two neutron stars was detected on August 17, 2017 in the galaxy
NGC 4993, both as gravitational waves and as light. In all, in addition to LIGO
and Virgo, some 70 observatories on the ground and in space took part in
monitoring the event. This is the first time that gravitational waves have been
detected with an electromagnetic _counterpart. This detection reinforces the
hypothesis that gamma-ray bursts, or at least some of them, are the result of the
merger of two neutron stars. This detection verified with an accuracy of one part
in 10> GR's prediction that the two signhals are moving at the same speed, thus
ruling out a large number of other theories which gave different predictions.




General considerations

To this day, this theory has never been proven wrong!

» The theory's validity is limited by the fact that it does not take quantum effects into
account. These are expected at scales of Planck length.

e Obtained using dimensional analysis based on the
lp = '-; ~ 107%° m | three universal constants, gravitation, quantum and
c special relativity.

> It represents the length scale at which a classical - non-quantum - description of
gravitation ceases to be valid, and quantum mechanics must be taken into
account.

» Likely to be crucial at the center of black holes at the end of their evaporation
(Hawking radiation) and at the very beginning of the universe.

» Gravity is described by a field theory like electromagnetism; but this field also
determines what we call the properties of space-time.




Fields

Static limit Complete theory
€1€9 g
Foy — Coulomb law Maxwell's electromagnetic field theory
T
Fg X lenQ Newton law General relativity (GR)
T
» compatible with the principle of » compatible with the principle of
Galilean relativity; inv. / Galilean transtf. speqal fe|a_tIV|ty; inv. / Lorentz transf.
> the interaction propagates » the interaction propagates at the

instantaneously ¢ — 400 speed of light ¢



—> Need for a field theory o /o o

Field

Equation of motion for
a particle of mass m

Field equations

Electromagnetism General relativity

Spin 1

Aa (X) Photon . gab (X) grr);r\]/ifon

Dipolar coupling Quadrupolar coupling

Vector potential

Metric tensor or gravitational potential

Lorentz force Geodesic equation

1
DaFab Rab - §Rgab + )\gab = STFGTab

— 4 J°

Maxwell equation Einstein equation

Covariant formulation!



General considerations

COVARIANCE (1)

In theoretical physics, general covariance (or general invariance) is the
invariance of the form of physical laws under any differentiable coordinate
transformation. The principle behind this notion is that there are no a priori
coordinates in Nature, only mathematical devices used to describe it, and
which should therefore play no role in the expression of the fundamental
laws of physics. In other words, according to the principle underlying the
notion of general covariance, physical laws do not a priori relate directly to
Nature, but to an abstract differential variety. A physical law that is general
covariant takes the same mathematical form in any coordinate system and is
generally expressed in_terms of tensor fields. The theories of
electrodynamics formulated at the beginning of the 20th century are
examples of this.




General considerations

COVARIANCE (2)

Albert Einstein proposed this principle for his special relativity. However, it
only models coordinate systems in space-time that are linked by uniform (not
accelerated) relative motion, the inertial frame of reference. Einstein
established that the generalized principle of relativity must also apply to
accelerated relative motion and used tensor_calculus, a new mathematical
tool at the time, to extend the general Lorentz invariance of special relativity
(which applies only to inertial reference frames) to local Lorentz invariance
(which applies to all reference frames). This extension enabled him to create
general relativity.




Tools to be developed
g ab F ba Ra,b Ta.b : tensors

- Tensor calculus

metric  electromagnetic Ricci Stress-energyT M

a . i
F be Levi-Civita connection

» Gravity is the result of distortions in space-time
SETERES created by mass and energy

oS
v:'n“."-




General considerations

Einstein Equivalence Principe (EEP)

free space

» No force acts on the spaceship
» No force acts on man
» The man can't see outside the spaceship

@Eddie Boyes

[- free “‘Pllcc‘/\
/
» The man is pushed towards the ground

with a force equivalent in amplitude to
that which would attract him to the
ground on earth

» The reaction force R gives him the
sensation of his weight

i

A
W
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Einstein Equivalence Principe (EEP)

free spacel/

These two situations
are indistinguishable

- Gravity is the same as accelaration earth

» This principle is at the heart of gravitation theory, for it is possible to argue
convincingly that if EEP is valid, then gravitation must be a curved-space time
phenomenon, that is, must satisfy the postulates of the Metric Theories of Gravity.
These postulates state:

» Spacetime is endowed with a metric.

» The world lines of test bodies are geodesics of that metric.

» |n local freely falling frames, the nongravitational laws of physics are those of special
relativity.



Acceleration = Curvature

Grav|ty = Accelarat|0n} :> Gravity = Curvature

o n-t Coordinates move with particle.

p = radius of curvature » Points toward center of curvature

o Changes direction of velocity vector

a; = v = dv/dt along path
e Changes length of velocity vector



General considerations

Einstein Equivalence Principe (EEP)
» It was Einstein who added the key element to WEP that revealed the path to GR.

> If all bodies fall with the same acceleration in an gravitational field, then to an
observer in a freely falling elevator in the same gravitational field the bodies should be
unaccelerated exept for possible tidal effects due to inhomogeneities in the
gravitationnal field.

» In "The Meaning of Relativity", Einstein wrote:

“Let now K be an inertial system. Masses which are sufficiently far from each other and from
other bodies are then, with respect to K, free from acceleration. We shall also refer these
masses to a system of coordinates K', uniformly accelerated with respect to K. Relatively to
K' all the masses have equal and parallel accelerations; with respect to K' they behave just
as if a gravitational field were present and K' were unaccelerated. Overlooking for the
present the question as to the "cause" of such a gravitational field, which will occupy us
latter, there is nothing to prevent our conceiving this gravitational field as real, that is, the
conception that K’ is "at rest" and a gravitational field is present we may consider as
equivalent to the conception that only K is an "allowable" system of coordinates and no
gravitational field is present. The assumption of the complete physical equivalence of the
systems of coordinates, K and K', we call the "principle of equivalence" this principle is
evidently intimately connected with the law of the equality between the inert and the
gravitational mass, and signifies an extension of the principle of relativity to coordinate
systems which are non-uniform motion relatively to each other.”



Einstein Equivalence Principe (EEP)

Parabolic flights
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Degrees of freedom

1) Degrees of freedom (discrete number)

) The position of a material point in space - 77
A - —
A e T Lo
T ? ? 9 dt ? 7 ? dtz 7 7
N velocity acceleration
. dx L d*x
Tw o T T AR

X

Definition: the number of independent quantities required to determine univocally the
position of a system is called the number s of degrees of freedom (DL) of the system

» for N material points in d-dimensional space we need N radius vectors,
l.e. d x N coordinates—> s = d*N

y

m, m, m, A 50 A;
O, O—O0—0 > A,
X4 X S
- — 0 ,X
X , d=1;N=3>s=3 d=2;,N=3>s=6
S
X3 B

OA; = ($17y1)30j42 — (3723:92)30:213 = (£3,y3) 16



» The DLs are not necessarily the Cartesian coordinates of the point!

» It is often more convenient to use another coordinate system

= (1,42, ...4s » These are the generalized coordinates {q}
fully characterize the system's position

= Q1; C_?Q; QS » These are the generalized velocities {CI}

Examples: a) Material point moving on a sphere of radius r
2DL>s=2->(6¢ -spherical pendulum-

b) Planar pendulum

o

IDL>s=1> ¢

17



C) Z4,

2DL>s=2>

(.9

|

ou (Yg, Zg)

more "physical" parameterization

e) Mass-spring system

2DL2>s=2-> (y.Y,)

2DL>s=2-> (01,607)

18



Experience shows that: knowledge of coordinates and velocities determines the state
of the system and allows us to predict its final motion.

Definition: the relationships linking accelerations to coordinates and velocities are called
equations of motion.

These are second-order differential equations.

Examples: a) T+ wjr =0 1DL
.o 2 .
b) LT wor =y 2 DL
Y+ wiy = ax

19



Principle of least action

2) Principle of least action

It's the Hamilton principle

Every mechanical system is characterized by a defined function:

L(Qla 42, s sy 415 G2, -5 s, t) = L({Q}v {Q}a t) (180;1865)

At times t; and t, the system occupies specific positions {q¥} et {q®®}
Between these two instants, the system moves in such a way that the integral

= ;7 L({q}. {q}, t)dt

has the smallest possible value.

L: Lagrange function of the system or Lagrangian [L] = E
S: action of the system [S] =

{C]}, {Q} The 2s quantities constitute a set of dynamical variables 20




» L does not contain higher derivatives %}; {}/}a
(i.e motion is completely determined by coordinates and velocities)

» Using variational calculus, we obtain:

~
oL d (oL __

< 9q dt(aq)_o 1bL

g Tt (8%)—0(’&—17...,8) s

These are the Lagrange equations.

It is a system of s second-order differential equations {q}
with s unknown functions q;(t).

A
EX: s=2 q®
T + w%a: =y 0S =0 « real » trajectory
. 2
> 21




Galileo's principle of relativity

» In an IFR (Inertial frame of reference), all free movement takes place at a
constant speed in magnitude and direction. This is the law of inertia.

» Galileo's principle of relativity (one of the most important principles of mechanics!)

Let's consider two IFRs translating rectilinearly and uniformly with respect to
each other. In these systems, the properties of space and time are the same,
as are all the laws of mechanics

. . y4 zZ
> Galileo's transformations
y y
=t

— — — 5

r =1r — vt 0 0 .
oL _d (OL\ _ , (),
dqg dt\oq) — = 9 At \oi )

vV

Lagrange equations are invariant / to these transformations
- Covariance 29




Closed system of material points

Lagrange function of a closed system of material points

» Consider a system of material points interacting with each other,
but isolated from any foreign body; such a system is said to be closed (isolated).

TT?/U2 — —
L=, —+—-V({,7,...)=T 3 V

|
T is the system's kinetic energy and V is its potential energy.

- V depends only on the distribution of material points at the same time.
- the interaction propagates instantaneously (only true in GaR / # in GR Einstein)

- Lagrange equations are reversible intime (t 2 -t)

d ( OL \ _ 0L d&*r, _ 9V : :
a1 (a%) = o7, > | Ma—gz = 57 Newton's equations
F, = — g;./ Force acting on the point a

23



6 6
V(ri,...,15) = =G X %Z z m;m;

7P 7
always attractive
m,
—_
m, 703 M.
Z
_}
T4

m, e — 7,.5 g
™ ??2 Mg

X G =6.6743 x 101! m3 kg s2




dfa
= fal@1, G2 e Qs)s 0 = 2 T2 .
:22 ma(:z +ya+Z2)_V_>22m digr — V(q)
Examples:

a) Cylindrical coordinates
L=2*4r?¢* +2%) = V(r,p, 2)

b) Spherical coordinates

[ = % (7’»2 + r2(?2 1+ 12 gin? 9(,2)2) —Vi(r,0,p)

(*) metric tensor: The dynamical system can be associated with a Riemannian
space 25



Noether's theorem

» Any infinitesimal transformation that leaves the action integral invariant corresponds
to a quantity that remains constant! Symmetry - conserved guantity

Let q ) be generalized coordinates that depend continuously on a parameter . If the La-

grangian of the physical system L is independent of ¢ i.e. L(qZ ,qfe) t) = L(qi( ), qf t) then the

()
quantity I(q;, ¢;) = 3; d‘fi; |.—o is a constant of motion (or equivalent an integral of motion).

Noether's theorem

External space-time symmetries
- Space and time translations, space rotation

» Energy: time translation invariance
» Linear momentum: space translation invariance
» Angular momentum: space rotation invariance

Note: There are also "internal” symmetries (gauge). 26

(1882-1935)




Concept of field

Before James Clerk Maxwell

> In the thinking of Coulomb, Ampere and Faraday,
Inherited from Newton we only know the forces exerted by
one material system on another (the notion of "material 5 e U
system" includes electrical matter or fluid capable of
exerting or undergoing such forces). el

(1831-1879)

» The notion of FIELD (electric or magnetic), which is
widely used (notably by Faraday) has no other meaning
than that of a virtual force that only becomes real when
and where a charged body, or a magnet, or an electric
current element is present.

» Ultimately, the field i1s no more than a convenient
calculation intermediary...

The problem (since Newton) of instantaneous action at a distance...



« ...With J. Clerk Maxwell, a new scientific scientific era opened... »
Albert Einstein

VAE - 9B

V.B -0

VE=£
VAB o7 + ol

(1873) JAMES CLERK MAXWELL

« Imagine his emotion when the equations he had formulated
revealed that electromagnetic fields propagate as polarized
waves, and at the speed of light! Few men in the world can
claim to have had such an experience. » Albert Einstein



Maxwell’s equations in vacuum

The purpose of Maxwell’s equations is to link the fields (7, ¢) and B(, ) to their sources,

charge and current densities p(7’, ), j (7, ¢) in the general case of variable regimes.

—

v A E" ‘107 } 50#0% Maxwell-Ampere

Vector field (tensor of rank 1; one indice v)

In the case of variable regimes, the fields E (7, t) = E, (7, t) and B(7, t) = B, (7, t) are strongly

coupled and form an entity to which we give the name electromagnetic field F},, (7, t)

Tensor field (tensor of rank 2; two indices v and v)
Maxwell’s equations are the very expression of the fundamental laws of electromagnetism. It’s

an extremely concise, aesthetic, compact and elegant formulation that describes a vast class of

phenomena, including optics, radio-electricity, guided waves...

» Formulation in terms of partial differential equations.

» This leads naturally to the idea of a finite speed of propagation and wave equation (em waves).
» For Newton, the (continuous) space between two bodies was irrelevant.




-\ q St-Germain

¥

R e
R B RS

. — : oA ¥ a
-1.0 -0.5 G 5 L.

Vector field

Tidal currents map

Maxwell gives birth to a new being in mathematical physics:

The vector field!



Continuous number of degrees of freedom

Continuous number of degrees of freedom (application to em)

» The state of the system is now determined by a continuous rather than
discrete number of dynamical variables. This extension is necessary insofar
as we want to study a vector field that is defined by its value at all points in
space. We will now consider generalized coordinates that depend on a

continuous index (denoted by 7 the current point in 3-dimensional space)
and a discrete index | (j varying from 1 to N).

» As in the discrete case, the generalized coordinates and velocities are
defined by ' OA.
— . — _ ]
qn(t) — A; (7, 1) Gn(t) = A; (7 t) = 5

and constitute a set of dynamical variables for the system.

A;(7,t)
discret index /

continous index
vector components



Principle of least action for the field

» The Lagrangian formulation of classical electrodynamics based on the principle
of least action was realized by Karl Schwarzschild in 1903.

(1873-1916)

» Schwarzschild provided the first exact solution to the Einstein field equations
of general relativity, for the limited case of a single spherical non-rotating mass,
which he accomplished in 1915, the same year that Einstein first introduced
general relativity. The Schwarzschild solution, which makes use of Schwarzschild
coordinates and the Schwarzschild metric, leads to a derivation of the
Schwarzschild radius, which is the size of the event horizon of a non-rotating
black hole.



to .
S:/ dt/ﬁ(Aj,Aj,{)‘iAj,t)df’
5]

L(A;, A; 0;A;,t) is the lagrangian density. 0; = 6513, aya 0z

The term 0;A; is necessary for describing the Maxwell equations that are non-local (the
evolution of the coordinate A;(7,¢) is coupled with the evolution of the coordinate of a

neighbor point).

In the same way that, in a problem with discrete variables g;, the evolution of ¢; can depend
on gj—1 and g;+1 (see the demonstration on the example of the chain of coupled harmonic

oscillators).

The principle of least action applied to S leads to the Lagrange equations for the fields.

SEEE——N
L

d oL oL ) e
itoA, 04, ';.za@a(ai@




Chain of coupled identical harmonic oscillators

The aim of what follows is to intuitively introduce the concept of Lagrangian and Hamiltonian
densities of a continuous system by studying how a discrete mechanical system can be transformed

into a continuous system.

m m m

a a
C1n-1= qn=0 qn+1:0



Discrete system

Consider an infinite set of point particles of mass m aligned along the z axis with equilibrium

spacing a (see Figure). The displacement along the x axis of the n'® particle (whose equilibrium

position is na) is called ¢,. The state of the system at time ¢ is fixed by giving the dynamical

variables ¢, (¢) and ¢,(t). The potential energy of the system of n particles depends on their

separations and is equal to

1

V = 577%(&)% Z(qn-i-l - Qn)z s

with w? = k/m. The Lagrangian of this system of point particles is
1 . 1
L= En: §mq'r21 - zn: §mw%(Qn+1 — W

The relations

o _
ag,
and
oL
a = mw%(‘]n+1 =5 Qn) - mw%(qn = qn—l)

lead to the equations of motion

‘in — w%(qn+1 - Qn) = w%(qn - Qn—l) .

(D)

2)

3)

“4)

&)



Let’s look for a solution of the form g,(t) = de!*"e=«t)  This form is solution of the above

equation if
. . k
—w? = wi[(e®** — 1) — (1 — e7**)] = —4w? sin? (_a) : (6)

2
We calculate the phase velocity v = w/k and its limit when & — 0, vo. We have v = 2% sin ("‘.’2—“)

and vy = wpa. By using the results of the course on analytical mechanics, one gets immediately,

_ oL __ :
Pn—@—mqnand

H = anQn — L= Z %mqi + Z %m’w%(Qn+l - Qn)2 . (7)



The continuous system gotten by passing to the limit

Let the distance a between two adjacent particles and the mass m of each particle go to zero in
such a way that the mass per unit length, u = m/a, is kept constant. Similarly, let w; vary in such
a way that when a goes to 0, vy remains constant. One gets then in this limit a continuous string
with mass per unit length ;o and where the velocity of sound is vy.

The discrete dynamical variable ¢, (t) which represents the displacement of the point na be-
comes a continuous variable ¢(z, ) giving the displacement of a point on the string whose equilib-
rium position is x. Similarly, ¢, (t) becomes 9q(x,t)/0t in the continuous limit. One then moves
from a discrete index n to a continuous index z.

The Lagrangian (2) can be written

- 2
L= ,uz [ _ % (qn+1a2 ) ] : (8)

since ;1 = m/a and vy = wa.

When a goes to zero, (¢,+1 — g»)/a tends to dq(z)/Ox and the above expression of L becomes

L= f dr’ [(d(x))z — (3g§”))2] ‘ ©)




The Lagrangian density £ is then given by g(x,t) is a scalar field in one dimension

£=5 [(q(x))"‘ — ot (%@) ] - (10)

The equation of motion (5) can be rewritten in the form

(jn — w%a2 [(Qn+1 o qn)/a‘] ; [(qn - QH—I)/G’] ) (11)
When a — 0,
0q(x
(g1 — @a)/a — %EL, ) (12)
dq(z — a)
— (p— _— 1
(@n — Gn1)/a — B (13)
and thus Equation (11) tends to
0%q(z)
i(x) = v? : 14
i@) = v 5L (14)
This expression can also be found by using (10) and Lagrange’s equation for the field
d oL oL oL
—— = — ) ———— . 1
dt 9A; 04, i;zc‘? 0(0;4;) (1)



In fact we have: (i) one-dimensional model i.e. 7 — x; (ii) ¢(z,t) is a scalar field which corre-

sponds to one component of the vectorial field A;(7,¢) and ¢ = z; (iii) %—ﬁ = uq; (iv) % = 0; (vi)

_Z — = 33 9(02q) —0, ( )X(_ﬁwo) ﬂ”gg;

Equation (14) is a wave equation. Using (10) one gets [I(z) = 2%

94(x)
responds to the limit of p,,/a when a tends to 0. The Hamiltonian H of the discrete system

= pg(z) which cor-

H=73% pugn—L=a),, *q¢, — L has as its limit when a — 0

H = fd:ﬂ?{, (16)
with

= II(z)¢(z) - £ (17)

CIP(x) | g c‘?q(s':))
H = o +u5( 5 ) - (18)

so that, using (10)




One of the simplest field theory is described by a single real scalar field ¢ () having a la-

grangian density
1 1

_ - 19 2_1 4
ﬁ—z(apw)(ﬂ“w) SHPT = A (1)

where z2 and ) are constants. Find the Euler-Lagrange equation. Answer:

1
(0,0" + 11%) p(a) = =22 (2) - (2)

» Noether’s theorem: Bailin & Love 3.2, page 18

Introduction to
Gauge Field Theory




Non-relativistic (NR) lagrangian of the system « fields + particles »

I -2 e =) 2532\ ;- Lo =
L= —mT, + — (E —c°B )dr T AT — qiU (5
;2 i+ +;q () — q:U ()
N

j T - S e

Y hd N

L p (Particles) L (Fields) Ly
. SR v A S QA = Interaction particles-fields
with B=VxAand £ = -%5 —VU ( p )

Lp NR lagrangian for the particles (only kinetic energy). Discrete number of charged parti-

cles characterized by (m;, g;).

L Lagrangian for the fields (electric + magnetic).

L Lagrangian describing the interactions between the fields and the particles.

In the following d7 = dzdydz = dV = d°F.



L= [ [i0.4@ - pov )] dr= [ crar
J.A"

relativistic notation (later)

In the following we will show that this lagrangian leads to the Maxwell-Lorentz equations.

L denotes de lagrangian density.

The generalized variables are {(ﬁ-)j : (ﬁ)}} {Aj(ff’), Aj(f')} and {U(F’), U(F’)}.

We have p(7) = 3, ¢:6(F — 7%) and j(F) = 3, q:rid (F — 7).

—
(‘]"1 ) _:] j'" component of the it" particle

it" particle



« Ly is not modified since it only involves the fields £ and B that by definition do no change

under a gauge transformation.
* The lagrangian of the particles is not modified.

* Only the interaction lagrangian is modified.

-y
K

Ly = [ [J)-AF) = p(U (7] dF = [ £1dF

A(Fat) - Aﬂ(ﬁt)_i_g@(fat) !T: ACI +£]_
. L 07
Uryit) = Up(r,t) — 5
T ) .~ 9p\[ ™
£ =¥+ 05 =9.G0) + 500 (FT+ 50 ) p ¥ <o
) 2) ®)

(1) If one integrates over the whole space, the term with the divergence vanishes
(2) A time derivative does not change the equations of motion
(3) Finally, the charge conservation is a necessary condition for the gauge invariance

(This is in agreement with the Noether’s theorem) (*) ﬁ' (3(15) — (ﬁ’j') o+ 56@5



REVIEWS OF MODERN PHYSICS, VOLUME 73, JULY 2001

Historical roots of gauge invariance

J. D. Jackson*

University of California and Lawrence Berkeley National Laboratory, Berkeley,
California 94720

L. B. Okun'

Institute of Theoretical and Experimental Physics, State Science Center of Russian
Federation, 117218 Moscow, Russia

(Published 14 September 2001)

Gauge invariance is the basis of the modern theory of electroweak and strong interactions (the
so-called standard model). A number of authors have discussed the ideas and history of quantum
guage theories, beginning with the 1920s, but the roots of gauge invariance go back to the vear 1820
when electromagnetism was discovered and the first electrodynamic theory was proposed. We
describe the 19th century developments that led to the discovery that different forms of the vector
potential (differing by the gradient of a scalar function) are physically equivalent, if accompanied by
a change in the scalar potential: A—A'=A+Vy, &—-P'=d—dy/cdt. L. V. Lorenz proposed the
condition #,A#=0 in the mid-1860s, but this constraint is generally misattributed to the better known
H. A. Lorentz. In the work in 1926 on the relativistic wave equation for a charged spinless particle in
an electromagnetic field by Schrodinger, Klein, and Fock, it was Fock who discovered the invariance
of the equation under the above changes in A and @ if the wave function was transformed according
to r—if" = expliey/fic). In 1929, H. Weyl proclaimed this invariance as a general principle and called
it Eichinvarianz in German and gauge invariance in English. The present era of non-Abelian gauge
theories started in 1954 with the paper by Yang and Mills on isospin gauge invariance.



» The Lorentz equation is obtained with the particle dynamic variables

d OL oL

dt o(ry);,  O(F),

From the Lagrange equations for the particles

{7505 }

one obtains the Lorentz equation | 1,

- = G E(F) + ¢ x B(F)

Y
Lorentz force

and p — mv when v < ¢ i.e. in the non-relativistic limit.

mr

1—

Note: In relativistic mechanics p = _

e

i

Thus we have (for one particle)

do . L
i = 9B+ x B(7)

Proof in this book




= Z st + 20 [ (B2 = B) di + 3 4 AR — U ()

Replace E and B by E=—-A—VUand B=V x Binthe lagrangian density.

aL oL oL
o0 av and 55

The Lagrange equation relative to U is found by evaluating ==

oL _ 8£ or; __
We have: @ =0, 55 = —pand a(a 7Y = 9B, 9(8,0) — —eo ;.

From which one gets Lagrange equation —p + ¢ ) . 0;12; = 0 that is V- E =p/e
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Ampere’s equation |V x B = %E + EOCQ J [is obtained from the dynamical variables A;.




» a) Energy: time translation invariance

a) Time

invariance of the Maxwell-Lorentz equations under a change of the time
origin 1s related to the total energy conservation
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Kinetic energy of the charged particles Field energy

* The Coulomb interaction among the charged particles is included in the field energy



> b) Linear momentum: space translation invariance

b) Space-translation

invariance of the Maxwell-Lorentz equations under a change of the origin

of the spatial coordinate system is related to the conservation of the total
linear momentum

P =" "mi(t) + EO/E’(??, t) x B(F,t) dif
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Linear momentum of the charged particles Field linear momentum

Laser cooling (BEC, Radiation pressure...)



» c) Angular momentum: space rotation invariance
¢) Space-rotation

invariance of the Maxwell-Lorentz equations under a change of the
orientation of the axis of the spatial coordinate system i1s related to the
conservation of the total angular momentum

T =N F() x madi(t) + EU]FX (E‘(ﬁ t) x B(F, t)) dr
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Angular momentum of the particles Field angular momentum

» Noether's theorem for continuous fields in four-dimensional space-time
corresponds to the conservation law for the stress—energy tensor (crucial for
GR).



Given a field tensor ¢, a scalar, called the Lagrangian density £(¢, 0o, 0o, ..., x) can be

constructed from ¢ and its derivatives. From this density, the action functional can be constructed

by integrating over the space-time,

S = /E\/—gd‘j:z:,

where /—g d*z is the volume form in curved space-time and g = det(g,,,).
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Then by using the principle of least action the Euler-Lagrange equations can be obtained
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Generalized with higher derivatives of the field (em: only first derivative).
Relativistic extension (Minkowski space).

Generalized for curved space (g,,). g=det(g,,).

In Lorentz coordinates g=-1 and d*x=dVdt (e.g. em).
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The action of general relativity

David Hilbert (1862-1943
e ( ) The father of the XXIII problems

On August 8, 1900, at the Second International Congress of Mathematicians in
Paris, he set out the future of mathematics in the form of 23 problems to be
solved by the 20th century. Five remain unsolved to this day, including...the
Riemann conjecture.

Wir mussen wissen. Wir werden wissen.
(We need to know. We will know.)

The Einstein equations of the gravitational field are obtained in the same way as the Euler-
Lagrange equations, by varying (with respect to the metric tensor g;;) the Hilbertian action S, of

this field.

We define S, as Sg — R\/?gd4£

where the integral is taken on the infinite edge of three-dimensional space (z', 2%, 2*) and between

the bounds 79 < 29 < 29 for time 2. R is the curvature



