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INTRODUCTION 1
The laws of physics cover a broad range of scales, going from elementary particles
to the cosmological distances between galaxies. At each intermediary scale the equa-
tions can be completely different. What binds physics into a single field of inquiry
is our ability to be able to deduce the dynamics at each scale from the physics in the
layer below it. Physicists usually have two main goals, to explain the origin of this
emergent phenomena and to establish their limitations. A procedure that also allows
the development of technological applications and the discovery of new phenomena.

The development of quantum mechanics at the beginning of the last century, al-
lowed physicists to understand the properties of matter under a new perspective.
Early solid-state research allowed an understanding of the electrical conduction and
heat capacity of 3D bulk metals by considering nearly-free charge carriers, the under-
lying non-relativistic dynamics and a continuous electronic band structure. However,
the quest for miniaturization has led to a new era of discoveries based on quan-
tum size effects. Some striking examples include the emergence of the electronic
shell structure of metallic nanoparticles due to quantum confinement [1], the evi-
dence of persistent current in resistive mesoscopic rings due to electronic coherence
effects [2] , and the discovery of effective relativistic 2D dynamics of charge carriers
in graphene [3].

A nanoparticle is an object whose typical size is of the order of a few to a hundred
nanometers, much smaller than the wavelength of visible light but much larger than
a single atom. Metallic nanoparticles are an exemplary testing ground for emerging
properties. Usually monocrystalline, these objects can be small metal clusters con-
taining tens of atoms to large nanoparticles with up to 105 atoms. The number of
particles to study is below the thermodynamic limit that usually applies for the elec-
tronic properties of bulk metals. Metallic nanoparticles have already lead to fascinat-
ing technological advances which include the fabrication of plasmonic metasurfaces
for sensing applications [4], the harvesting of energy from photoelectrochemical wa-
ter splitting [5, 6], and enhanced light absorption for localized heating of interest for
cancer therapy [7] and antimicrobial treatment [8].

The sharp contrast between bulk and nanoscopic behavior is the product of quan-
tum size effects. The surface of a metallic nanoparticle is non-negligeable when com-
pared to its volume, and thus influences the wavefunction of every electron inside
the nanoparticle. In turn, these boundary conditions create a confinement potential
that renders the electronic spectrum discrete and it is this quantized behavior that
gives rise to the emerging properties at this scale that are not present in macroscopic



2 Introduction

Figure 1.1: Samples of gold nanoparticles of different sizes dispersed in water [9].

samples.
In the particular case of atomic number 79 (chemical element ”Au”), gold nanopar-

ticles are well-known for their optical, plasmonic, electronic and catalytic properties,
which differ from that of macroscopic samples. In fig. 1.1, it can be observed that
samples of gold nanoparticles absorb different wavelengths of light and thus shine
in different colors depending on the nanoparticles size, in contrast with the famil-
iar shinning yellow color of macroscopic gold. In the same way, while bulk gold
is chemically inert and resistant to corrosion, it can become an interesting catalytic
agent at the nanoscale [10]. As gold nanoparticles are non-toxic and easy to fabricate,
they have became an outstanding material to study quantum size effects and their
potential applications.

Most of the time, metallic nanoparticles are chemically synthesized, capped with
long molecules or ligands that are used to functionalize the surface of the nanoparti-
cle. The temperature of the reaction, together with the quantity and types of ligands,
determines the shape and size of the nanoparticles. A common method is known as
Brust-Schriffin synthesis1, which is used to create thiol-stabilized gold nanoparticles
through a protocol that results in round gold nanoparticles between 1.5 to 5 nm in
diameter [12]. The nanoparticles can then be deposited on films or in a liquid solu-
tion. The ligands can be washed out or kept to physically separate the nanoparticles
to avoid the formation of aggregates.

In order to probe these ensembles of nanoparticles, electric and magnetic fields can
be used. The research area of nanoplasmonics is centered on the study of the coherent
motion of electrons in small metallic systems and their coupling to electromagnetic
fields. In metals, valence electrons are usually delocalized from their atomic nuclei,
moving as nearly-free particles. Metallic nanoparticles are usually smaller than the
coherence length of the material which means that electrons can propagate inside
them without losing their quantum phase. This lossless dynamics gives rise to a
coherent motion of the valence electrons that can be stimulated by electric fields using

1Other procedures can produce larger nanoparticles. For example Turkevic method can produce
nanoparticles with diameters from 9 to 120 nm [11].
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optical light.
Nanomagnetism is the field of study of magnetic properties of nano-sized ob-

jects, that can be obtained from different nanofabrication techniques or that emerge
in large samples, like for instance from the texture induced by magnetic domain
walls [13]. While micrometer-sized magnetic devices are widely used for informa-
tion storage, nano-sized objects are usually very sensitive to temperature. Some in-
organic nanoparticles are of interest because of their permanent magnetization, and
iron-based nanoparticles have demonstrated their usefulness for applications in mag-
netic resonance imaging [14] and paleo-magnetism [15].

In contrast, bulk gold is not considered as a magnetic material since it cannot pre-
serve a permanent magnetization in the absence of a magnetic field. Macroscopic
gold has a weak diamagnetic response, with the induced magnetization aligned in
the direction opposite to an external magnetic field, which comes from the magnetic
moments of core electrons. However, in the form of nanoparticles, an unexpected
magnetic behavior can be observed. Gold nanoparticles have been shown to display
a diverse range of magnetic responses, whose origin is still a source of debate [16, 17]
as we discuss in the sequel.

In order to develop new applications based on the manipulation of gold nanopar-
ticles, understanding their opto-chemical properties is not enough, and explaining
their magnetic response could be the key for controlled manipulation of these nano-
objects. As the models that fully explain the magnetic response of ensembles of metal-
lic nanoparticles are still scarce, the goal of this thesis is to provide a rigorous theoret-
ical understanding of the electronic effects that play a dominant role in such a system.

1.1 MAGNETIC RESPONSE OF BULK METALS

Electromagnetism is one of the four fundamental interactions in nature.2 Magnetic
and electric effects are tied together under Maxwell’s equations. Moving charges
produce magnetic fields, and fluctuating magnetic dipoles induce electric currents.
In the presence of electric and magnetic fields, the orbits of charge carriers and their
magnetic dipoles is perturbed, modifying in turn the electromagnetic field.

The magnetic response describes how a material reacts to a magnetic field. When
providing such a description, generally two vector fields are considered, the mag-
netic induction or B-field and the applied magnetizing field or H-field. The relation
between B and H is given in cgs-gauss units by3

B = H + 4πM, (1.1)

where the field M is the magnetization induced in the material.4 If the number of

2The other three interactions being gravity, weak interactions and strong interactions. The last two
only concern the atomic nuclei, and gravity has little to negligible effects in solid-state physics.

3Throughout this document, every formula is expressed in centimetre-gram-second-gauss (cgs-
gauss) units.

4In cgs-gauss units, the magnetic fields and the magnetization have the same physical dimensions
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electrons is fixed (canonical ensemble) the magnetic moment M (where M = M/V ,
with V the nanoparticle volume) can be derived by differentiating the free energy F
with respect to the H-field at fixed number of electrons N and temperature T [18], i.e.

M = −
(

∂F
∂H

)

N,T
, (1.2)

where H = |H| and M = |M|.
The different magnetic responses of metals are classified by the sign of the mag-

netic susceptibility at zero field, corresponding to the slope of the curve M(H). From
eq. (1.2), we can obtain the zero-field susceptibility (ZFS) in the canonical ensemble
as5

χ =
1
V

∂M
∂H

∣∣∣∣
H=0

= − 1
V

(
∂2F
∂H2

)

N,T

∣∣∣∣
H=0

. (1.3)

Usually, for ordinary bulk metals, |χ| ≪ 1. Metals with a paramagnetic response are
defined by a χ > 0, while χ < 0 indicates diamagnetism. Ferromagnetism is the
special case where M ̸= 0 at H = 0, and the ZFS is not well defined in this case.

The magnetic response of matter at thermal equilibrium is a purely quantum me-
chanical effect, arising from the electron orbital and spin angular momentum. The
former arises from the orbital motion of electrons subjected to a magnetic field, and
in this case the Bohr-Van Leeuwen theorem [19, 20] states that the magnetic response
should vanish at the classical limit. The latter is a purely quantum property and
follows from to the electron intrinsic magnetic moment, with magnitude equal to the
Bohr magneton µB and a sign that depends on the two possible spin projections about
a given axis.

Core electrons, bounded strongly to the atomic nucleus, contribute significantly
to the magnetic response of metals. On the one hand the orbital motion of the core
electrons produces a magnetic moment that opposes the magnetic field known as the
Larmor diamagnetism. On the other hand, the total angular momentum (spin and or-
bital) in an atom is associated with a magnetic moment and produces a paramagnetic
susceptibility. If the atoms are considered as independent magnetic moments, the
ZFS is inversely proportional to the temperature, a phenomenon known as Curie’s
law.6

The different possible magnetic moents arising from core and conduction electrons
give rise to a rich variety of magnetic responses summarized in fig. 1.2.

The magnetic response of finite systems has to be compared to that of the bulk. For
metals, the delocalized valence electrons form an electron fluid that contributes to

but are usually written in different units, B is usually expressed in gauss, H in oersted and M in
oersted or magnetic moment per cm3.

5In the most general case, χ can be a three dimensional tensor, however in this thesis we only consider
scalar susceptibilities.

6Paul Langevin developed the theory of Larmor’s diamagnetism and theoretically derived Curie’s
law [21]. Larmor’s diamagnetism is sometimes called Langevin’s diamagnetism and the general-
ization of Curie’s law is called the Langevin function. As the terms have opposite effects, in this
thesis we do not call this contributions after Langevin to avoid confusion.
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Figure 1.2: Different types of magnetic responses of bulk metals, with orbital and
spin origin, ranging from weak to strong magnetism. Extracted from [22].

the magnetic response. First studied by Lev Landau [23, 24], the orbital susceptibility
of a non-relativistic (nr) electron gas (see appendix A) is given by χ

(nr)
b = χL + χP,

resulting from the combined effect of the diamagnetic Landau susceptibility [24]

χL = − 1
12π2

e2kF

m∗c2 , (1.4)

arising from the orbital motion, and the paramagnetic Pauli susceptibility

χP = 3 |χL| , (1.5)

originating from the Zeeman interaction between the electron magnetic moment and
the external magnetic field. We note c the speed of light, −e < 0 the electron charge,
kF the Fermi wave vector, and m∗ the effective mass. In metals, the difference between
m∗ and the free electron mass m is very small (i.e., m∗

Au = 1.1 m) and therefore we will
neglect this difference. The situation considerably changes when going from the case
of metals to that of semiconductors, where such an identification is not valid and
eq. (1.5) does not hold.

Most metals are not ferromagnetic. For bulk gold, the zero-field susceptibility is7

χAu = −9.3|χL| = −2.74 × 10−6, with the paramagnetic contribution from the con-
duction electrons dominated by the Larmor diamagnetic response from the core elec-
trons [25].

1.2 OBSERVED MAGNETIC RESPONSE OF ENSEMBLES OF

GOLD NANOPARTICLES

Discrepancies in the magnetic response of metallic colloids (of the order of hun-
dreds of micrometers) and that of the bulk were already observed at the turn of the

7To obtain the numerical value of the ZFS in the International System of Units (SI), multiply the
cgs-gauss numerical value by 4π.
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Figure 3(a) shows ESM measurements scaled arbitrarily
for comparison with the magnetic field variation of
SQUID magnetization in the same figure. ESM increases
with increasing magnetic field without saturation. This
behavior is similar to the magnetization process obtained
by SQUID magnetization measurements. There was no
distinguishable hysteretic behavior in either the ESM or
SQUID magnetization curve, while the XMCD spectra
indicated a large magnetic anisotropy.We believe that this
is because the superparamagnetic limit due to the small
particle size obscured the magnetic anisotropy effect. As
discussed in the following section, the magnetization
process consists of superparamagnetic and temperature-
independent Pauli-paramagnetic parts. For an ideal
superparamagnetic system, the magnetization curve is
expressed by M!H" # N!L!x", with the Langevin func-
tion L!x" # coth!x" $ 1=x, where x # !H=kBT, ! is the
magnetic moment per particle and N is the total number
of particles per unit mass. Hence, the total magnetization
can be expressed as M!H" # N!L!x" % "PauliH. The dot-
ted line in Fig. 3(a) represents the fitting results. The
magnetic moment determined in this way was
0:4!B=Au particle.

XMCD is an element-selective technique and impurity
atoms other than Au do not influence the experimental
results. Since the value of the magnetic moment is rela-
tively small, one might attribute the magnetization to the
polarization of the conduction electrons of Au induced by
magnetic impurities. In fact, XMCD has revealed induced
spin polarization in nonmagnetic Cu layers in the case of
the Co/Cu multilayer system [21]. However, this possibil-
ity can be excluded in the present system for the follow-
ing reasons. First, the amount of magnetic impurity
included in the sample was extremely small. We have
determined the amount of magnetic impurities using an
inductively coupled plasma mass spectrometer (ICP-MS),
and Fe, Co, or Ni were not detected within the detectable
limit of 5 ppm. Even if one assumes that the sample
contains 5 ppm of Fe impurities, it is impossible to
explain the absolute value of the magnetization measured
by SQUID magnetometry. Second, the conduction elec-
trons of Au do not tend to have magnetic polarization
induced by the magnetic impurities because the density of
states at the Fermi level is small. It is well known that
small amounts of magnetic impurities can affect the
surrounding magnetic properties significantly and induce
ferromagnetic moments for elements on the verge of
ferromagnetism, such as Pd and Pt. However, to date,
Au has not been reported to exhibit such an effect.
Third, even if the magnetic impurity in the nanoparticles
polarize nonmagnetic Au atoms, the amount of magnetic
impurity is far smaller ( < 5 ppm) than in Co/Cu multi-
layer systems, where a Cu spacer layer adjoins a Co
magnetic layer of comparable volume. Thus, the signal
in this case is extremely small and not detectable by
XMCD. It should be noted that our system consists of
Au and a polymer matrix that is made of nonmagnetic
elements (C, H, N). Therefore, we conclude that the
observed magnetization is an intrinsic effect of the Au
particles.

The temperature dependence of ESM was also inves-
tigated and compared to the temperature variation of the
SQUID magnetization. As shown in Fig. 3(b), ESM in-
creases rapidly with decreasing temperature, although it
seems that a finite constant value remains at high tem-
peratures. The steep increase of ESM at low temperatures
is consistent with the temperature variation of SQUID
magnetization and does not contradict the characteristics
of the superparamagnetic model [dotted line in Fig. 3(b)].
The temperature-independent magnetization corresponds
to the Pauli-paramagnetic part mentioned above. This is
not observed in bulk gold metal, which shows a diamag-
netic response ( $ 0:142& 10$6 emu=g) and monotonic
increase with decreasing temperature. We believe that the
paramagnetism of Au is masked, in the bulk state, by the
huge diamagnetism of the conduction electrons, but not in
the case of nanoparticles, where paramagnetism emerges
due to a size effect, reducing the density of states at
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FIG. 3. (a) ESM of PAAHC-Au as a function of the applied
magnetic field and magnetization process obtained by SQUID
magnetometer. The integral of the peak intensity yields similar
results. Dotted line is the fit to the data assuming a Langevin
function plus a linear field-dependent term. (b) Temperature
dependence of the XMCD peak intensity at 10 T recorded at the
Au L3-edge and temperature variation of the magnetization
measured by SQUID magnetometer at 7 T. Dotted line is the fit
to the data assuming "!T" # N!L!x"=H% "Pauli. Solid lines
are guides for the eye.
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(a) Extracted from [37]. SQUID magneti-
zation at finite field (7 teslas) of ensem-
ble of gold nanoparticles coated with
PAAHC, contrasted with the measure-
ment of XMCD (10 teslas). Data fitted
to a Curie law.

ing a spin-singlet state. The singlet state electrons are pre-
sumably localized around the interface between the Au sur-
face and the sulfur in thionic groups, assuming that the
distance dependence governing the formation of the singlet
state is similar to the usual exchange interaction. Although
nanoparticles in PAN, PAAHC, and PVP form coordinate
bonds and large reductions in magnetization are not ob-
served, a slight difference of saturation moments in Fig. 3 is
noticeable. This difference may be explained by the presence
of a weak covalent bond in addition to the main coordinate
bond.
Despite the marked reduction in magnetization of Au

nanoparticles in DT, the field and temperature dependencies
are both consistent with those for other protective agents
when comparing normalized saturation magnetizations. In

the case of PAAHC, for example, the peak in the
magnetization-diameter curve is observed at a diameter of
2.7 nm, although the data are scattered because of the broad
diameter distribution. This peak corresponds to the peak ob-
served at 3 nm in the case of DT. Because many Au atoms in
the surface layer form a covalent bond in DT and generate
localized spin-singlet states, they modulate the surface po-
tential. Thus, the new surface to the free electron system is
formed just inside the covalent bonding region. On the other
hand, the large reduction in saturation moment strongly sup-
ports the model of surface ferromagnetism in nanoparticles.
Despite the moment reduction, the protective agent DT

has the following favorable properties.
!1" Wide range diameter control from 1.5 to 10 nm.
!2" Sharp diameter distribution is easily realized.
!3" Despite the large modulation in surface potential, elec-

tron gas properties are retained within the interface region of
the nanoparticle.

!4" Almost all magnetic properties of Au nanoparticles in
DT correspond to properties observed in other protective
agents, provided the saturation magnetizations are normal-
ized.
Thus, all samples in the present study were prepared using

DT. These samples were used to investigate the diameter
dependence of magnetization over a wide diameter range.
Such an investigation is important in that it helps elucidate
the origin of ferromagnetism in Au nanoparticles given that
the diameter range in the present study is on the order of the
Fermi hole diameter.

FIG. 1. TEM image of Au nanoparticles protected by DT and
their diameter distributions for samples having an average diameter
of !a" 2.0!0.3, !b" 2.5!0.4, !c" 3.5!0.5 nm. !d" High resolution
transmission electron microscope !HRTEM" image of sample !c".
Scale bar is included in the image.

FIG. 2. Diameter dependence of lattice constants in nanopar-
ticles. The lattice constants are estimated from the x-ray diffraction
!XRD" data in the inset.

FIG. 3. The effect of protective agents on magnetization of Au
nanoparticles.

H. HORI et al. PHYSICAL REVIEW B 69, 174411 !2004"

174411-2

(b) Extracted from [38]. Magnetization
of gold nanoparticles at 1.8 K with
mean diameter 2.5 nm. The different
symbols represent different protect-
ing agents: PAN (polyacrylonitrile),
PVP (polyvinyl pyrolidone), PAAHC
(polyallyl amine hydrochloride) and
DT (dodecane thiol).

Figure 1.3: Magnetization of an ensemble of Au nanoparticles capped with polymers
as a function of temperature (a) and of the applied magnetic field (b) .

1930s [26–32].8 R.V. Raman had appealed to a magnetic response of orbital origin to
explain the diamagnetic behavior of reduced-size samples of graphite [27] and ex-
periments with colloidal gold already presented a weaker diamagnetic response than
that of the bulk [31].

Strong paramagnetic behavior in ensembles of gold, nanoparticles was later re-
ported in the turn of the millennium. The teams of H. Hori and Y. Yamamoto in
Japan had found that an ensemble of 3–4 nm gold nanoparticles, embedded in a poly-
mer matrix, presented a paramagnetic behavior, i.e. the magnetization as a function
of the applied magnetic field of the whole sample increased with a positive slope
until reaching a saturation value. The magnetization was aligned with the external
field and was inversely proportional to temperature, thus described by a Curie-like
law [34] as in fig. 1.3a, at odds with the bulk response of gold which is weakly dia-
magnetic. The different experiments [34–39] probed the samples with electron spin
resonance (ESR) and X-ray magnetic circular dichroism (XMCD) and pointed to a
possibly intrinsic effect of individual nanoparticles [39]. The nanoparticles had up
to almost 20 electron magnetic moments µB each, as deduced from magnetization
curves like that of fig. 1.3b. If the magnetic moments were fixed, as if some ferromag-
netic nanoparticles were present, then the Curie law would be a direct consequence
of an ensemble of independently magnetized particles. While being of the opposite

8The first scientific paper on the synthesis of colloidal gold is credited to Michael Faraday in 1857 [33].
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to this absorption. The shape of the measured absorption
curve is characteristic of isolated NPs [13], without ag-
gregation effects. The surface plasmon resonance is, how-
ever, absent for the Au-SR sample, suggesting that due to
the effect of Au:S bonding the 5d electrons of the gold NP
have lost itinerancy and behave as localized or partially
localized carriers.

It is evident from Fig. 3 that the magnetization process
of thiol-capped gold NPs (Au-SR sample) proceeds simi-
larly to typical ferromagnetic materials describing a hys-
teresis loop even up to room temperature. Notice the high
values of the coercive field, 860 Oe at 5 K that decreases
down to 250 Oe at room temperature. In addition, it is
observed that the samples are not saturated at any tem-
perature. Remanence values around half of the magneti-
zation value reached at 1 T are measured. This remanent
magnetization implies that, under an applied field, the
NPs system behaves as an assembly of magnetic moments
randomly distributed in orientation [14].

It may be argued that the observed behavior is due to
the presence of ferromagnetic impurities. Inductive
coupled plasma analysis indicates that the amount of Fe
impurities (of the order of 0.007 wt%) is too low to
account for the obtained magnetization values.

Since gold NPs dispersed by a surfactant (Au-NR) are
diamagnetic, the apparent ferromagnetism observed in
Fig. 3 for Au-SR samples must be associated with the
modification introduced in the Au electronic structure by

the Au:S bond. The main modification consists of the
induction of 5d band holes localized in the vicinity of
the thiol bond and the subsequent lattice expansion with
respect to bulk Au. Therefore, the permanent magnetic
moment of an Au atom bound to an S atom can be
estimated, from the spin associated to the localized
hole, as the Bohr magneton times the atomic charge
transfer due to bonding. From the value of the magneti-
zation for sample Au-SR at 5 K under an applied field of
1 T, an estimation of the lower limit value (since the
samples are not saturated) of the magnetic moment of
gold atoms is straightforward. The value of the magnetic
moment per Au atom bound to sulfur (practically all the
gold atoms in the particle) is estimated as to be !at !
0:036!B, !B being the Bohr magneton. This indicates a
d-charge loss of around " 0:036 e=atom, which is in very
good agreement with a calculated value of " 0:05 e=atom
charge transfer in Au38#SCH3$24 [15] and with the value
of " 0:07 e=atom obtained through XANES studies on
thiol-capped Au NPs [7,16].

The most exciting and intriguing feature of the Au-SR
sample is the hysteresis observed up to room temperature
indicating that the blocking temperature is above 300 K,
which for this particle size requires a value of the anisot-
ropy constant, k, higher than 7% 107 J=m3 or
10 meV=atom. Such an enormous value, larger than that
corresponding to typical systems with high anisotropy
such as hexagonal SmCo5 (k ! 1:2 meV=Co atom), be-
comes reasonable after considering the high strength of
the spin-orbit coupling for gold, 1.5 eV [16,17]. In fact,
the intrinsic magnetic anisotropy appears from the bal-
ance between the spin-orbit coupling and the lack of
spherical symmetry in the distribution of the electric
charges surrounding the magnetic atom. As stated from
the previous described microstructural study, in our case
the Au magnetic atoms undergo Au-Au and Au-S types of

400 500 600 700 800

Au-SR

Wavelength  (nm)

Au-NR

FIG. 4. UV-visible absorption spectra for the two studied
gold nanoparticles. The strong surface plasmon resonance
band around 550 nm, observed for the Au-NR sample, is
absent in the case of Au-SR.
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FIG. 3. Magnetization curves of gold nanoparticles stabilized
by means of a surfactant, Au-NR (a), and hysteresis loops
corresponding to the gold thiol-capped NPs, Au-SR (b), at 5
and 300 K. For the Au-SR sample, the magnetization is given
in emu per gram of gold.
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Figure 1.4: Extracted from [40]. Magnetization M of ensembles of gold nanoparticles
synthesized using the Brust method, as a function of the applied magnetic
field H at two different temperatures (300 K and 5 K). (a) Nanoparticles
capped with dodecane alkyl chains, displaying a negative slope (diamag-
netic) (b) Nanoparticles capped with tetraoctyl ammonium chains, dis-
playing a hysteresis loop (ferromagnetic).

sign, the susceptibility at low temperature was reported to be about three orders of
magnitude larger in absolute value than the susceptibility of bulk gold |χAu|.

In 2004, P. Crespo et al. [40] studied ensembles of gold nanoparticles of about 1 to 2
nm in diameter capped with different thiol ligands. Two different magnetic responses
were reported. One of the samples, shown in fig. 1.4a was diamagnetic with a slope
of about 3 times the diamagnetic susceptibility of bulk gold. The second sample, in
fig. 1.4b, showed signs of ferromagnetism, displaying a considerable hysteresis loop
at 5 K. The stark contrast of the two samples was ascribed to the different ligands,
while the interactions between nanoparticles were considered negligible. The possi-
bility of magnetic impurities in the samples was also discarded, as quite surprisingly,
further experiments showed that adding ferromagnetic impurities to the thiol-capped
samples reduced the ferromagnetic response [41].
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molecular weight 5 kDa) to make them water soluble and
to prevent clustering. Each sample was extensively char-
acterized by scanning electron microscopy (SEM)
[Fig. 1(a)] to determine the average length L, width W,
and aspect ratio AR ¼ L=W [Fig. 1(b), Table I]. The NPs
used are relatively large (all dimensions in the range of
7–73 nm) but still smaller than or in the range of the mean
free path of bulk Au at room temperature (" 60 nm
[23,24]). The extinction spectra of aqueous rod solutions
exhibit well-defined SPR peaks, consisting of a transversal
peak (collective electron motion along W) around 520 nm
and a longitudinal peak (collective electron motion along
L) that shifts towards longer wavelengths with increasing
AR [Fig. 1(c)] [12,13]. The selectivity of our optically
detected magnetic alignment technique is caused by this
wavelength and orientation dependence of the SPR.

We measure SðBÞ, and thereby !!V , by LD and LB on
aqueous Au rod suspensions in an optical cuvette posi-
tioned in a 33 T Florida-Bitter magnet. The measured LD
signal is given by the difference in the extinction of light
polarized parallel and perpendicular to the field direction,
given by [15]

!AðB;"Þ ¼ Ak % A? / SðBÞIm½#kð"Þ % #?ð"Þ': (1)

Similarly, LB measures the difference in the refractive
index of light polarized parallel and perpendicular to ~B,
given by [15]

!nðB;"Þ ¼ nk % n? / SðBÞRe½#kð"Þ % #?ð"Þ': (2)

We use sample H (Table I) to illustrate the typical
results. Figure 2(a) shows the !AðBÞ signal for several
wavelengths. All curves display a B2 dependence up to
the highest field used. The up and down sweeps lead to
identical curves, without hysteresis, independent of sweep
rate and light intensity. The size of the LD signal at 30 T
[symbols in Fig. 2(b)] roughly follows Að0;"Þ, shown by
the dashed red line. For wavelengths within the longitudi-
nal SPR, the LD signal is positive (Ak >A?), whereas at
the transverse SPR, the signal is negative (Ak < A?). This
clearly demonstrates that the rods align with their long axis
along the field.
The LB amplitude at 30 T [symbols in Fig. 2(d)] changes

sign when crossing the SPR maximum, indicating the
derivativelike spectrum of the refractive index. The LB
signal increases linearly with rod concentration [15]. It
proves that the magnetic field induces alignment of isolated
rods, without any trace of rod aggregation, up to the highest
rod concentrations used. To determine the pure degree of
magnetic alignment of the rods, we take into account
the wavelength and concentration dependence of the
signal by defining the order parameter as SðBÞ ¼
!AðB;"Þ=!Amaxð"Þ. !Amaxð"Þ is the maximum !A at a
given wavelength, which is reached in the case of full
alignment. For the longitudinal case, it is given by
!Amaxð"Þ ( 3Að0;"Þ [25]. The resulting SðBÞ thus reflects

(a)

(b) (c)

FIG. 1 (color online). (a) SEM images of Au nanorod samples A, B, and G. The images were obtained after dropcasting a 2 $l
droplet of a 0.1 nM nanorod-water solution on a conducting Si substrate. (b) Schematic drawing of a cylindrical CTAB-capped Au
nanorod with length L and width W. (c) Normalized extinction spectra of samples A, B, and G.
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(a) Different TEM micrograph showing the different samples of gold nanorods.

To test this hypothesis, we have measured !V of a high
concentration (185 nM) nanorods of sample H (largest V
and S), dispersed into a polyvinyl alcohol matrix, by a
SQUID magnetometer experiment. Figure 4 shows the
background-corrected [15] magnetic moment per rod
mrod as a function of magnetic field and temperature.
mrodðBÞ was found to be independent of temperature
(between 5 and 300 K) and linear with B, with a negative
slope, showing no trace of saturation, demonstrating that
the rods are diamagnetic with a magnetic susceptibility of
!V ¼ ð$4:9% 1:2Þ & 10$4, i.e., 14ð%4Þ & !Au.

The outcome of the SQUID experiment demonstrates
that the enhanced magnetism is not due to any paramag-
netic impurities in the sample. Most importantly, it proves
that the overall (bulk) magnetic susceptibility of sample H
is enhanced over !Au by more than 1 order of magnitude.
Inserting this enhanced !V value in Eq. (3) indeed leads to
a !!V ¼ !!SQUID value for sample H that is consistent
with the outcome of the magnetic alignment experiment
(solid blue curves in Fig. 3). The enhanced magnetism of
sample H is, therefore, a bulk effect and not the result of
Au surface states [27,28] or other geometrical effects
[14,29,30]. It should be noted, however, that Eq. (3) under-
estimates the strong V and AR dependencies of the !!V

data [solid blue curves in Figs. 3(b) and 3(c)]. Finally, the
SQUID experiment rules out that the alignment is due to
the intrinsic anisotropy of the magnetic susceptibility of
the CTAB capping molecules [31] because in that case
!!V / !V [15,25,32,33]. We have verified that solutions
with varying CTAB concentrations (from 0.3 to 11.6 mM)
but the same Au cores lead to identical LB signals [15].
Even the highest CTAB concentration is too low to form a
liquid crystalline phase that could be magnetically aligned
[17,31]. Furthermore, samples I and JP, which are identi-
cal and have only different capping molecules, show a very
similar LD signal (not shown) [15]. The relative insensi-
tivity of the signal to the capping molecules and the

SQUID results, therefore, prove that the degree of align-
ment is predominantly due to the Au cores.
To understand the enhanced magnetism of the Au

nanorods, we first discuss sample H, of which we have a
full set of experimental data. It exhibits an anomalous
temperature-independent, diamagnetic response (Fig. 4),
which is compatible with the magnetic alignment signal
that does not show any hysteresis and saturation, even at
32 T (Fig. 3). The dimensions of these nanorods are much
larger than the particles for which para- or ferromagnetism
have been observed (typically smaller than 5 nm).
Furthermore, most ferro- and paramagnetic NPs are capped
by strongly interacting molecules, such as thiols, binding
with strong Au-S bonds, leading to a reduction of the free
electron density and eventually to the disappearance of the
SPR [6]. In our case, both CTAB and (thiolated) mPEG-SH
cappings left the electronic surface properties unchanged
(reduction in free electron density <1% [15]) and resulted
in a similar magnetic response. This rules out most of the
previous suggested mechanisms, involving Au-ligand
interactions, to explain the enhanced diamagnetism
observed here. Therefore, we believe the enhanced dia-
magnetism to be of orbital nature [2,11].
The dimensions of the sampleH nanorods (W ¼ 31 nm,

L ¼ 73 nm) are comparable to the room temperature elas-
tic mean free path le (' 60 nm [23,24]) and thermal length
LT ¼ @vf="kBT ('10 nm) of bulk Au (@ is Planck’s
constant, vf is the electron Fermi velocity) and much
smaller than the low temperature (5 K) le and LT . The
temperature-independent !V measured by SQUID thus
strongly suggest that even sample H rods (our largest) are
in the mesoscopic (R< LT) and ballistic (R< le) regimes

up to room temperature, where R ¼ V1=3 is the character-
istic size of the rods. Mesoscopic fluctuations of the orbital
magnetic susceptibility of finite size metallic systems can
be very large and have been the subject of quite intensive
theoretical investigations [14,30]. For an individual metal-
lic nanostructure, the magnetic susceptibility can oscillate
between negative and positive values, as a function of kFR
(kF is the Fermi wave vector), exhibiting very large values
of up to 100 times the Landau susceptibility of a bulk free
electron gas. For an ensemble consisting of nonidentical
nanosystems, as we consider here, where the variations in
kFR are large (>10%), these oscillations disappear, but the
susceptibility does not average out to zero. The remaining
ensemble susceptibility !V can still be substantial and is
typically paramagnetic, both in the diffusive [30] and the
ballistic [14] regimes. Experimental evidence for this
enhanced paramagnetic susceptibility has been found for
micrometer sized GaAs squares [34]. It is, therefore, likely
that orbital magnetism in high quality single-crystalline
metallic nanoparticles can be quite significant, although a
full calculation is not available in literature. Such a calcu-
lation should include several new ingredients to explain our
results. First of all, it should take into account spin-orbit
coupling, which is known to be strong in Au [35,36] and

FIG. 4 (color online). Magnetic moment per rod versus mag-
netic field at 300 K; a linear slope is visible. The data points and
error bars are experimentally background-corrected values [15].
Similarly, the inset shows the magnetic moment mrod at 2 T
versus temperature. The field dependence was measured four
times, which resulted in an average susceptibility of !V ¼
ð$4:9% 1:2Þ & 10$4.
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(b) Magnetic moment per gold nanorod at room temperature as a function of the applied
magnetic field displaying a negative slope (diamagnetic). Inset: Magnetic moment per
gold nanorod for fixed B as a function of temperature.

Figure 1.5: Extracted from [42].

The most impressive example of diamagnetic response is found in ref. [42]. Instead
of spherical nanoparticles, P.G. van Rhee et al. studied the behavior of single crys-
talline gold nanorods with dimensions larger than 5 nm and up to 73 nm in length,
displayed in fig. 1.5a. The magnetic susceptibility of some of the ensembles reached
14χAu. The magnetic moment of each nanoparticle shows a negative slope (diamag-
netism), as seen in fig. 1.5b and was extracted by taking into account the degree
of alignment of the nanorods which was observed optically. Contrary to previous
experiments that showed a paramagnetic magnetization, the magnetic moment of
the nanorods was independent of the temperature. In this case the nanorods were
coated with either cetyl trimethylammonium bromide (CTAB) or thiolated polyethy-
lene glycol (mPEG-SH), claiming that these ligands do not contribute to the magnetic
response.

The experimental results above-discussed represent a small fraction of more than
a decade of research, dedicated to understand the diversity of response in gold
nanoparticles.9 Paramagnetic [34–39, 44–47], diamagnetic [38, 40, 42, 44, 48] and fer-

9Ferromagnetic and Curie’s law behavior (paramagnetism) has also been observed in ensembles of
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was attributed to the fact that the ligands were too densely

packed for isomerization to take place. This result appears to

contradict the theory which requires an organized monolayer for

the emergence of ferromagnetism. In conclusion, one may say

that no correlation between the magnetic properties of Au

nanoparticles and their magnetic properties can be clearly

established, regardless of the influence of the ligands.

An obvious lack of reproducibility

Upon looking at all of the literature, one can only be surprised by

the obvious lack of reproducibility, as we have underlined here

above. It is true that the synthetic procedures intrinsically

produce heterogeneous samples, with very few exceptions, and in

such cases the clusters are usually very small.111 For larger clus-

ters, i.e. nanoparticles, there is no atomic control, neither of the

core nor of the attached molecules. As far as we know, only one

study has reported the exact atomic structure of a thiolated gold

nanocrystal of 102 Au atoms, revealing many unexpected

features such as: chirality, unbond Au surface atoms, sulphur

atoms bond to one or two Au atoms and inter-ligand interac-

tions.112 Other studies have provided similar information on

smaller clusters but these can barely be termed nanoparticles as

they comprise only 25 gold atoms.113,114

Particles with a defined crystallinity have been theoretically

predicted and observed, and are comprised of polyhedral

volumes with <111> faces and a stepwise increase of the number

of shells. Less defined structures have also been proposed, such as

amorphous, molten or quasi-molten.115,116 The question of the

exact nature of the Au–S bond is also an old one, with the elusive

sulfhydryl proton being lost ‘‘somewhere’’ and the bond being at

the same time strong and labile (the ligands can ‘‘move’’ at the

surface).1,110 We nevertheless believe that in the case of magne-

tism, the main reason for the observed irreproducibility lies

elsewhere, even if these problems certainly contribute to the

variability of the observations.

We have compiled the parameters that define a magnetization

curve using the data of all previously published works for which

such a curve was available. Fig. 13–15 respectively give the

saturation moment MS, coercive field Hc and remnant magneti-

zation Mrem from these results. Notice the log Y-scale for all of

the plots: the relevant parameters vary by orders of magnitude.

Given the fact that most of the syntheses have been performed

following established procedures such as the Brust,97 inverted

Brust117 or Stucky118 methods, and that most characterizations

have been performed with SQUID magnetometers, one may

wonder why, even in a given laboratory, the magnetic measure-

ments are so scattered. We believe that this lack of reproduc-

ibility actually is intrinsic, and that any theory which claims to

explain all of the observations should also take this feature into

account.140

Some peculiar results

Let us mention a few papers which report observations that stand

out from the large corpus of experimental data that we have just

summarized. Why we single out these results will become clear in

the discussion.

Zhu et al. synthesized Au25 gold clusters protected with

phenylethylthiols.111 Cores comprised of so few atoms cannot be

termed nanoparticles and thus the authors speak of ‘‘supera-

toms’’. These superatoms have been found to be paramagnetic

from 5 K to 300 K, with no hysteresis. The original aspect of

Fig. 13 Saturation magnetization of Au nanoparticles taken from

published data and our own samples.

Fig. 14 Coercive field of Au nanoparticles taken from published data

and our own samples.

Fig. 15 Remnant magnetization of Au nanoparticles taken from

published data and our own samples.

This journal is ª The Royal Society of Chemistry 2012 Nanoscale, 2012, 4, 5244–5258 | 5253

Figure 1.6: Extracted from [16]. Saturation magnetization of different samples. The
set of blue dots is the compilation of values from literature. Red dots are
the values obtained by the authors.

romagnetic [40, 41, 44, 45, 48–55] ensembles have been found when gold nanopar-
ticles and their functionalizing agents have been probed with all kinds of available
experimental techniques (these include ESR [34, 48], X-ray techniques [37, 40, 45], nu-
clear magnetic resonance [56, 57], muon spin relaxation [51], neutron scattering [53]
and Mössbauer spectroscopy [52]). As ferromagnetism is present in other ensembles
of non-metallic nanoparticles, some authors have even wondered if ferromagnetism
is just a universal feature of inorganic nanoparticles [58], but agreed that more re-
search on this mechanism is needed.

Since the experimentally-reported magnetic moments per nanoparticle are gener-
ally small, only the magnetization of an ensemble can be measured. Most of the
measurements of the magnetization are performed using superconducting quantum
interference devices (SQUID). Great attention has to be paid in order to avoid spuri-
ous sources of magnetism in the measurements from SQUID magnetometers [59, 60].
Some experiments even needed to be revised, as impurities contributing to the mag-
netic response were initially overlooked [61]. Ideally, one would hope to eventually
measure the magnetization of a single gold nanoparticle; the use of magnetic force
microscopy (MFM), spin-polarized tunnel microscopy (SP-STM) and nanoSQUIDS
have been suggested for this purpose [17, 62].

An extensive review on the subject [16, 17] found no clear dependence in tempera-
ture, capping agents, or sizes and lack of reproducibility. The compilation of several
measurements does not show a clear pattern as illustrated in fig. 1.6. Some exper-
iments can even replicate the three types of magnetism by slightly modifying the
chemical preparation [44]. Other publications have even found ferromagnetic behav-

silver nanoparticles [43]. Other non-magnetic metallic nanoparticles present a similar magnetic
behavior but gold remains the most studied case.
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ior in ensembles of bare gold nanoparticles [63].10 A dependence of the magnetic
response on the spatial configuration of the nanoparticles in the ensemble has also
been suggested [49].

1.3 THEORETICAL HYPOTHESES AND ORBITAL

MAGNETISM

Several phenomenological mechanisms have been put forward to explain the intrigu-
ing magnetic properties of gold nanoparticles. It was proposed that the ferromagnetic
response could result from modified Hund rules [38], from a Fermi-hole effect where
an electron that forms a covalent bond with the functionalizing agent leaving a hole
in the surface which create an spin imbalance and spin polarization [37, 38, 40, 64], or
from giant electron orbits circling around single domains of ligands under spin–orbit
interaction [65].

Experimental claims of superconductive metallic nanoparticles have been a source
of controversy [66]. However, superconducting fluctuations that persist at tempera-
tures which are orders of magnitude above the critical temperature were shown to
result in a large diamagnetic response [67], which is still one to two orders of magni-
tude smaller than the one reported in the experiments of ref. [42].

These above-mentioned interpretations do not seem to explain all of the observed
experimental features and are thus challenged in the literature [16, 17]. Moreover,
the role of the molecules surrounding the nanoparticles in most experiments is un-
clear [16].

The diversity of the experimentally-observed behaviors (see refs. [16, 17]), as well
as the distinct theoretical proposals, calls for a systematic study of the magnetic prop-
erties of gold nanoparticles.

An alternative interpretation of the unusual magnetic properties of ensembles of
gold nanoparticles suggests that they arise from the orbital component of the elec-
tron wave function [42, 55]. The investigation of finite-size corrections, including
experiments on small metal clusters and different theoretical approaches [22, 68–70],
shows that the effect of confining a moderate number of electrons to a finite volume
introduces a new energy scale in the problem (the mean level spacing) and leads to
modifications of the Landau susceptibility.11

Orbital magnetism has been experimentally and theoretically studied in previous
works done in the mesoscopic regime of systems small enough and/or sufficiently
cooled down to exhibit the effects of quantum coherence. In the case of multiply con-
nected geometries, when a magnetic flux pierces a metallic [2, 71] or semiconducting
[72] ring, the orbital response translates into a dissipationless persistent current [73],

10The problem with bare nanoparticles is that it is sometimes unclear whether the nanoparticles ag-
gregate [16].

11The effects on the Pauli spin susceptibility are smaller as the confinement mainly modifies the orbital
wavefunction.
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Figure 1.7: Adapted from [74]. Sketch of a resistive metallic ring, smaller than the
electron coherence length. At fixed magnetic flux ϕ, a persistent current I
is induced around the ring, and it does not get dissipated by the scattering
from impurities in the metal.

as sketched in fig. 1.7 . When the unavoidable disorder present in these systems be-
comes weak enough to result in an elastic mean free path of the order of the sample
size, the transition from a diffusive to a ballistic regime is achieved. The sustained
theoretical interest in the problem of persistent currents during the 1990’s clarified
the role of disorder, electron-electron interactions, and the consequences of a finite
number of electrons determining the thermodynamic functions. The use of the canon-
ical ensemble appeared as unavoidable, [75, 76] and a proper treatment of electron-
electron interactions led to an orbital response of the same order of magnitude as that
of noninteracting systems, in both the diffusive [77–79] and the ballistic cases [80].
Later experiments [81], using a nanomechanical detection of persistent currents in
normal-metal rings, have validated the results of such mean-field approaches.

In the case of singly-connected geometries, the magnetic susceptibility of an en-
semble of two-dimensional quantum dots has been experimentally [82] and theoreti-
cally [83–85] studied. In the ballistic regime, a semiclassical approach made it possi-
ble to obtain the orbital response from the magnetic field dependence of the density
of states induced by the accumulated flux of the classical periodic trajectories. In-
teresting differences were predicted according to the chaotic or integrable nature of
the two-dimensional underlying classical dynamics determined by the shape of the
quantum dot boundaries. The orbital contribution to the magnetic susceptibility in
an integrable dot can be diamagnetic or paramagnetic, and with typical values which
are orders of magnitude larger than the two-dimensional Landau susceptibility [84].
Chaotic dynamics results in somehow smaller values of the susceptibility [86]. When
moving from a single quantum dot to an ensemble of dots, the average magnetic
susceptibility was shown to be paramagnetic, and smaller than the typical values of
the individual case but still much larger than the bulk value [85]. Similarly to the
case of persistent currents, the inclusion of weak disorder [87, 88] or electron-electron
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interactions [89] did not considerably alter the clean, noninteracting results.
Toward the goal of understanding the electronic contribution to the magnetic re-

sponse of metallic nanoparticles, we develop in this thesis a miscroscopic theory, in
order to gauge the contribution of the orbital magnetism proposal to account for the
experimental results of the magnetic response of ensembles of metallic nanoparticles.
In particular, we try to identify the relevant parameters of experimental interest, fo-
cusing on the temperature and size dependences of the magnetization and establish-
ing in which cases a comparison with the experimental data can be attempted. Our
study of orbital magnetism in metallic nanoparticles builds on the above mentioned
work done in the mesoscopic regime. These investigations are described in detail in
chapter 3. One of the key results is that the magnetization of an ensemble of metallic
nanoparticles could present a paragmagnetic response coming from the orbital mag-
netic contribution. Additional ingredients are still neccesary at this stage, in order to
explain other kinds of magnetic responses. In particular, the spin–orbit coupling has
been invoked to be responsible of the large diamagnetism measured in an ensemble
of gold nanorods (as in fig. 1.5b) [42, 90]. The role of spin–orbit coupling towards an
interpretation of a diamagnetic behaviour motivates the work presented in chapter 4
and the introduction of some basic concepts follows in the next section.

1.4 EFFECTS OF THE SPIN–ORBIT COUPLING IN

CONFINED ELECTRON SYSTEMS

The spin-orbit coupling (SOC) is a relativistic effect having a decisive role in certain
electronic properties of unconfined and confined condensed matter systems.

In its standard form, the spin–orbit (so) Hamiltonian reads

H(so) =
eh̄

4m2c2σ · [E(r)× p] , (1.6)

where h̄ is Planck’s reduced constant, c is the speed of light, r is the position vector,
and σ = σxêx + σyêy + σzêz is the vector of Pauli matrices,12 such that the spin angular
momentum operator writes S = h̄σ/2. The spin–orbit coupling yields a contribution

12The three Pauli matrices are defined as

σx =

[
0 1
1 0

]
, (1.7a)

σy =

[
0 −i
i 0

]
, (1.7b)

and

σz =

[
1 0
0 −1

]
. (1.7c)
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to the fine-structure of atomic spectra which is of the same order than those aris-
ing from other weakly-relativistic corrections, namely the kinetic energy and Darwin
terms [91], that will be introduced in chapter 2.

At the fundamental level, the spin–orbit coupling is important because it alters the
symmetry properties of the electronic Hamiltonian. A celebrated example of spin-
orbit influence on the electronic dynamics is the departure from weak localization to
anti-weak localization observed in the electronic transport through metallic films [92]
or ballistic quantum dots at a semiconductor heterojunction [93, 94]. In ferromagnetic
materials the spin–orbit coupling underlines the phenomena of magnetic anisotropy
and the anomalous Hall effect [95]. The domain of spintronics addresses numerous
cases where the spin–orbit coupling influences spin dynamics and spin relaxation
[96–98].

In the domain of nanosctructures, the tunneling resonances of disordered metal
nanoparticles and the magnetic response of an ensemble of metallic nanoparticles are
two examples of physical properties depending on the level statistics of a confined
system, and thus on the spin–orbit coupling.

In the first case, the extracted g-factor of the discrete energy levels was found [99,
100] to be below the free-electron value of g0 = 2. Such a reduction could be explained
by the fact that the energy eigenstates in the presence of spin–orbit coupling, not
being purely spin up or spin down, respond more weakly to an applied magnetic
field than pure spin states [101, 102]. The statistical distribution of the g-factors has
been obtained from random matrix theory, using the spin-orbit scattering rate as a
phenomenological parameter in order to describe the transition between statistical
ensembles [103, 104].

In the second case, the zero-field susceptibility averaged over a nanoparticle en-
semble is determined [75, 76] by the magnetic field dependence of the variance in the
number of energy levels below the chemical potential. Therefore, in the disordered
or chaotic regimes, the ZFS depends on the transition between statistical ensembles
driven by the influence of the spin–orbit coupling.

In the previously presented cases (the tunneling resonances of disordered metal
nanoparticles and the magnetic response of an ensemble of metallic nanoparticles) the
strength of the spin–orbit coupling is a key parameter that needs to be determined by
microscopic theories. Towards this goal, the main source of spin–orbit coupling must
be identified. The genesis of the spin–orbit coupling for the conduction electrons of a
metallic nanoparticle lies in the existence of an inhomogeneous electrostatic potential,
which may have an intrinsic origin (the host ionic lattice) or an extrinsic origin (im-
purities or the confining potential). Since gold is a heavy atom, spin–orbit coupling
plays an important role in its band structure [105], but the effect for the conduction
electrons is mainly seen by the Bloch part of the wave function, while the smooth part
remains unaffected. This observation is consistent with the g-factor gAu = 2.1 mea-
sured by electron spin resonance in macroscopic gold samples [106]. Impurities have
been invoked to be responsible for the spin–orbit coupling of Ag nanoparticles inten-
tionally doped with Au [99], but they are expected to play a lesser role in the ballistic
nanoparticles where the magnetic susceptibility has been measured. In this last setup,
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the electronic confinement remains as the chief source of spin–orbit coupling. The ef-
fect of this latter mechanism in the ZFS is the goal of chapter 4, where we analyze
model systems of noninteracting electrons with two different kinds of confinement,
making the link with experimentally relevant cases of metallic nanoparticles.

1.5 OUTLINE

We close this introduction with a brief summary of the remaining chapters.
In chapter 2, we discuss the theoretical formalism that allows us to carry out the

analytical and semi-analytical calculations. In this chapter we introduce key aspects
of the non-relativistic and weakly relativistic Hamiltonians, as well as the thermody-
namical framework. Semiclassical treatment of the spherical confinement and quan-
tum perturbation theory are also included there.

In chapter 3 we tackle the orbital magnetic response of single and ensembles of
metallic nanoparticles employing semiclassical techniques. The grand canonical as
well as the canonical contributions to the magnetic response are treated in this chap-
ter. The magnetic response of ensembles of non-interacting nanoparticles is obtained
under consideration of a smooth size distribution, and the limit of low tempera-
tures/small sizes is discussed. We contrast and discuss the agreement of our ap-
proach with the observed magnetization of ensembles of golds nanoparticles pre-
sented in fig.1.3b and exhibiting a large paramagnetic response.

In chapter 4, we concentrate our theoretical study on the role of spin–orbit cou-
pling (SOC) in the presence of confinement in order to derive its contribution to the
magnetic response of single spherical nanoparticles. We gauge the SOC contribution
against the corrections generated other weakly relativistic effects. Based on a pertur-
bative treatment of the magnetic field we recover semi-analytical and semiclassical
expressions that allows us to compare the different contributions. We also discuss in
this chapter the case of half-sphere-shaped nanoparticles and the role of the reduc-
tion of spatial symmetry of the potential. In the case of the half-sphere we develop a
numerical treatment.

Finally, we summarize our results and discuss the perspectives of this thesis in
chapter 5. Extended calculations are presented in detail in appendices A to J.
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FORMALISM 2

With the motivation for our work presented in chapter 1, we now discuss the theo-
retical tools to describe the confinement of electrons in a nanoparticle and the ther-
modynamic formalism that will allow us to describe the magnetic response of finite
systems, together with our approach to include the weakly relativistic effect. This
chapter starts with a brief discussion of the basic assumptions made in this thesis and
with a description of our nanoparticle modeling in sec. 2.1. Specific details of the
considered spherical confinement are discussed in section 2.2, which will be the basis
for our quantum and semiclassical approaches. In section 2.3 we discuss the quan-
tum perturbation theory and the semiclassical expansion of the free energy needed
to obtain the magnetic response of confined systems. We end this chapter with sec-
tion 2.4 where we discuss the weakly relativistic limit of Dirac’s equation yielding the
corresponding corrections, including the spin–orbit coupling.

2.1 NANOPARTICLE MODELING

To model gold nanoparticles, we will mainly consider spherical nanoparticles with
radius a between a few nanometers and a few tens of nanometers.1

In order to take into account the effect of the ionic background, we use the jellium
approximation [107], where electron-electron interactions are studied at a mean-field
level. The resulting self-consistent confining potential is approximated by an electric
static potential well with hard walls, thus neglecting the smoothness at the edges
and the effects of the spill-out, describing the nonzero probability to find an electron
density outside the nanoparticle.

We will describe the spin-degenerate s band and ignore the specificities of the elec-
tronic structure of noble metals. Indeed, the band structure of bulk gold indicates
that the valence electrons can be treated as conduction electrons with a parabolic dis-
persion relation [105] with an effective mass which is close to the bare electron mass.
Within such an approximation, we choose for our discussion the parameters corre-
sponding to gold nanoparticles, as this case has covered most of the experimental
effort. However, most of our results are suited for noble and alkaline metals.

It has been suggested that the ligands that are attached to the nanoparticles in most
experiments may play a role in the magnetic response for specific cases [37, 40, 44,
46]. However, for certain protective agents [16, 17] it has been argued that the ligands

1In chapter 4 we also discuss the case of half-spherical nanoparticles.
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Nanoparticles were dispersed by sonication on a Cu
TEM grid and observed by transmission electron micros-
copy (TEM) in a high resolution Philips CM 200 trans-
mission electron microscope at an acceleration voltage of
200 kV, and high-angle annular dark-field scanning trans-
mission electron microscopy (HAADF-STEM) in a probe
corrected FEI Titan operated at 300 kV. These experiments
show the existence of three types of particles [Figs. 1(a)
to 1(c)]: crystalline nanoparticles with average diameters
in the range 4–5 nm [see Fig. 1(b)], Au clusters with no
crystalline ordering and an average diameter below 2 nm
[Fig. 1(c)], and numerous single Au atoms dispersed on the
grid [see Fig. 1(c)]. Besides, bright-field TEM images were
analyzed to determine the particle distribution at a statis-
tical level [see histogram in Fig. 1(a)] yielding an average
particle size hDi ¼ 2:6ð1Þ nm.

The x-ray absorption experiments were performed at the
ID12 beam line of the European Synchrotron Radiation
Facility. Incoming radiation was monochromatized by a
double-Si(111) crystal with a polarization rate over 95% in
all cases. The detection technique was total fluorescence
yield in backscattering geometry. X-ray absorption near
edge structure (XANES) was measured at the Au L2;3 and
sulphur K edges. The presence of Au-S bonds was studied
by comparison of the sulphur K-edge XAS spectra
(1s ! 3p transition) measured on the Au NPs sample
with those of a Au-free S-layer sample. For reference,
the L-cysteine was also measured. The sample supporting
the Au NPs shows a distinct line on the sulphur XANES at
E ¼ 2476:1 eV, which is absent from spectra recorded on
the Au-free sample (see peak 4 in Fig. 2). This extra line
has been associated with the presence of S-Au bonds
[16,17].

To obtain a quantitative determination of the average
number of holes in the Au 5d band, nh, the contribution

from transitions to the continuum has to be subtracted from
the experimental Au L2;3 XAS intensity. This subtraction
allows us to obtain the white line integrated intensities, IL2
and IL3 and its sum r$ ¼ IL2 þ IL3, which is the relevant
parameter.
Since the intensities of the white lines are very small,

instead of subtracting an analytical step function, as it is
customary in simpler cases, the Au foil XANES white line
is taken as reference [Fig. 3(a)]. It is observed that the
Fermi energy of the Au NPs shifts by !E0 & 1 eV with
respect to the bulk value. The area differences for Au
spectra have been integrated between E' E0 ¼ '25 eV,
where E0 is the energy at the inflection point of the XAS
peak low-energy tail, and E' E0 ¼ 25 eV, where the
white lines of the Au foil and S-layer Au NP coalesce.
Once the r$ ¼ 1:14ð8Þ eV area has been determined, the
number of holes can be calculated as nh ¼ nAu-foilh þ!nh.
Here, nAu-foilh ¼ 0:617 holes [18,19] and !nh ¼ r$=C ¼
0:152ð8Þ, with C ¼ 7:845 holes=eV determined from the
scaling factor deduced experimentally for a Au4Mn alloy
[19]. It then follows that nh ¼ 0:769ð8Þ holes. The com-
parison with the bulk value indicates that, on average, there
is a noticeable transfer of electrons from the Au 5d band
towards the atoms surrounding the Au NP.
The XMCD signal was obtained by the difference of two

XANES spectra, recorded with opposite helicities at H ¼
(170 kOe parallel to the beam direction. Figure 3(b)
shows an XMCD spectrum measured on the Au:S-layer
NP samples at the Au L2;3 edges, for T ¼ 2:7 K and
H ¼ 170 kOe. The dominant signal corresponds to
2p ! 5d transitions since the contributions due to the
dipolar (2p ! 6s) and quadrupolar (2p ! 6p) are negli-
gible. Therefore, the XMCD yields information on the
magnetic moment per Au atom arising, almost exclusively,
from the 5d states [19]. Sum rules [20] allow us to obtain
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FIG. 1 (color online). HAADF-STEM images of Au NPs dis-
persed on a TEM Cu grid after sonication. (a) Low magnification
image of Au NPs along with the histogram of the diameter
distribution (inset). The solid line is a log-normal distribution
with hDi ¼ 2:6ð1Þ nm and w ¼ 0:36ð5Þ. (b) Atomic resolution
image of two crystalline NPs. (c) Disordered Au clusters sur-
rounded by Au single atoms.
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FIG. 2 (color online). XANES and XMCD spectra at the
sulphur K edge of the S layer (dotted line), S layer with Au
NPs (solid line), and L-cysteine (dashed line). Peaks 1 and 2 are
due to S-layer cysteine, while peak 3 can be associated with
sulfonyl groups. The S-Au resonance gives rise to a difference in
intensity at 2476.1 eV (peak 4). The XMCD of the S layer
containing Au NPs is shown at the bottom.
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Figure 2.1: Extracted from [46]. TEM micrography of samples of gold nanoparticles
(in white). Panel (a) shows nanoparticles after sonication to disperse the
nanoparticles. Panel (b) shows a close up on two crystalline nanoparticles.
Panel (c) is a close up on a cluster (few atoms), the smaller dots in the
picture are single gold atoms. These pictures are used determine the size
distribution of the nanoparticles, indicated in the inset of panel (a).

do not play a role in the magnetic response produced by itinerant electrons and fer-
romagnetic responses after chemically removing the ligands from the nanoparticles
has also been reported [54, 108]. In this work we will ignore the ligands and their
possible influence on magnetic properties.

In the experiments, the nanoparticles in macroscopic assemblies exhibit a statistical
dispersion of their radius. Transmission electron microscopy is used to perform the
statistics from an extracted portion of the synthesized gold nanoparticles, see fig. 2.1.
The probability density function P(a) is a key element in the characterization of the
magnetic response of the ensemble. Often a log-normal or a Gaussian distribution
are good approximations to the experimentally-observed distribution [37, 46, 48, 49,
55, 109]. However other distributions, like bimodal distributions [40] can be some-
times obtained with the same fabrication procedure. Additionally, shell effects are
known to result in selective abundance spectra [1, 110] and might thus lead to sharp
multiply-peaked size distributions that could be hard to discriminate. Additionally,
the dispersion and the mean radius can take diverse values in experiments. We will
keep the function P(a) non-fixed whiled developing our formalism, and then discuss
its relevance according to different set-ups.

The Zeeman spin splitting under a magnetic field results, in the metallic case, in the
Pauli susceptibility χP = −3χL. Since the mesoscopic corrections to the bulk result
have been shown to be negligible [83], and since the observed effects on the zero-field
susceptibility are typically much larger than |χL|, we will postpone the inclusion of
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this contribution in this section, and discuss it in the presence of spin–orbit coupling
and other weakly relativistic effects in sec. 2.4.

As in experiments, we will consider a range of temperatures that span all values
from cryogenic to room temperature.

Each spherical nanoparticle contains N valence electrons with charge −e < 0 and
mass m. The mean distance between electrons is given by the Wigner-Seitz radius
rs = (3/4πne)1/3 and relates the number of electrons to the nanoparticle radius, such
that a = rsN1/3 [110], where ne is the electronic density.

The nanoparticles are subjected to an external, static, and homogeneous magnetic
induction B = ∇ × A, with A the associated vector potential. Within the jellium
approximation [107], the orbital contribution of the Hamiltonian for the valence elec-
trons in an individual nanoparticle (whose center is located at the coordinate origin)
reads

H =
N

∑
i=1

{
1

2m

[
pi +

e
c

A(ri)
]2

+ U(ri)

}
+

1
2

N

∑
i,j=1
(i ̸=j)

V(ri, rj). (2.1)

Here, c is the speed of light, while ri = xiêx + yiêy + ziêz (written in Cartesian coor-
dinates) and pi are the position and momentum of the ith electron, respectively. In
eq. (2.1), U denotes the single-particle confinement potential, which, for a spherically
symmetric alkaline nanoparticle in vacuum, reads as

U(r) =
Ne2

2a3

(
r2 − 3a2

)
Θ(a − r)− Ne2

r
Θ(r − a), (2.2)

i.e., it is harmonic inside the nanoparticle and Coulombic outside. In eq. (2.2), Θ(z)
denotes the Heaviside step function. Finally, V represents in eq. (2.1) the Coulomb
interaction amongst electrons in the nanoparticle. In the symmetric gauge where
A(r) = 1

2B × r, and choosing the z axis of the coordinate system in the direction of B,
the many-body (mb) Hamiltonian (2.1) can be rewritten in the form

H(mb) =
N

∑
i=1

[
p2

i
2m

+ U(ri) +
ωc

2
Lz,i +

mω2
c

8

(
x2

i + y2
i

)]
+

1
2

N

∑
i,j=1
(i ̸=j)

V(ri, rj), (2.3)

where ωc = eB/mc is the cyclotron frequency, B = B êz, and Lz,i denotes the z com-
ponent of the angular momentum of the i-th electron.

We will treat (2.3) within the mean-field approximation. Density functional the-
ory calculations [111–113], indicate that in the absence of a magnetic field, the self-
consistent mean-field potential can be approximated by

Vmf(r) = V0Θ(r − a), (2.4)

where V0 = EF + W, with EF and W the Fermi energy and the work function of the
considered nanoparticle, respectively. Within these approximations, we are left with
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Figure 2.2: Adapted from [112]. Radial profile of the mean-field potential Vmf(r) for
a sodium nanoparticle (N = 1760), calculated in the framework of local
density approximation (LDA). Here EF (dashed line) indicates the Fermi
energy and a0 ≈ 0.5 Å is the Bohr radius.

the effective mean-field Hamiltonian

H(mf) =
N

∑
i=1

[
p2

i
2m

+ Vmf(ri) +
ωc

2
Lz,i +

mω2
c

8

(
x2

i + y2
i

)]
(2.5)

corresponding to N independent electrons in a spherical billiard threaded by a static
magnetic induction in the z direction. In fig. 2.2, we present an example of a mean-
field confining potential obtained from density functional calculations.

For very small metallic nanoparticles (or clusters) the corrections to the ionic struc-
ture have been approached by the use of pseudopotential perturbation theory as a
multipole expansion [114] and the effect of surface irregularities and the underly-
ing crystalline lattice has been addressed with numerical methods [115, 116]. The
influence of smooth disorder in low-dimensional systems has been addressed with
the help of semiclassical methods [87, 88]. We will leave aside the case of very small
nanoparticles while neglecting the effect of surface and/or bulk disorder, and we will
then not be concerned with such corrections.

One expects that the spherical well shape of the mean-field potential remains a
good approximation in the presence of a magnetic field, provided that h̄ωc,2 the en-
ergy scale set by the magnetic field, is the smallest one of the problem [117, 118].

2Using the bare mass, h̄ωc/B = 0.012µeV/G.
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Since the magnetization is a property of the many-body ground state, it involves
only one-body states up to the vicinity of the Fermi level.3 Thus, states that are higher
in energy do not contribute to the magnetization. We can then safely assume that the
height of the mean-field potential V0 → ∞.

It is important to realize that any realistic magnetic fields that are experimentally
available are such that the classical trajectories of the electrons in the spherical billiard
are very close to straight lines on the scale of the nanoparticle diameter. In other
words, the corresponding cyclotron radius Rc = vF/ωc (vF is the Fermi velocity) is
much larger than the size of the nanoparticles we consider.4

Another effect to take into account when treating metallic nanoparticles is the Lar-
mor diamagnetic response of the core electrons, which are not considered in the ide-
alized model. While the effect of the core electrons on the ZFS is not altered by the
confinement, its contribution must be confronted with the corrections under study in
order to gauge the relevance of the latter.

The axial symmetry of the magnetic-field dependent Hamiltonian around the z-
axis (2.5) greatly facilitates its quantum-mechanical resolution. Furthermore, if we
are only interested in the weak-field magnetic response, a perturbative approach can
be implemented. Such a scheme has been successfully used in order to explain the
magnetic response of very small metal clusters [22, 68, 69]. In our case, it is important
to develop simpler approaches than the full quantum calculation, towards treating
larger cluster sizes, efficiently incorporating the restriction of a fixed number of elec-
trons within the nanoparticles, and calculating the thermodynamic functions at finite
temperature.

2.2 ELECTRONS UNDER SPHERICAL CONFINEMENT

Our nanoparticle modeling within the jellium approximation describes the confine-
ment of non-interacting electrons by a spherical potential. In order to address the
magnetic response of these nanoparticles, we need the magnetic-field dependence of
the energy spectrum. Such a task can be pursued with a quantum perturbative ap-
proach starting with the zero-field eigenstates of the sphere, or with a semiclassical
expansion of the density of states in terms of classical periodic orbits. In this section
we present the two above mentioned paths (sections 2.2.1 and 2.2.2) upon which we
will build the results of this thesis. A brief description of the treatment of the purely
classical spherical billiard can be found in appendix B.2. The treatment of a fully rela-
tivistic spherical confinement under finite step potential has analytical solutions [119]
and has been used to develop quark bag models in high energy physics [120], but it
can lead to some delicate issues in the case of hard walls [121, 122].

3This statement is, strictly speaking, valid for temperatures much smaller than the Fermi tempera-
ture. As we are dealing with metals, this condition is fulfilled in all experimentally-relevant situa-
tions.

4Rc =
7.6
B G · cm for gold. Other relevant parameters for gold are EF = 5.5 eV, the Fermi temperature

TF = 6.4 × 104 K, and the Fermi wave vector kF = 1.2 × 108 cm−1.
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2.2.1 EIGENVALUES AND EIGENSTATES

For a single valence electron, the most general non-relativistic (nr) Hamiltonian is
given by

H(nr) = H(orb) +H(Z) , (2.6)

with
H(Z) = g

µB

h̄
S · B. (2.7)

The two terms in (2.6) represent, respectively, the spin-independent Hamiltonian as-
sociated with the orbital motion (orb), and the Zeeman energy of the spin in the mag-
netic field (Z) where g is the g-factor. The origin of H(Z) will be discussed in section
2.4.2.

The spin-independent term H(orb) comes from by the mean-field Hamiltonian of
eq. (2.5), describing the electron orbital motion, which can be written as

H(orb) = H(0) +H(para) +H(dia) , (2.8)

with

H(0) =
p2

2m
+ Vmf(r) , (2.9a)

H(para) =
ωc

2
Lz, (2.9b)

H(dia) =
mω2

c
8

(
x2 + y2

)
. (2.9c)

Here H(0) is the zero-field Hamiltonian describing a spinless particle in the confining
potential, while the terms H(para) and H(dia) are defined for calculational convenience
and represent paramagnetic and diamagnetic contributions, respectively.

The quantum states of our Hamiltonian (2.6) in the absence of magnetic fields are
described by a product basis with the set {λ} = {n, l, mz, ms} of quantum numbers,
with n > 0 the principal quantum number, l ⩾ 0 the azimuthal quantum number,
mz ∈ [−l, l] the magnetic quantum number, and ms = ±1/2 associated with the spin
component along the z direction. The corresponding wave functions are given by the
two-component spinors

Ψ(0)
n,l,mz,+ 1

2
(r) = ψ

(0)
n,l,mz

(r)
[

1
0

]
, (2.10a)

Ψ(0)
n,l,mz,− 1

2
(r) = ψ

(0)
n,l,mz

(r)
[

0
1

]
, (2.10b)

where the orbital wave function can be written in spherical coordinates (r, θ, φ)5 as

ψ
(0)
n,l,mz

(r) = Rn,l(r)Ymz
l (ϑ) . (2.11)

5Here r =
√

x2 + y2 + z2 ≥ 0 is the radial coordinate, 0 ≤ θ ≤ π is the polar angle defined from the
z-axis and 0 ≤ φ < 2π is the azimuthal angle.
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We note Ymz
l (ϑ) the spherical harmonic of degree l and order mz as a function of the

solid angle ϑ = (θ, φ), while Rn,l(r) stands for the associated radial wave function
and En,l = E0(kn,l a)2 is the corresponding eigenenergy, with E0 = h̄2/2ma2.

For the confining potential (2.4), Rn,l(r) can be expressed in terms of Bessel func-
tions (see appendix G.1). In the limiting case of a hard-wall potential (V0 → ∞),
according to eq. (G.6a), the eigenenergy of the mz and spin-degenerate states charac-
terized by the quantum numbers l and n is

E(0)
n,l = E0 ζ2

n,l , (2.12)

where ζn,l is the nth root of the spherical Bessel function of the first kind jl(ζ), while

Rn,l(r) =

√
2
a3

jl(ζn,l r/a)
|jl+1(ζn,l)|

. (2.13)

The states Ψ(0)
n,l,mz,ms

are no longer eigenstates once the diamagnetic term H(dia) of
eq. (2.9c) is considered under a finite magnetic field. Since this term is quadratic in B,
we will treat H(dia) by first-order perturbation theory in sec. 2.3.2 (see also appendix
C).

2.2.2 SEMICLASSICAL DENSITY OF STATES OF A SPHERICAL

BILLIARD

A detailed knowledge of the quantum spectrum, as in eq. (2.12), is more than what
we need to describe the thermodynamical properties of nanoparticles. It would be
useful to approximate the spectrum to some continuous function. Let us introduce
the single-electron density of states, given by

ϱ(E, B) = ∑
{λ}

δ(E − Eλ(B)), (2.14)

where δ(ζ) is the Dirac delta function, and the sum runs over all eigenenergies Eλ,
labeled by the quantum numbers {λ} of the system.

In the semiclassical approximation, the density of states ϱ from eq (2.14) can be
decomposed in what is called a trace formula [123]

ϱ = ϱ̄ + ϱosc, (2.15a)

where ϱ̄ represents the smooth part (or Weyl term) given by the phase-space volume
enclosed by the constant-E manifold, and the oscillating part (osc) has the form

ϱosc = ∑
Λ

AΛ cos(SΛ(E)/h̄ + λΛ), (2.15b)

as a sum over classical periodic trajectories {Λ}. The index Λ labels isolated periodic
orbits or families of degenerate periodic orbits for the case of chaotic or integrable
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systems, respectively. SΛ is the classical action, the amplitude AΛ admits different
expressions in chaotic or integrable cases, and the Maslov index λΛ counts the num-
ber of conjugate points of the periodic orbit. This decomposition is always possible
in the semiclassical limit h̄ → 0 [88].

For example, the Gutzwiller trace formula [123], applicable in the chaotic case, can
be built from Feynman’s path integral formulation of quantum mechanics by apply-
ing a stationary phase condition.

In order to derive the appropriate semiclassical thermodynamic formalism, we
need to construct ϱosc and its B dependence, for a spherical confining potential. In
the absence of a magnetic field, for such an integrable and highly symmetric set-
up, the trajectories are degenerate and the Gutzwiller formula is not applicable. The
density of states follows from the Wentzel–Kramers–Brillouin (WKB) quantization
condition [124–126] applied to the three-dimensional spherical confining potential.
Alternatively, ϱ can also be obtained from a one-dimensional semiclassical approxi-
mation for the quantum radial problem. It is straightforward to show the equivalence
between these two approaches [111, 125, 126]. In the absence of magnetic field and
neglecting the modulations due to spin, the oscillating part of the density of states is
given by

ϱosc(E, 0) =
4
E0

√
ka
π

∞

∑
ν=1

∞

∑
η=2ν+1

(−1)ν cos φνη sin3/2 φνη√
η

cos
(
θνη(k)

)
, (2.16)

where k =
√

2mE/h̄ is the wavevector. The topological indexes Λ = (ν, η) label
the families of classical periodic orbits lying on the equatorial plane of the sphere,
with ν the number of turns around the center (i.e. the winding number) and η the
number of specular reflections at the boundary (i.e. the number of bounces), the
quantity φνη = πν/η corresponds to half the angle spanned between two consecutive
bounces. The classical trajectories describe regular polygons and star polygons in the
plane of motion, illustrated in fig. 2.3.

The length of the trajectory (ν, η) is given by Lνη = 2ηa sin φνη. We further defined
in eq. (2.16) the k-dependent phase θνη(k) = kLνη + π/4 − 3ηπ/2. The contribution
of the diametral orbits (1,2) as it is of higher order in h̄ (see ref. [117]) and is neglected
in eq. (2.16), since it leads, small fields, to a field-independent contribution to the
density of states that does not contribute to the magnetization. A calculation of eq.
(2.16), using Einstein-Brillouin-Kramers (EBK) quantization, is provided in appendix
B.

In the presence of weak magnetic fields such that the ratio between the radius a
and the cyclotron radius Rc is small, i.e. a/Rc ≪ 1, the oscillating density of states
becomes [117]

ϱosc(E, B) =
4
E0

√
ka
π

∞

∑
ν=1

∞

∑
η=2ν+1

(−1)ν cos φνη sin3/2 φνη√
η

cos
(
θνη(k)

)
M(orb)

νη (B),

(2.17a)
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(2, 5) (2, 7) (3, 7)

2'⌫⌘

Figure 2.3: Example of families of classical periodic orbits on an equatorial plane of
the sphere labeled by the topological indexes (ν, η), with ν the winding
number and η the number of bounces.

where the difference with respect to (2.16) is that each term of the sum carries a field-
dependent orbital modulation factor

M(orb)
νη (B) = j0

(
2πϕνη

ϕ0

)
. (2.17b)

We denote the zeroth spherical Bessel function by j0(ζ) = sin(ζ)/ζ, and the argu-
ment includes the flux ϕνη = BAνη enclosed by the orbit (ν, η) covering the area
Aνη = 1

2 ηa2 sin (2φνη), as well as the flux quantum ϕ0 = hc/e. Note that for the small
induced fields that we encounter, B ≈ H and we will thus treat indistinguishably
both fields hereafter. The modulation factor M(orb)

νη (B) can be obtained by expanding
the classical action and integrating over the angles related to the special group of ro-
tations SO(3) [117]. Appendix B also contains a simplified calculation of eq. (2.17b)
.

The interest of this semiclassical decomposition (2.15) will be more clear when we
discuss the semiclassical thermodynamical approach in sec. 2.3.3.

2.3 THERMODYNAMICAL FORMALISM

We need to make a link between individual electrons and the macroscopic properties
that are observed in experiments. As we are interested in macroscopic observable
properties, we cannot describe individually the dynamics of every electron in a
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nanoparticle, much less the specific dynamics of several electrons in an ensemble of
nanoparticles. The emerging large-scale properties related to N (from tens to 105)
electrons can only be described from a statistical mechanics viewpoint. Here we
present the formulation that relates the quantum spectrum of a single electron to the
thermodynamical quantities of the ensemble.

Electrons are particles that follow Pauli’s exclusion principle (fermions). Two elec-
trons cannot have the same set of quantum numbers. Given a set of quantum num-
bers {λ}, one has to count every possible allowed configuration by taking into ac-
count that electrons are identical and each can occupy a single state. One way to
avoid the complicated combinatorics of finite systems is to work in the grand canon-
ical (GC) ensemble suited for a system under thermal equilibrium and allowed to
exchange particles with the surroundings.

A nanoparticle is instead a finite system, away from the thermodynamic limit and
unable to exchange electrons with a reservoir. To study finite closed systems, it is
more adequate to work in the canonical ensemble with a fixed number of electrons
at thermal equilibrium.The choice of ensemble is a matter of convenience in the ther-
modynamic limit where N,V → ∞ (with N/V fixed), yet the difference between
the ensembles has been shown [76] to be significative at mesoscopic scales, outside
the thermodynamic limit, imposing correction terms to be discussed in the following
subsections.

Consider a system of indepedent electrons inside a volume V at temperature T un-
der a static magnetic field B. We write the thermodynamic grand canonical potential
Ω as

Ω(T, µ, B) = −kBT
∫

ϱ(E, B) ln
(

1 + e−β(E−µ)/kBT
)

dE, (2.18)

where kB is Boltzmann’s constant, β = (kBT)−1, and µ is the chemical potential.
A Legendre transformation allows to obtain the canonical thermodynamic poten-

tial or Helmholtz’ free energy, given by

F(T, N, B) = Ω(T, µ, B) + µN. (2.19)

This relation (2.19) is not straightforward to calculate as µ depends implicitly on
N. One has to calculate the number of electrons from the grand canonical poten-
tial Ω(T, µ′, B), ie. N = ∂Ω

∂µ |T,V at different chemical potentials µ′ (fixed T and volume
V) in order to find the chemical potential that corresponds to the right number of
particles N.

Two approaches to calculate the magnetic response are provided here. Sec. 2.3.1
describes how to calculate the grand canonical contribution from the quantum energy
spectrum and sec. 2.3.2 provides an example exploiting quantum perturbation theory.
Sec. 2.3.3 describes a semiclassical approach to obtain the magnetic response with
finite-size corrections.
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2.3.1 MAGNETIC RESPONSE OF CONFINED SYSTEMS: QUANTUM

APPROACH

As we have an expression for the grand canonical ensemble (2.18) of an electronic
system, we can use it to derive the canonical properties. Analogously to eqs. (1.2)
and (1.3), we can define a grand canonical magnetization and a grand canonical ZFS,
as given by

M(GC) = −
(

∂Ω
∂H

)∣∣∣∣
µ,T

(2.20)

and

χ(GC) =
1
V

∂M
∂H

∣∣∣∣
H=0

= − 1
V

(
∂2Ω
∂H2

)

N,T

∣∣∣∣
H=0

, (2.21)

respectively. For systems with a fixed number of particles, M(GC) → M and χGC →
χ in the thermodynamic limit.

For confined systems under an homogeneous static magnetic field with magnitude
B = |B|, the energies are discrete, and we write the grand canonical potential (2.18)
as the sum

Ω(T, µ, B) = −kBT ∑
{λ}

ln
(

1 + e−β(Eλ−µ)
)

. (2.22)

Similarly, using (2.20) and (1.3), we can write the magnetization and the susceptibility
in terms of the derivatives of the energy, which yields

M(GC) = − ∑
{λ}

fµ(Eλ)
∂Eλ

∂B
, (2.23)

and the ZFS as [22, 68]

χ(GC) = − 1
V ∑

{λ}

[
f ′µ(Eλ)

∂2Eλ

∂2B
+ fµ(Eλ)

(
∂Eλ

∂2B

)2
]∣∣∣∣∣

B=0

. (2.24)

The temperature dependence follows from the Fermi–Dirac, distribution

fµ(E) =
1

exp([E − µ]/kBT) + 1
. (2.25)

Equations (2.23) and (2.24) are only valid when the degeneracy of the energy levels
does not depend on the magnetic field. We recall that in the regime of a small mag-
netic response, the magnitude of the fields H and B can be used indistinctly when
taking the derivatives.

The quantum mechanical calculation of the magnetic response in the grand canon-
ical ensemble is straightforward if the single-particle spectrum {Eλ} is known. How-
ever, in order to obtain the susceptibility χ (1.3) for a fixed number of particles N, it is
necessary to find the right chemical potential µ such that N = ∑{λ} fµ(Eλ). Finding
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µ is then a numerical task that can be difficult to solve, especially if it depends on the
magnetic field B. Another possible inconvenient is that the spectrum gets denser as
the system gets larger, and in this case a treatment based on semiclassical density of
states might be preferable.

As we are interested in the zero-field susceptibility, the exact magnetic field depen-
dence of the spectrum is not necessary. Quantum perturbation theory allows us to
calculate the energy spectrum for small magnetic fields, as we will see in the follow-
ing section.

2.3.2 QUANTUM PERTURBATION THEORY FOR THE ORBITAL

SUSCEPTIBILITY OF SPHERICAL NANOPARTICLES

In order to calculate the orbital contribution to the magnetic susceptibility, let us con-
sider electrons confined in spherical nanoparticles, as described by the Hamiltonian
of eqs. (2.5) and (2.8), for the case of hard walls in the absence of spin effects. Our
Hamiltonian consist of three terms: the unperturbed Hamiltonian H(0) (2.9a) that
does not depend on the magnetic field, H(para) (2.9b) that is linear in the magnetic
field and H(dia) that is quadratic in the magnetic field. We want to use B as our
expansion parameter to perform quantum perturbation theory, keeping all contribu-
tions up to B2. To be consistent with the powers of B, in principle we need to calculate
three B-dependent energy terms:

1. First order expansion of H(dia). As it is already proportional to B2 we just need
to calculate its trace,

E(dia)
nlmz

= ⟨ψ(0)
n,l,mz

|H(dia)|ψ(0)
n,l,mz

⟩, (2.26)

which is proportional to calculating the expectation value of x2 + y2 (see app.
C). This calculation is analogous to the one used to derive Larmor’s diamag-
netism in the atomic response. The states can be degenerate but it is not nec-
essary to apply degenerate perturbation theory for this term as the corrections
are of higher order in B [22]. The off-diagonal matrix elements of H(dia) can be
obtained from the identities given in appendix J.3.

2. The paramagnetic term H(para) is proportional to B. The energies associated
with this term are to be calculated using degenerate perturbation theory by di-
agonalizing the matrix Lz in the degenerate subspaces. The leading order term
in B contributes to the susceptibility with a 1/T dependence, analogous to the
Curie contribution in atomic magnetism. Energy states that are not degenerate
will not contribute to first order in B due to Kramer’s theorem (described in sec.
2.4.3)[22].

3. The second order expansion of H(para), proportional to be B2, also contributes
positively (paramagnetically) to the ZFS and it is often referred as the Van Vleck
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term. J.H. Van Vleck was one of the first to consider perturbation theory to this
order to describe the atomic magnetic response of rare earth salts in which the
paramagnetic response has a negligible Curie contribution [127]. The Van Vleck
term is related to the mixing of the off diagonal elements of Lz. The diamagnetic
and the Van Vleck contributions are usually of the same order, and it can be
shown that both terms are necessary to recover gauge invariance [22].

Carrying out the calculation using the unperturbed orbital basis (2.11), we find only
two B-dependent terms [22, 68], as

E(orb)
nlmz

= E(0)
nl + E(para)

mz + E(dia)
nlmz

, (2.27)

where E(0)
nl was already defined in (2.12). The first-order contribution corresponding

to the paramagnetic term of the Hamiltonian (2.9b) reads

E(para)
mz = h̄ωcmz/2 (2.28)

(in terms of the magnetic quantum number mz), while the second-order correction
(diamagnetic term of eq. (2.9c)) is

E(dia)
nlmz

= mω2
c a2RnlYmz

l /8, (2.29)

with

Rnl =
1
3

[
1 +

2
ζ2

nl

(
l +

3
2

)(
l − 1

2

)]
(2.30)

and

Ymz
l = 1 − 1

2l + 1

[
l2 − m2

z
2l − 1

+
(l + 1)2 − m2

z
2l + 3

]
. (2.31)

The third term of the Van Vleck kind, proportional to B2 does not appear in eq.
(2.27). The reason is related to to the spherical symmetry and the choice of gauge, see
appendix C. In our example, E(para)

mz (2.28) does not depend on n or l, and is exact to
any order in B, as Lz is already diagonal in our choice of basis (2.11). We will later
show that the Van Vleck contribution will be important when we include spin–orbit
coupling in chapter 4.

In fig. 2.4, we compare the perturbative spectrum (2.27) (red lines) for a given span
of magnetic fields with the exact spectrum Eex resulting from a numerical diagonal-
ization of the Hamiltonian (2.5) (black lines). The magnetic fields needed to reach the
regime of quantum Hall effect emerging at the right part of the plot are extremely high
for the nanoparticles under consideration, but might be attainable for larger metallic
nanoparticles or for semiconducting structures. The agreement between the pertur-
bative and exact spectrum is very good up to magnetic fields corresponding to the
(reduced) flux ϕ/ϕ0 ≃ 5, with ϕ(B) = πa2B (compare the solid red and black lines),



28 Model and theoretical formalism

0 5 10 15 20 25
0

20

40

60

80

100

120

140

φ/φ0

E
n
lm

z
/E

0
,

E
ex
/E

0

Figure 2.4: Black lines: exact spectrum Eex of the mean-field Hamiltonian (2.5) (scaled
by E0 = h̄2/2ma2) of a sphere as a function of the magnetic flux ϕ = πa2B
in units of the flux quantum. Red lines: perturbative spectrum E(orb)

nlmz
from

eq. (2.27), showing the perturbative regime (0 < ϕ/ϕ0 ≲ 5, solid red lines)
and the region where perturbation theory starts to depart from the exact
result (5 ≲ ϕ/ϕ0 ≲ 10, dotted red lines).
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while for larger fields, the perturbative energy levels (shown as dotted red lines) de-
part from the exact result. For the magnetic fields which we consider in the main text,
the quantitative agreement is excellent, and the use of nondegenerate perturbation
theory is appropriate since the perturbation does not break the axial symmetry of the
system.

The grand canonical magnetic moment M(GC) and the corresponding zero-field
susceptibility χ(GC) can be readily obtained from the perturbative spectrum (2.27) via
the expressions (2.23) and (2.24) where we have to account for a factor of 2 due to spin
degeneracy (in the absence of Zeeman interaction and spin–orbit coupling), yielding
[22, 68]

M(orb)

µB
= −2

∞

∑
n=1

∞

∑
l=0

+l

∑
mz=−l

fµ(E(orb)
nlmz

)

[
mz +

(kFa)2h̄ωc

4EF
RnlYmz

l

]
(2.32)

and χ(orb) = χ(para) + χ(dia), where

χ(para)

|χL|
= −3πE0

kFa

∞

∑
l=0

l(l + 1)(2l + 1)
∞

∑
n=1

f ′µ(E(0)
nl ) , (2.33a)

and
χ(dia)

|χL|
= − 3π

kFa

∞

∑
l=0

(2l + 1)
∞

∑
n=1

Rn,l fµ(E(0)
nl ) . (2.33b)

M(orb) and χ(orb) are the grand canonical magnetic moment and susceptibility aris-
ing from the spectrum in eq. (2.27). The intermediate details of the calculation are
presented in appendix C.

Each term of the sum in χ(para) (2.33a) has a Curie-like 1/T dependence, as it is
multiplied by the derivative of the Fermi-Dirac distribution f ′µ(E(0)

n,l ) = − fµ(E(0)
n,l )[1−

fµ(E(0)
n,l )]/kBT.

As we will see in chapter 3, the values of χ(orb) can exceed the values of χL by
several orders of magnitude. The expression (2.33) will later be important in order to
establish a benchmark of the former and validate the use of a semiclassical approach
in the cases where the quantum calculations are too difficult to be implemented, like
that of the nanoparticle magnetization which necessitates to impose the condition of
a constant number of electrons at finite temperature.

Quantum perturbation theory is not the only way to obtain the susceptibility of
our system. As we will see next, a semiclassical thermodynamic formalism allows to
expand the free energy F in terms of Ω in order to account for finite-size corrections.

2.3.3 SEMICLASSICAL THERMODYNAMIC APPROACH

In this section, we introduce a semiclassical formalism, allowing to study the mag-
netic properties of metallic nanoparticles in terms of classical trajectories.
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The difficulty of calculating the magnetic properties of electronic systems remains
to pass from the grand canonical ensemble at fixed µ to the canonical ensemble at
fixed N. One way to perform such a transformation, for confined systems that are
not atomically small, is to use a semiclassical thermodynamical formalism [75–77,
128]. This semiclasssical approach has been used to describe the magnetic response
of two-dimensional nanostructures [84, 88].

Let us define the following integrals defined from the grand-canonical ensemble
(2.18) at zero temperature. First we introduce the number of particles at zero temper-
ature as

N0(E) =
∫ E

0
ϱ(E′)dE′, (2.34a)

and the thermodynamic potential for the grand canonical ensemble at zero tempera-
ture, as

Ω0(E) = −
∫ E

0
N0(E′)dE′. (2.34b)

These quantities (2.34) depend uniquely on the quantum spectrum. At finite tem-
perature we must take a convolution with the derivative of the Fermi-Dirac distri-
bution with respect to the energy to obtain the corresponding quantities, with the
density of particles given by

D(µ) = −
∫ ∞

0
ϱ(E) f ′µ(E)dE, (2.35a)

the number of particles given by

N(µ) = −
∫ ∞

0
N0(E) f ′µ(E)dE, (2.35b)

and the thermodynamical potential as

Ω(µ) = −
∫ ∞

0
Ω0(E) f ′µ(E)dE. (2.35c)

Integrating N (2.35b) by parts gives the usual grand canonical relation for the number
of particles

N(µ) =
∫ ∞

0
ϱ(E) fµ(E)dE. (2.36)

In general we can also decompose the thermodynamical quantities as we did with
the density of states in eqs. (2.15) and (2.16), so that

Nosc
0 (E) =

∫ E

0
ϱosc(E′)dE′ (2.37a)

and

Ωosc
0 (E) = −

∫ E

0
Nosc

0 (E′)dE′, (2.37b)
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which are the oscillatory components of eq.(2.34a) and (2.34b), respectively.
Up to leading order in h̄ the integrals can be performed doing an integration by

parts, using that

∫ E

0
AΛ(E′) cos(SΛ(E′)/h̄ + νΛ)dE′ =

h̄
τΛ(µ)

AΛ(E) sin(SΛ(E)/h̄ + ηΛ),

where τΛ(E) is the period of the classical orbit (see app. B), given by

τΛ(E) =
∂SΛ

∂E
. (2.38)

This implies the following relations:

Nosc
0 (E) = ∑

Λ
N0,Λ(E) ; N0,Λ(E) = − h̄

τΛ(µ)
Shift(ϱΛ) (2.39)

and

Ωosc
0 (E) = ∑

Λ
Ω0,Λ(E) ; Ω0,Λ(E) =

[
h̄

τΛ(µ)

]2

Shift(ϱΛ). (2.40)

Here, the density of states has been decomposed as ϱosc = ∑Λ ϱΛ and the function
Shift(x) adds a phase of π/2 to a trigonometric function: Shift[cos(x + φ)] = cos(x +
φ + π/2) = sin(x + φ). The quantities Dosc, Nosc and Ωosc are obtained again by
convolution of ϱosc, nosc and Ωosc

0 , respectively, along with the derivatives of the the
Fermi-Dirac distribution close to µ. To first order in h̄ and τΛ(µ) ≫ h̄β, the Fermi-
Dirac distribution translates into a thermal factor6

R(τΛ(µ)/τT) =
τΛ(µ)/τT

sinh(τΛ(µ)/τT)
. (2.41)

For low temperatures, R(ζ) is a quadratic polynomial similar to the Sommerfeld ex-
pansion for ballistic systems [88]. In the opposite limit R decays exponentially for
high T or when the period is longer than a certain threshold i.e. τΛ ≫ τT, given by

τT =
h̄β

π
. (2.42)

In the case of metallic billiard-like systems, the ratio τΛ/τ0 can be replaced with
the ratio of the orbit lengths LΛ/LT, where LΛ = vFτΛ (vF is the Fermi speed) is the
length of the trajectory and LT = τTvF the thermal length. In this way the thermal
factor R(LΛ/LT) exponentially suppresses the zero-temperature contribution of each
family of trajectories with length LΛ ≫ LT [88].

6The integral R(πx) =
∫ ∞
−∞

ey

(ey+1)2 eixydy is recurrent when using integration by parts of the Fermi-
Dirac distribution multiplied by an oscillating function [24].
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The oscillating parts of the thermodynamic quantities in the grand canonical en-
semble are given by the following expressions

Dosc(µ) = ∑
λ

DΛ(µ) ; DΛ(µ) = ϱΛ(µ)R(LΛ/LT), (2.43a)

Nosc(µ) = ∑
Λ

NΛ(µ) ; NΛ(µ) = − h̄
τΛ(µ)

Shift(ϱΛ(µ))R(LΛ/LT), (2.43b)

and

Ωosc(µ) = ∑
Λ

ΩΛ(µ) ; ΩΛ(µ) =

(
h̄

τΛ(µ)

)2

ϱΛ(µ)R(LΛ/LT). (2.43c)

The main result is that the oscillatory part of all the thermodynamic quantities are
given by the oscillating term of the density of states (2.15).

In order to make a systematic transition to the canonical ensemble (CE) at fixed N,
we use these oscillating quantities (2.43) related the grand canonical ensemble. Let
us start by remarking the semiclassical aspect: the decomposition of the density of
states eq. (2.15) gives us an ϱosc that is of the same order in h̄ as ϱ̄ due to the infinite
sum. Nevertheless the temperature damping R introduces a cutoff to Dosc making it
one order in h̄ lower compared to its smooth part D̄, hence Dosc/D̄ can be used as an
expansion parameter for the free energy F (2.19) [85].

Let us call N = N(µ) = N̄(µ̄) with µ̄ the number of particles and the mean chemical
potential in the CE, respectively. We can use the relation ∂N

∂µ = D and we can expand
around Dosc/D̄ to obtain the variance in the chemical potential µ = µ̄ + ∆µ, so that

−D̄(µ̄)∆µ = Nosc(µ̄), (2.44)

where ∆µ is illustrated in fig. 2.5.
Consequently, the thermodynamic relation (2.19) between the CE and GC poten-

tials can now be expanded about µ + ∆µ and µ using (2.44), which yields

F(N) ≈ µ̄N + ∆µN + Ω̄(µ̄) + Ωosc(µ̄)− N(µ̄)∆µ − 1
2

D(µ̄)(∆µ)2, (2.45)

were we have used the usual thermodynamical properties of the GC ensemble,
∂Ω
∂µ = −N. Simplifying the expansion of F (2.45) using the expression for Nosc(µ̄)

(2.44), we can determine each order of correction from the powers of ∆µ.
If we gather the first order of the expansion, we find that the free energy can be writ-
ten as

F(N) ≃ F0 + ∆F(1) + ∆F(2), (2.46a)

where
F0 = Ω0(µ̄) + µ̄N, (2.46b)
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Figure 2.5: Schematic illustration of the semiclassical formalism approach in 3 dimen-
sions. The density of particles D(E) is plotted with a continuous line as a
function of E. The density of states can be approximated to D̄(E) ∝ E1/2

(dashed line). The number of particles N is included in the shaded area
and equal to the area under the shaded line up to µ̄.

∆F(1) = Ωosc(µ̄), (2.46c)

and

∆F(2) = − (Nosc(µ̄))2

D̄(µ̄)
=

1
2ϱ0(µ̄)

[∫ ∞

0
dE ϱosc(E) fµ̄(E)

]2

. (2.46d)

We have used ϱ̄ = ϱ0(E) as the density of states of the bulk in (3-dimensions) given
by

ϱ0(E) =
2
√

E
3πE3/2

0

, (2.47)

accounting for the spin degeneracy.
In the semiclassical regime, the magnetic response calculated for F0 + ∆F(1) is

equivalent to the one that can be calculated from Ω(µ) in the GC ensemble (2.20).
Taking the derivative with respect to B while keeping N constant is equivalent to
leaving the chemical potential constant, at this order of the approximation. The term
∆F(2) (2.46d) is the interesting factor as it corresponds to the first canonical correction
to the grand canonical ensemble.

It is important to indicate that the bulk term F(0) (2.46b) has an intrinsic magnetic
field dependence and thus still contributes to the magnetic susceptibility, yielding χL
(see appendix A.2).

The formalism presented in this subsection is the framework that will allow us to
calculate the magnetic response of ensembles of metallic nanoparticles in chapter 3.
As explained in sec. 2.3.1, to calculate F from the quantum approach it is necessary to
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use numerical calculations [22, 68]. The sizes of the metallic nanoparticles in consid-
eration are large enough to consider a semiclassical development, which will allow
us to keep the analytic approach and better understand the magnetic response theo-
retically. We will come back to the quantum approach of sec. 2.3.2 when discussing
the weakly relativistic corrections.

2.4 WEAKLY RELATIVISTIC EFFECTS

We close this chapter with a discussion on the weakly relativistic effects that will be
included in the treatment of the magnetic response to be developed in chapter 4.

Relativistic corrections to the magnetic response are usually discussed in astro-
physics [129–131], as very energetic electrons found in white dwarfs and neutron
stars are subjected to the influence of large magnetic fields. Even if the energy and
magnetic field scales are completely different than in our case, it is nevertheless inter-
esting to consider the physical analogies between the two set-ups.

The relativistic version of Landau’s susceptibility can be obtained from Dirac equa-
tion in the absence of fields (see sec 2.4.1). At the weakly relativistic limit where
vF ≪ c, the zero-field susceptibility reads [132]

χ
(wr)
b =

[
2 − 1

3

(vF

c

)2
]

χL, (2.48)

generalizing Landau and Pauli susceptibilities to the case of a relativistic electron gas
at low energies. The quantum mechanical calculation that leads to eq. (2.48) can be
found in appendix A.3.

In normal metals, the relativistic effects can have some influence on the melting
point and optical properties [133]. The color of gold is attributed to relativistic cor-
rections, usually related to the spin–orbit effects of electrons in the d orbitals [133].
However, the weakly-relativistic correction to the ZFS in metals is negligible with re-
spect to the non-relativistic bulk ZFS χ

(nr)
b . In chapter 3, we will show the dramatic

increase of the ZFS with respect to χL induced by the electronic confinement in the
nonrelativistic case. One might ask if a similar effect occurs for the weakly-relativistic
susceptibility, and in particular for the contribution arising from the spin–orbit cou-
pling. We will develop these corrections in chapter 4.

The section 2.4.1 below discusses the Foldy-Wouthuysen transformation that al-
lows to recover the non-relativistic and weakly relativistic corrections of a free parti-
cle from the Dirac equation. The same procedure is later used in sec. (2.4.2) to pro-
vide some insight into the weakly-relativistic corrections that appear under magnetic
fields and quantum confinement. Lastly, sec. 2.4.3 discusses two important theorems,
Wigner–Eckart and Kramer’s theorems, related to the spin–orbit coupling.
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2.4.1 FOLDY-WOUTHUYSEN TRANSFORMATION AND FREE DIRAC

ELECTRONS

To derive the spin–orbit coupling properly and systematically for a general system, it
is necessary to start from a fully relativistic quantum description. In order to describe
electrons, we need Dirac equation, i.e.

H(Dirac)
(

Ψ0
℧0

)
= E

(
Ψ0
℧0

)
, (2.49a)

which describes the dynamics of relativistic fermions with spin-1
2 , with

H(Dirac) = α · pc + γ0mc2, (2.49b)

where Ψ0 and ℧0 are 2-entry spinor wavefunctions, E is the energy, and α and γ0 are
defined as7

α =

(
0 σ
σ 0

)
(2.50a)

and

γ0 =

(
12 0
0 −12

)
, (2.50b)

where 12 is the 2 × 2 identity matrix.
Dirac’s equation can be sometimes inconvenient at low energies, particularly as

it acts on the bispinor (Ψ0,℧0) that describes a coupled system of a particle and
its own antiparticle. As we are interested in the weakly relativistic limit, we can
avoid this inconvenience by considering the approach developed by L.L. Foldy and
S.A. Wouthuysen [134], which consist in a canonical transformation which allows
to recover the single particle description. The procedure consists in finding a uni-
tary operator U such that the change of basis (Ψ,℧) = U (Ψ0,℧0) produces a new
H(FW) = UHU † that decouples into independent equations for each of the two
spinors components.

The unitary operator for U (Dirac) is well known and is given by

U (Dirac) = exp
(

γ0
α · p
|p| θ(Dirac)

)
= cos θ(Dirac) + γ0

α · p
|p| sin θ(Dirac), (2.51a)

where

tan(2θ(Dirac)) =
|p|
2m

, (2.51b)

which leads to

H(Dirac−FW) = U (Dirac)H(Dirac)(U (Dirac))† = γ0

√
m2c4 + p2c2. (2.52)

7Arrays between square brackets [
. . .] represent tensors and statevectors for two-level systems

(spinors). Arrays in between parentheses (
. . .) represent higher dimensional arrays (like the 4-

entry bi-spinors of the Dirac Hamiltonian).
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Thus, after a Foldy-Wouthuysen transformation we find a new Hamiltonian (2.52)
for (Ψ,℧), where Ψ is independent of ℧ and viceversa. The positive energies can be
read directly from (2.52) and represent the energy of a free relativistic particle E =√

p2c2 + m2c4 which recovers the classical energies of a free particle at the classical
limit of low speeds. Thus for |p| ≪ mc, we recover

p2

2m
Ψ = − h̄

2m
∇2Ψ = EΨ (2.53)

which is just the time-independent Schrödinger equation (in the absence of a poten-
tial) for a spin-1

2 fermion.
The next order correction is the weakly relativistic correction of the kinetic energy

for a free particle given by

H(k−free) = − p4

8m3c2 . (2.54)

This kinetic energy correction (2.54) is a key ingredient for the fine structure of hy-
drogen and in general is of the same order of correction as the spin-orbit coupling.
In chapter 4 we show that the relativistic corrections to the kinetic energy are fun-
damental to recover the weakly relativistic response of the bulk, but first we need to
introduce the effect of electric and magnetic fields.

2.4.2 WEAKLY RELATIVISTIC LIMIT IN THE PRESENCE OF

MAGNETIC FIELDS AND CONFINEMENT

For a single electron in the presence of time-independent external electromagnetic
fields,8 one can recover the equations that include the electromagnetic interaction by
means of a minimal coupling substitution p → p + e

cA(r) and the addition of an
electric potential ϕe(r), which provides the Hamiltonian

H(EM−Dirac) = α ·
[
p +

e
c

A(r)
]

c + γ0mc2 − eϕe(r), (2.55)

where A(r) is the magnetic vector potential and ϕe(r) is the electrostatic potential, that
define the magnetic field B(r) = ∇× A(r) and the electric field E(r) = −∇ϕe(r). We
will be interested in the effect of A(r) as it is responsible for the magnetic effects but
ϕe(r) and is necessary as it defines our confining potential, cf. discussion of sec. 2.1.

For our model we need to consider both A(r) and ϕe(r) as in chapter 4. For peda-
gogical reasons, let us discuss first only two simpler cases: (1) presence of magnetic
fields and no confinement ϕe(r) = 0 and (2) presence of confinement and no magnetic
field .

For the case of a single electron that is subject to magnetic fields only, the Foldy-
Wouthuysen transformation can be carried out exactly. The result follows similarly to

8For the whole study, we will consider only static fields. Many of the equations presented here are
generalizable for time-dependent fields.
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the free Dirac electron of the previous section 2.4.1. When ϕe(r) = 0, the Hamiltonian
can be completely decoupled and is analogous to (2.52), with the replacement p2 →
{σ · [p + eA(r)/c]}2. More details can be found in appendix E. In the classical limit
the resulting equation is

H(nr)Ψ = EΨ, (2.56)

which is known as Pauli’s equation (in the absence of a potential). The Hamiltonian
H(nr) is the one from eq. (2.6) which includes the Zeeman interaction of the form

H(Z) =
eh̄

2mc
σ · B(r), (2.57)

which is equivalent to eq. (2.7) with g = g0 = 2.9 Experimentally, the g-factor of a
free electron is 2.00231304386 [136]. The correction with respect to g0 comes from the
polarization of the vacuum and can be calculated with high precision using quantum
electrodynamics (QED). This polarization of the vacuum can also shift slightly the
energies of atomic orbitals, an effect known as the Lamb shift, with energy corrections
of an order of magnitude smaller than those from the weakly relativistic regime [137].

Electrons in metals have are described using effective g-factors, which are depen-
dent on the specifics of the band structure, but the numeric values remain close to
the bare electron g-factor. For the purposes of this document, we will neglect these
corrections, and we will set g = 2 for the rest of this document.

For the case where ϕe(r) ̸= 0, there is in general no exact expression for the de-
coupled system. However, the unitary transformation of the Hamiltonian (2.55) can
be expanded in powers of |p|/mc2 as a series of uncoupled terms using Baker—
Campbell-–Hausdorff formula.10 This expansion allows to read directly the non-
relativistic Hamiltonian and all the relativistic corrections to any desired order. For
the weakly-relativistic limit, only the first order correction in |p|/mc is kept and the
Hamiltonian reads

H(wr) = H(nr) + ∆H, (2.59)

where the non-relativistic Hamiltonian H(nr) is the same from eq. (2.6).
For the case where ϕe(r) ̸= 0 and A(r) = 0, the weakly-relativistic correction in

(2.59) has four ingredients

∆H|A(r)=0 = H(k−free) +H(so) +H(D) +H(r). (2.60)

H(k−free) is the correction to the relativistic kinetic energy as seen previously in eq.
(2.54), H(so) is the spin–orbit coupling (1.6) defined at the beginning of this chapter

9While here the factor of 2 was found using a relativistic quantum equation, the electron g-factor and
its spin are not usually considered as a relativistic effect. It can be shown that linearizing the wave
equation for the free particle recovers the same result in non-relativistic quantum mechanics [135].

10For two operators O1 and O2, the Baker—Campbell–Hausdorff formula reads

eO1O2eO1 = O2 + [O1,O2] +
1
2 [O1, [O1,O2]] + · · · (2.58)
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and H(D) stands for the Darwin term, i.e.

H(D) =
eh̄2

8m2c2∇ · E(r), (2.61)

that originates from the zitterbewegung effect related to interference between
particle–antiparticle components described in appendix E. The last term,

H(r) =
ieh̄

8m2c2σ · [∇× E(r)], (2.62)

vanishes for conservative potentials. These expressions become more complicated in
the presence of magnetic fields. The general case, with ϕe(r) ̸= 0 and A(r) ̸= 0 is
treated in more detail in appendix E and will be necessary for chapter 4.

The four elements of eq. (2.60) slightly correct the spectrum of hydrogen. These cor-
rections become important for heavier atoms, as the electrostatic potential becomes
stronger. Free particles and particles under static magnetic fields do not feel these
relativistic effects. Thus, the spin–orbit coupling is relevant for systems in the pres-
ence of confinement. All the terms of (2.60), except for the correction to the kinetic
energy, depend on derivatives of E, so there are only important in the presence of
space-dependent potentials.

As stated before, in the case of metals, the valence electrons can be treated as nearly-
free particles. Here the spin-orbit coupling of form (1.6), can play a role due to the
electrostatic confining potential. The reason why we can disregard much of the com-
plexity and interactions in metals finds its support on Landau’s theory of Fermi liq-
uids [138, 139]. At low temperatures, one can start with a gas of non-interacting
electrons and turn interactions adiabatically to recover a gas of weakly-interacting
quasi-electrons with effective physical parameters (like an interaction-induced effec-
tive mass). The different effects of spin–orbit coupling can be more involved in the
case of semiconductors, where the spin–orbit coupling can take different forms de-
pending on the lattice structure [97, 140].

The spin–orbit coupling (1.6) is thus recovered at the weak relativistic limit, when-
ever a single-particle description is possible. For strong enough potentials, the spin–
orbit coupling could be expected to lead to drastic effects. The narrow confinement
that we have considered (2.4), may boost the contribution of the spin–orbit correction.
The quantitative evaluation of this effect is one of the goals of this work.

2.4.3 CONSERVATION LAWS UNDER THE INFLUENCE OF

SPIN–ORBIT COUPLING

In the presence of spin–orbit coupling, the orbital and spin angular momentums are
individually not conserved. In the absence of magnetic field, the total angular mo-
ment J = S + L is the conserved quantity and it is natural to work the eigenstates of
J2 = |J|2 with eigenvalue h̄2 j(j + 1) and the projection on the z-axix Jz with eigen-
values h̄mj. 11 For electrons, the rule of addition of angular momentum results in

11This substitution is sometimes called a Russel–Saunders or L–S coupling.
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[l]⊗ [1/2] = [l − 1/2, l]⊕ [l + 1/2, l], where the left-hand side is the tensor product
of the orbital angular momentum l ̸= 0 subspace with that of the spin 1/2 and the
right-hand side represents the direct sum of the subspaces with total angular mo-
menta j = l ∓ 1/2 and orbital angular momentum l. For radially symmetric elec-
trostatic potentials the separability between radial and angular coordinates allows to
write the eigenstates of the coupled basis in terms of the spinors [119]

Φ(±)
n,j,mj

(r) = Rn,j±1/2(r)Υ(±)
j,mj

(ϑ) , (2.63)

where we have defined the spinor spherical harmonics

Υ(±)
j,mj

(ϑ) =
1√

2(j ± 1/2) + 1



∓
√

j ± 1/2 ∓ mj + 1/2 Y
mj−1/2
j±1/2 (ϑ)

√
j ± 1/2 ± mj + 1/2 Y

mj+1/2
j±1/2 (ϑ)


 (2.64)

in terms of the usual spherical harmonics Ymz
l introduced in eq. (2.11). The label (±)

corresponds to l = j ± 1/2, and sets the parity (−1)j±1/2 of the state.
As we are interested in calculating the expectation value of different angular mo-

mentum operators Li, Si ; i ∈ {x, y, z}, we introduce the Wigner-Eckart theorem for
angular momentum operators, which reads [141]

J′ =
1

h̄2 j(j + 1)
⟨Φ(±)

n,j,mj
|J′ · J|Φ(±)

n,j,mj
⟩J, (2.65)

where we are interested in the angular momentum operators J′ that are linear combi-
nations of L and S. This theorem (2.65) is only valid to calculate matrix elements in
the same subspace defined by the same [n, j, (±)]. When J′ = L+ 2S, eq. (2.65) allows
us to recover the proportionality constant known as the Landé g-factor [141].

Another important principle is Kramer’s degeneracy theorem [142, 143] related
to the time inversion symmetry. Kramer’s theorem states that for a system with an
odd number of electrons (half-integer total spin), in the absence of external magnetic
fields,12 the spectrum remains at least doubly degenerate (exactly doubly degenerate
for spin-1/2 fermions). Thus the spin–orbit coupling term alone cannot break the
degeneracy of the energy spectrum.

2.5 SUMMARY AND CORRESPONDENCE WITH THE REST

OF THIS WORK

With this chapter we have introduced all the preliminary ingredients necessary for
the two main chapters of this thesis.

12One may think that it does not make any difference if the field is external or not, as under con-
sideration of electromagnetic forces only, time inversion is a symmetry of the physical dynamics.
However an external magnetic field effectively breaks the time inversion symmetry of the local
dynamics, as the sources that create the field are not taken into account in the local Hamiltonian.
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In chapter 3, we will derive the orbital contribution to the magnetic response of
individual and ensembles of metallic nanoparticles using the semiclassic thermody-
namic formalism developed in subsection 2.3.3 up to the first canonical corrections.
For that purpose, we apply the nanoparticle model from sec. 2.1 to describe the elec-
tronic orbital magnetism of the nanoparticles and in subsection 2.2.2 we discussed
the semiclassical density of states for electrons under spherical confinement. In sec-
tion 2.3 we introduced the thermodynamical formalism, including the orbital mag-
netic response of spherical nanoparticles from a quantum perturbative approach in
subsection 2.3.2, which will serve as benchmark for our semiclassical calculations.

In chapter 4, we will be interested in the weakly relativistic contributions, already
introduced in sec. 2.4, to the magnetic response of individual metallic nanoparticles.
Subsections 2.4.1 and 2.4.2 discussed the Foldy–Wouthyusen method to systemat-
ically derive the weakly relativistic corrections, including the spin–orbit coupling.
Subsection 2.4.3 also discussed symmetry considerations related to the spin–orbit
coupling that will be of interest when calculating matrix elements and when deal-
ing with other geometries. Chapter 4 also build on non-relativistic discussions for the
spherical confinement that were presented in section 2.2, as well as the grand canon-
ical formalism to derive the ZFS discussed in subsection 2.3.1, which is the basis of
the quantum perturbative approach.



ORBITAL MAGNETIC RESPONSE OF
ENSEMBLES OF METALLIC

NANOPARTICLES 3
As described in section 1.2, the observed magnetic response of macroscopic en-
sembles of gold nanoparticles is very diverse and many aspects remain still unex-
plained [16, 17]. In this chapter we develop a theoretical model to attempt to predict
the magnetic response of an ensemble of metallic nanoparticles starting from the mi-
croscopic Hamiltonian presented in section 2.1. As the Zeeman contribution (2.7) is
not significantly modified by the confinement, this chapter will only be concerned
with the orbital contribution to the magnetic response.

Based on analytical semiclassical methods, together with numerical calculations,
the mesoscopic approach presented in this chapter allows us to show that the orbital
response of an individual nanoparticle can be exceedingly large as compared to the
bulk one and is either diamagnetic or paramagnetic depending on its size. In contrast,
the orbital susceptibility of a statistically-distributed (in size) ensemble of nanopar-
ticles is always paramagnetic at low magnetic fields in the absence of interactions
between the nanoparticles, provided that the size distribution is smooth and not too
narrow. In particular, we predict that the ensemble averaged zero-field susceptibil-
ity follows a Curie-type law for small nanoparticle sizes and/or low temperature.
We further calculate the field-dependent magnetization of individual as well as en-
sembles of nanoparticles and show that the latter results are in good agreement with
existing experiments measuring a large paramagnetic response.

The chapter is organized as follows: we start by evaluating the free energy of an
individual nanoparticle in sec. 3.1, in order to calculate the grand-canonical compo-
nent of the magnetic response of individual nanoparticles (sec. 3.2) and of ensembles
of noninteracting nanoparticles with a size distribution (sec. 3.3). Section 3.4 deals
with the magnetic response of individual nanoparticles when canonical corrections
are taken into account. In sec. 3.5, we discuss the relevance of our theoretical work
toward the understanding of existing experiments. We conclude the chapter in sec.
3.6. The physical concepts of this chapter are adapted from the results of ref. [144].
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3.1 FREE ENERGY OF ELECTRONS IN A SPHERICAL

BILLIARD

The magnetic susceptibility and the magnetization follow from the free energy of the
canonical ensemble at fixed number of particles N and temperature T [see eqs. (1.2)
and (1.3)]. The semiclassic thermodynamical formalism introduced in sec. 2.3.3 al-
lows us to expand the free energy F = F0 + ∆F(1) + ∆F(2) in terms of corrections
that can be expressed as a function of the grand canonical potential. In turn we also
define M(1) and χ(1) as the magnetic moment and susceptibility obtained from eqs.
(1.2) and (1.3), respectively, by replacing F by ∆F(1). Analogously, M(2) and χ(2) are
obtained from the first canonical correction ∆F(2).

To leading order in kFa ≫ 1, we can replace the density of states of a spherical
billiard under a small magnetic field given in eq. (2.17a) in the expression for the free
energy (2.46c), which yields

∆F(1) = 4EF

√
kFa
π

∞

∑
ν=1

∞

∑
η=2ν+1

(−1)ν cos φνη

η5/2
√

sin φνη
R(Lνη/LT) cos

(
θνη(kF)

)
j0
(
2πϕνη/ϕ0

)
,

(3.1)
where R is the thermal factor (2.41) and ϕνη, Lν,η, ϕνη, θν,η (angle between bounces,
length of the orbit, magnetic flux and action, respectively) are quantities related to
the classical orbits, defined in sec. 2.2.2 and determined by the number of bounces η
and winding number ν, see fig. 2.3.

In a similar fashion, the energy integral of eq. (2.46d) leads to the second-order
correction

∆F(2) = 12EF

[
∞

∑
ν=1

∞

∑
η=2ν+1

(−1)ν cos φνη
√

sin φνη

η3/2

× R(Lνη/LT) sin
(
θνη(kF)

)
j0
(
2πϕνη/ϕ0

)
]2

. (3.2)

In evaluating eqs. (2.46c) and (2.46d), we identified µ0 with the Fermi energy EF,
neglecting the temperature correction to the chemical potential which is of order
(T/TF)

2 ≪ 1.
The canonical correction (3.2) to the free energy is an order

√
kFa lower than the

grand-canonical contribution (3.1). The condition ∆F(2) ≪ |∆F(1)|, on which the
validity of the decomposition (2.46a) is based, then reposes on a more stringent con-
straint than that of the semiclassical approximation (kFa ≫ 1). The fulfillment of the
condition ∆F(2) ≪ |∆F(1)| translates into |χ(2)| ≪ |χ(1)| for sufficiently large kFa, but
the previous inequality might not hold for moderate values of kFa (in the same way
as we may have |∆F(1)| ≪ F0 and |χ(1)| ≫ |χL|). When |χ(2)| ≪ |χ(1)|, the orbital
response of an individual nanoparticle is dominated by the grand-canonical contri-
bution. However, as we will see, in certain cases the latter may become negligible
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once the average over an ensemble of nanoparticles is performed. Thus, eq. (3.2) is
crucial to obtain nonvanishing quantities for the resulting magnetic response of an
ensemble of noninteracting nanoparticles with an important size dispersion (see sec.
3.3).

Using the leading-in-h̄, field-dependent contribution (3.1) to the free energy, the
grand-canonical contribution to the magnetic moment [see eqs. (1.2) and (2.46c)] is
given by the semiclassical expression

M(1)

µB
= − 4√

π
(kFa)5/2 ∑

ν>0
η>2ν

(−1)ν cos2 φνη
√

sin φνη

η3/2

× R(Lνη/LT) cos
(
θνη(kF)

)
j′0
(
2πϕνη/ϕ0

)
. (3.3)

Here, j′0(z) denotes the derivative of j0(z) with respect to z. The corresponding zero-
field susceptibility is [70]

χ(1)

|χL|
= 6

√
π(kFa)3/2 ∑

ν>0
η>2ν

(−1)ν cos3 φνη sin3/2 φνη√
η

R(Lνη/LT) cos
(
θνη(kF)

)
. (3.4)

Similarly, from eq. (3.2) we obtain the semiclassical expressions for the canonical
contribution to the magnetic moment

M(2)

µB
= − 24(kFa)2 ∑

ν>0
η>2ν

∑
ν′>0

η′>2ν′

F ν′η′
νη

η cos φνη sin φνη
R(Lνη/LT)R(Lν′η′/LT)

× sin
(
θνη(kF)

)
sin
(
θν′η′(kF)

)
j′0
(
2πϕνη/ϕ0

)
j0

(
2πϕν′η′/ϕ0

)
(3.5)

and the zero-field susceptibility

χ(2)

|χL|
= 36πkFa ∑

ν>0
η>2ν

∑
ν′>0

η′>2ν′

F ν′η′
νη R(Lνη/LT)R(Lν′η′/LT) sin

(
θνη(kF)

)
sin
(
θν′η′(kF)

)
.

(3.6)

In eqs. (3.5) and (3.6) we have defined

F ν′η′
νη = (−1)ν+ν′η1/2η′−3/2 cos3 φνη cos φν′η′ sin5/2 φνη sin1/2 φν′η′ . (3.7)

In the following sections we will evaluate the previous semiclassical expressions in
different parameter regimes.

Notice that the magnetization and susceptibility in this chapter refer exclusively to
an orbital character, for that reason we do not use the label (orb) employed in other
chapters.
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Figure 3.1: Grand-canonical zero-field susceptibility χ(1), in units of the absolute
value of the Landau susceptibility χL, as a function of the radius a (scaled
with the Fermi wave vector kF). Blue line: semiclassical result from eq.
(3.4). Black line: quantum-mechanical result from eq. (2.33). In the figure,
room temperature (T/TF = 5 × 10−3) is chosen and χ = 0 is indicated by
the dashed gray line.

3.2 GRAND-CANONICAL MAGNETIC RESPONSE

The grand-canonical sums (3.3) and (3.4) over the topological indexes can be readily
evaluated numerically since the thermal factor (2.41) acts as a cutoff for long trajecto-
ries, keeping us away from the typical convergence problems of semiclassical expan-
sions. At the practical level, we perform the sums by only retaining trajectories that
are shorter than 10LT, and since the sum over η converges relatively fast (the sum-
mand decreases as 1/η2 when η ≫ ν), we perform it up to ηmax = 100ν (for a given
ν). We have checked that including trajectories with larger ν and/or η does not lead
to significant changes in the final results.

The zero-field susceptibility (3.4) is shown in fig. 3.1 as a blue solid line as a func-
tion of the size a for a temperature T/TF = 5 × 10−3 that approximately corresponds
to room temperature. As can be seen from the figure, χ(1) oscillates and changes sign
as a function of kFa. Moreover, the magnetic susceptibility can take values that are
much larger in magnitude than the Landau value |χL|. Depending on the nanopar-
ticle size, large paramagnetic or diamagnetic responses can be obtained. The rapidly
oscillating behavior of the zero-field susceptibility as a function of the sphere radius
stems from the dependence of the density of states on the action of the dominant pe-
riodic orbits. A similar behavior has been found in two dimensions [84, 85], and also
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Figure 3.2: Same quantity from eq. (3.4) as in fig. 3.1, in a restricted a interval for
T/TF = 5 × 10−3 (blue line) and T/TF = 5 × 10−4 (violet line). The
quantum-mechanical result (2.33) (black line: T/TF = 5 × 10−3; orange
line: T/TF = 5 × 10−4) and approximate semiclassical result (3.8) for
T/TF = 5 × 10−4 (green line) are shown for comparison purposes.

the prefactor (kFa)3/2 of χ(1) in eq. (3.4) is in line with the two-dimensional case. The
beating pattern present in the susceptibility χ(1) is due to interferences between pe-
riodic trajectories of different length. The overall amplitude of these beatings decays
for the largest sizes due to the thermal factor (2.41) appearing in eq. (3.4), such that
limkFa→∞ χ(1) = 0. Within this limit, one thus recovers the Landau bulk susceptibility
χL for the total orbital susceptibility of the system.

The fact that the result of the semiclassical sum (3.4) with the above explicited ap-
proximations gives a good account of the quantum results can be checked in the pa-
rameter range accessible to both approximations (compare the blue and black lines in
fig. 3.1, which are almost indistinguishable on the scale of the figure, as well as the vi-
olet and orange lines in fig. 3.2). The perturbative quantum calculation (up to second
order in the magnetic field), limited to small clusters and low temperatures, results
from a numerical evaluation over the eigenstates of the unperturbed problem [22, 68]
presented in section 2.3.2 . The equivalence between χ(1) and the result that can be
obtained from the quantum approach of eqs. (2.33) is demonstrated in appendix D.

While the previous agreement is not surprising, given that fig. 3.1 presents results
in the semiclassical limit kFa ≫ 1 for high (room) temperature, fig. 3.2 shows that at
low temperatures (T/TF = 5 × 10−4) the semiclassical sum (3.4) also reproduces the
quantum result (2.33). The paramagnetic peaks, with values that exceed the Landau
susceptibility by orders of magnitude, are observed at the eigenenergies of the un-
perturbed system (kFa = ζn,l), while the negative (diamagnetic) background is given
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by the small quadratic (in magnetic field) contribution represented by the last term
on the right-hand side of eq. (2.33). Although not visible on the scale of fig. 3.2, the
diamagnetic background increases with kFa due to the incorporation of more states
in the sums as the Fermi energy increases. The dependence of the energy levels on
the applied magnetic field, discussed in section 2.3.2 and shown in fig. 2.4, allows
for an understanding of the peak structure in the susceptibility that is found at low
temperatures (see fig. 3.2). The positive curvature of the individual levels yields the
diamagnetic background that becomes stronger when more levels are occupied. The
crossings of levels with different magnetic quantum number at zero applied field
translate in a diverging negative curvature of the total energy and a corresponding
paramagnetic peak when the chemical potential coincides with such a level cross-
ing. Temperature smears out the peaks and limits their height due to admixtures of
contributions from neighboring levels. The oscillations of the susceptibility found at
room temperature as a function of the sphere radius are the remainders of that peak
structure. It is remarkable that a semiclassical expansion like that of eq. (3.4) is able to
reproduce signatures characteristic of individual eigenenergies. We notice, however,
that each energy represents 2(2l + 1) degenerate unperturbed states, with l the angu-
lar momentum quantum number, and that very long trajectories have to be included
in the semiclassical calculation to approach the quantum result of fig. 3.2.

The semiclassical sum (3.4) may be challenging to implement at low temperature,
due to the non-negligible contribution from very long trajectories to χ(1). It is then
useful to further develop the semiclassical expansion (3.4) by an approximate analyt-
ical calculation. Such a calculation, presented in appendix F.1, relies on trading the
thermal factor (2.41) by a Heaviside function that limits the contributing trajectories
to the maximal length Lmax = αLT and performs the ν sum by Poisson summation
rule, followed by a stationary-phase approximation. The cutoff length Lmax is chosen
as that in which the thermal factor (2.41) presents the maximum derivative, yield-
ing α ≃ 1.6. When the thermal factor is replaced by Θ(Lmax − Lνη), such a value
of α yields at low temperature results for χ(1) in excellent agreement with the origi-
nal expression (3.4). The resulting magnetic susceptibility is then given in the limit
kFa T

TF
≪ 1 (keeping kFa ≫ 1) by

χ(1)

|χL|
≃ 3

4(kFa)2

∞

∑
η=3

ℓmax

∑
ℓ=ℓmin
(ℓ odd)

ℓ3

√
1 −

(
ℓ

2kFa

)2

cos (ηSℓ) , (3.8)

where the phase factor Sℓ, which corresponds to the (dimensionless) radial action, is
defined as

Sℓ =
√
(2kFa)2 − ℓ2 − ℓ arccos

(
ℓ

2kFa

)
− 3π

2
. (3.9)

In eq. (3.8), the summation over ℓ (which must be an odd integer) depends on the
value of η. For 3 ⩽ η ⩽ ηc, with ηc = αLT/2a = (α/π)(kFa T

TF
)−1, we have

ℓmin = 1 and ℓmax = ⌊2kFa cos ϑη⌋ with ϑη = π/2η if η is odd and ℓmin =
⌈2kFa sin ϑη⌉ and ℓmax = ⌊2kFa cos ϑη⌋ if η is even. For η > ηc, we have ℓmin =
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eq. (3.3). Black lines: perturbative quantum result from eq. (2.32). In the
figure, T/TF = 5 × 10−3.

⌈2kFa cos
(
arcsin (ηc/η) + ϑη

)
⌉ and ℓmax = ⌊2kFa cos ϑη⌋. Here, ⌊x⌋ and ⌈x⌉ denote

the floor and ceiling functions, respectively.
The sum (3.8) is considerably simpler to implement, as compared with that of eq.

(3.4), and gives rather accurate results for low temperatures and/or small nanopar-
ticle sizes (see the green line in fig. 3.2). For high temperatures, the sharp cutoff
imposed when Lνη > Lmax is a too restrictive approximation that ignores the expo-
nential fall off of the thermal factor (2.41), and the previous agreement deteriorates.
Nevertheless, in this regime the evaluation of eq. (3.4) is again simple, since we only
need to include the contribution of the shortest trajectories with a winding number of
ν = 1 and the appropriate exponential fall off resulting from R(L1η/LT) (results not
shown).

The grand-canonical finite-field magnetization according to the semiclassical ex-
pression (3.3) is presented in fig. 3.3 as a function of the cyclotron frequency ωc ∝ H
(blue lines). The range of h̄ωc/EF corresponds to realistic values of the magnetic field
that are at present experimentally available (for Au, h̄ωc/EF = 10−3 corresponds to
a field of the order of H = 45 × 104 Oe). The different slopes at the origin obtained
for the selected values of a are in line with the rapid oscillations of χ(1) as a function
of size (see fig. 3.1). The diamagnetic or paramagnetic character of the zero-field sus-
ceptibility might change at finite fields due to the possible nonmonotonic behavior of
M(1)(H) and its possible sign inversion for particular values of kFa (see dashed lines
in fig. 3.3). Large values of the magnetic moment (of several hundreds of µB) can be
attained. We further show in fig. 3.3 by black lines the perturbative quantum result
from eq. (2.32). As it is the case for the zero-field susceptibility shown in figs. 3.1 and
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3.2, the semiclassical result gives a very good qualitative account of the quantum one.

3.3 MAGNETIC RESPONSE OF AN ENSEMBLE OF

NONINTERACTING NANOPARTICLES

The experiments yielding unusual magnetism in gold nanoparticles are typically per-
formed on ensembles of nanoparticles [16, 17]. We thus consider in this section the
orbital response of such ensembles, neglecting any possible interparticle interaction.
This approximation should be valid in relatively dilute samples.

For an ensemble of N nanoparticles, the expected value of the zero-field suscepti-
bility is

χens(ā, δa) = χ(1) + χ(2), (3.10)

while the root-mean-square deviation with respect to the previous value is

χrmsd ≃ 1√
N

[(
χ(1)

)2
]1/2

. (3.11)

The averages indicated by a bar are taken with respect to a probability distribution of
sizes P(a). In writing eq. (3.11), we have used the fact that the typical values of χ(1)

are much larger than those of χ(2), which is valid for sufficiently large values of kFa
and T/TF.

The magnetic response of an ensemble of nanoparticles crucially depends on its
size distribution. The large diversity that can be encountered for the latter is at the
origin of the rich range of observed physical behaviors. In order to provide quanti-
tative predictions, we will focus on setups well described by a Gaussian probability
distribution

P(a) =
1√

2πδa
exp

(
− (a − ā)2

2δa2

)
, (3.12)

characterized by the average radius ā of the ensemble and its size dispersion δa.

The rapidly oscillating cosine in eq. (3.4) (see figs. 3.1 and 3.2) results in a χ(1) which
decreases exponentially with kFδa and is thus much smaller than |χL| when the size
dispersion δa ≳ k−1

F ∼ 1 Å. In situations where the dispersion δa is larger than 1 Å, as
is usually the case in experiments [16, 109], χ(1) is therefore negligible. It is thus χ(2)

which yields the dominant contribution to the averaged magnetic susceptibility of the
ensemble. Similar considerations and definitions hold for the magnetic moment per
particle. The identification of χens with the measure on an ensemble of N nanopar-
ticles is statistically sound only for a sufficiently large N such that χrmsd ≪ χens.
There are then two parameters that might result in large variations of the zero-field
susceptibility: the size dispersion δa and the number of nanoparticles N .
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Averaging M(2) and χ(2) [cf. eqs. (3.5) and (3.6)] over the Gaussian distribution
(3.12) (for kFδa ≳ 1), we obtain

Mens(ā, δa)
µB

= − 12(kF ā)2 ∑
ν>0

η>2ν

∑
ν′>0

η′>2ν′

F ν′η′
νη

η cos φνη sin φνη
cos

(
θνη(kF)− θν′η′(kF)

)

× R(Lνη/LT)R(Lν′η′/LT)e
−2[kFδa(η sin φνη−η′ sin φν′η′ )]

2

× j′0
(
2πϕνη/ϕ0

)
j0

(
2πϕν′η′/ϕ0

)
(3.13)

and

χens(ā, δa)
|χL|

= 18πkF ā ∑
ν>0

η>2ν

∑
ν′>0

η′>2ν′

F ν′η′
νη cos

(
θνη(kF)− θν′η′(kF)

)

× R(Lνη/LT)R(Lν′η′/LT)e
−2[kFδa(η sin φνη−η′ sin φν′η′ )]

2
, (3.14)

respectively. In eqs. (3.13) and (3.14), the quantities Lνη and θνη (defined in sec. 2.3.3)

are evaluated for a = ā, and F ν′η′
νη is given in eq. (3.7).

Sums like (3.13) and (3.14), running over four topological indexes (corresponding
to two different families of periodic orbits), are even more challenging to evaluate
than those running over two indexes, as eqs. (3.3) and (3.4), especially at low tem-
peratures, where a large number of classical trajectories has to be considered. The
ensemble-averaged zero-field susceptibility resulting from eq. (3.14) at high (room)
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temperature T/TF = 5 × 10−3 is presented in fig. 3.4 as a function of the average
nanoparticle radius ā, for increasing size dispersions δa. The orbital response of the
nanoparticle ensemble at zero magnetic field is paramagnetic (χens > 0) in all tested
cases. As discussed in the introduction, such is also the case in ensembles of quasi-
two-dimensional semiconductor quantum dots [82–85, 87, 88]. The orbital suscepti-
bility of the ensemble χens can reach large values (in units of |χL|) for not too large
mean radii, but it goes to zero when kF ā ≫ 1. The monotonic decrease of χens with
kF ā obtained for large size dispersions (kFδa ≳ 20 in fig. 3.4) evolves into an oscillating
behavior for smaller size dispersions.

The dependence on magnetic field of the ensemble-averaged magnetic moment per
particle according to eq. (3.13) is presented for various average radii and size disper-
sions in fig. 3.5. The ensemble-averaged magnetic moment per nanoparticle can reach
several tens of µB for room temperature (T/TF = 5 × 10−3). Moreover, the behavior
of Mens as a function of the applied magnetic field in a given interval depends sig-
nificantly on the average size of the ensemble. For the smallest size considered in
fig. 3.5 (kF ā = 20, black lines), the magnetic moment increases monotonically with
the magnetic field for the whole range of the parameter h̄ωc/EF ∝ H considered. For
kF ā = 60 (red lines), Mens becomes a decreasing function of the magnetic field after
a critical value that depends on the size dispersion δa. For larger sizes (kF ā = 100,
blue lines), the previous nonmonotonic behavior appears at a smaller critical field,
and eventually there occurs a sign inversion of Mens for even larger fields. In sec. 3.5
we link these findings with the existing experimental results found in the literature.

In the case kFδa ≫ 1, the exponential factor in eqs. (3.13) and (3.14) selects only the
”diagonal” subensemble of topological indexes for which ν = ν′ and η = η′. When
applicable, such an approximation considerably simplifies the evaluation of the semi-
classical expressions and allows for simple estimations of the zero-field susceptibility
and the magnetic moment. The diagonal part of the magnetic susceptibility (3.14) can
be written as

χd
ens(ā)
|χL|

= 18πkF ā ∑
ν>0

η>2ν

F νη
νη R2(Lνη/LT), (3.15)

which is positive since F νη
νη > 0 [cf. eq. (3.7)]. As can be seen in fig. 3.4, this diagonal

contribution (black solid line) provides a good account of the behavior of χens for
large kFδa.

Interestingly, eq. (3.15) is a function of the single parameter kF ā T
TF

= 2ā/πLT when
scaled with kF ā. This can be seen from the argument of the thermal function (2.41),
Lνη/LT = πη sin φνηkF ā T

TF
, and is exemplified in fig. 3.6, where the circles correspond

to a numerical evaluation of the sum over the topological indexes in eq. (3.15). Re-
markably, for kF ā T

TF
≪ 1 (with kF ā ≫ 1), eq. (3.15) follows the Curie-type law

χd
ens

|χL|
=

C
T/TF

, (3.16)

independent of the average size ā of the nanoparticles.
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The prefactor C of the above Curie law can be analytically evaluated along the
lines leading to the semiclassical result (3.8) and presented in appendix F.2. First, the
thermal factor (squared) in eq. (3.15) is replaced by a Heaviside step function which
cuts trajectories longer than Lmax = αLT (α ≃ 1.6, see sec. 3.2). Second, the sums over
the topological indexes are approximately evaluated by replacing them by integrals.
To leading order in kF ā T

TF
≪ 1, we then obtain

C =
9α

16
. (3.17)

The result (3.16), together with eq. (3.17), is shown by the solid line in fig. 3.6. As
can be seen from the main figure, there is excellent quantitative agreement between
the numerical evaluation of eq. (3.15) (circles) and the approximate result (3.16) (solid
line) for small nanoparticle sizes and/or low temperatures.

For larger values of the parameter kF ā T
TF

, the susceptibility resulting from eq. (3.15)
deviates from the Curie-type law and is exponentially suppressed with temperature.
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It can be fitted by
χd

ens(ā)
|χL|

= c1kF ā exp
(
−c2kF ā

T
TF

)
, (3.18)

with c1 ≃ 22 and c2 ≃ 12. Such a behavior can be traced back to the exponential
suppression induced by the thermal factor (2.41) even for the shortest trajectories, in
line with our discussion of the high-temperature regime for χ(1) in sec. 3.2.

Similarly to the case of the zero-field susceptibility, we consider the diagonal con-
tribution [terms with ν = ν′ and η = η′ in eq. (3.13)]

Md
ens(ā)
µB

= − 12(kF ā)2 ∑
ν>0

η>2ν

F νη
νη

η cos φνη sin φνη

× R2(Lνη/LT)j
′
0
(
2πϕνη/ϕ0

)
j0
(
2πϕνη/ϕ0

)
(3.19)

to the magnetic moment per nanoparticle, which becomes dominant in the case
kFδa ≫ 1 (solid lines in fig. 3.5). Once scaled with (kF ā)2, eq. (3.19) only depends
on the two following parameters: (i) the normalized flux ϕ̄/ϕ0 appearing in the ar-
gument of the spherical Bessel function and its derivative in eq. (3.19) (ϕ̄ = πā2H is
the magnetic flux through an average-size nanoparticle); (ii) the ratio between aver-
age radius and thermal length 2ā/πLT = kF ā T

TF
through the argument of the ther-
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eq. (3.19) scaled with (kF ā)2 as a function of the reduced magnetic flux
ϕ̄/ϕ0 for kF ā T
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mal reduction factor (2.41). Figure 3.7 presents the flux dependence of the diagonal
contribution (3.19) scaled with (kF ā)2. For weak flux, ϕ̄ ≪ ϕ0, the magnetic mo-
ment increases linearly with magnetic field and its temperature dependence follows
a Curie-type law as shown for the susceptibility [see eq. (3.16)]. For larger flux, a
maximal value is attained and Md

ens decreases until it reaches negative values and
oscillates as a function of flux, resembling the de Haas-van Alphen oscillations [24]
that would occur for much larger magnetic flux. As the temperature decreases, the
magnetic moment increases significantly at weak magnetic field, reaching very high
values.

3.4 MAGNETIC RESPONSE OF INDIVIDUAL

NANOPARTICLES

In the previous section we discussed the situation of a nanoparticle ensemble, which
is the case were the magnetic response has been extensively measured. The orbital
magnetic response of an individual nanoparticle, given by

M = χLH +M(1) +M(2) (3.20)

and
χ = χL + χ(1) + χ(2), (3.21)
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Figure 3.8: Blue lines: grand-canonical (a) free energy ∆F(1) at H = 0 (scaled with the
Fermi energy EF) from eq. (3.1) at a temperature T/TF = 5 × 10−3 and (b)
corresponding zero-field susceptibility χ(1) from eq. (3.4) (cf. blue line in
fig. 3.1) as a function of kFa. Red lines: canonical contribution ∆F(2) from
eq. (3.2) [panel (a)] and zero-field susceptibility χ(2) from eq. (3.6) [panel
(b)].

has considerable interest for two reasons. Firstly, M and χ become relevant when
analyzing the experimental conditions aiming at measurements on relatively small
numbers of particles or in the case of single nanoparticles. These conditions could be
achieved, e.g., using magnetic force microscopy [17, 145] of nanoparticles deposited
on a nonmagnetic substrate. Secondly, if interactions among the nanoparticles of
the ensemble are included in the description, the single-particle magnetic moment
M becomes a crucial ingredient of the model describing the magnetic response of
coupled nanoparticles [146].

As discussed in sec. 2.3.3, the fulfillment of the condition ∆F(2) ≪ |∆F(1)|, at
the basis of our semiclassical thermodynamic formalism, depends on the values of
kFa and T/TF. In order to quantify these constraints, we present in fig. 3.8(a) [fig.
3.8(b)] the values of ∆F(1) [χ(1)] in blue, and ∆F(2) [χ(2)] in red, for room tempera-
ture (T/TF = 5 × 10−3) and a reduced kFa span as compared to the one shown in
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Figure 3.9: Low-temperature T/TF = 5 × 10−4 results for the contributions to (a) the
free energy and (b) the susceptibility. As in fig. 3.8, blue lines represent
the grand-canonical contributions from eqs. (3.1) and (3.4), and red lines
depict the canonical contributions of eqs. (3.2) and (3.6).

fig. 3.1. At the lowest values considered for kFa, ∆F(2) is comparable to |∆F(1)|, but it
rapidly becomes comparatively smaller for kFa ≳ 30 and then completely negligible
for kFa ≳ 50. The semiclassical thermodynamic formalism is then applicable at room
temperature over almost all the kFa range, even if |χ(2)| typically dominates |χ(1)| up
to kFa ≃ 30. Consistent with these results, the magnetic moment M of an individual
nanoparticle at room temperature is essentially given by M(1) for the sizes shown in
fig. 3.3, where M as a function of kFa is indistinguishable from M(1) on the scale of
the figure (data not shown).

The situation at low temperature T/TF = 5 × 10−4 is presented in fig. 3.9 for a
smaller range of kFa. Again, we can observe that the canonical contribution ∆F(1)

(blue line) is typically larger than the grand-canonical one ∆F(2) (red line). Even
though the grand-canonical contribution to the susceptibility is larger that the canon-
ical one, we expect the semiclassical formalism to yield at least qualitatively correct
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results for these and larger values of kFa.
Our treatment of the magnetic response of individual nanoparticles demonstrates

that very large paramagnetic zero-field susceptibilities, can be achieved at sufficiently
low temperatures, which might translate in emerging magnetic instabilities once a
dipolar coupling between the nanoparticles magnetic moments is considered [146].

3.5 COMPARISONS TO THE EXPERIMENTAL RESULTS

The variety of possible magnetic responses (diamagnetic, paramagnetic, or ferromag-
netic) experimentally observed calls for a systematic evaluation of the results yielded
by different theoretical descriptions. Within our model presented in sec. 2.1, we ob-
tained in sec. 3.3 a paramagnetic response at weak fields for the case of an ensemble
with a large number of noninteracting nanoparticles and a rather large size disper-
sion, as it is often the case in experiments. For increasing fields the magnetization of
the nanoparticle ensemble could switch from its low-field paramagnetic behavior to
a diamagnetic response (decreasing of the magnetization with the field and even a
magnetization antialigned with the applied field, see figs. 3.5 and 3.7). While these
changes are often observed in experiments [16], such behavior is usually interpreted
as coming from spurious diamagnetic elements of the sample [59].

In order to test the relevance of our approach, we will disregard the cases where
the parameters of the sample are not completely known and exclude observations of
ferromagnetism where, presumably, the interparticle interactions are important. We
will thus concentrate on the experiments where the paramagnetic behavior has been
clearly established.

The pioneering experiments of refs. [34, 35], which also included palladium
nanoparticles, have been extremely important in fostering the interest on the sub-
ject, by yielding large values of the saturation magnetic moment per nanoparticle
(about 20µB) in a regime where the magnetic interaction between the nanoparticles
could be neglected. In fig. 3.10, we reproduce the magnetization per gram of gold
in the sample Mens of refs. [34, 35] for gold nanoparticles surrounded by polyvinyl
pyrolidone (PVP) ligands (red dots) having a mean diameter 2ā ≃ 2.5 nm and a rela-
tively narrow size dispersion (2δa ≃ 0.4 nm) at T = 1.8 K. These experimental data,
well represented by the Langevin function and exhibiting quasiparamagnetic field
and temperature dependences, have been reproduced in different samples with vari-
ous ligands (see triangles in fig. 3.10), except in the case where strong covalent bonds
get established with the nanoparticles [38].

The solid line in fig. 3.10 represents Mens/ϱV , where Mens is given in eq. (3.13) and
ϱAu = 19.3 g/cm3 is the mass density of gold, for the temperature, mean diameter,
and width of the size distribution of the experimental data.1 As no fitting parameters

1Given the high numerical cost of performing the four summations of eq. (3.13) at the low tempera-
ture of the experiment, we limited ourselves to the case ν′ = ν (verifying that for the corresponding
value of kFδa the exponential factor strongly suppresses the terms having ν′ ̸= ν), and we replaced
the thermal factor RT by a Heaviside step function, similarly to what we have done in secs. 3.2
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Figure 3.10: Dots and triangles: measured magnetization Mens of an ensemble of
Au nanoparticles functionalized with various ligands (in electromagnetic
units per gram of gold nanoparticles in the sample) as a function of ap-
plied field H (in œrsted), with mean diameter 2ā = 2.5 nm, size disper-
sion 2δa = 0.4 nm, and at a temperature T = 1.8 K. The data are taken
from the experiments of refs. [34, 35, 38], c.f. fig. 1.3b. The corresponding
ligands are: polyvinyl pyrolidone (PVP) [red dots (refs. [34, 35]) and red
triangles (ref. [38])], polyacrylonitrile (PAN) [green triangles (ref. [38])],
and polyallyl amine hydrochloride (PAAHC) [blue triangles (ref. [38])].
Solid line: nondiagonal magnetization from eq. (3.13) with 2δa = 0.4 nm.
Dashed line: diagonal approximation (3.19), corresponding to 2δa → ∞.

are invoked, the qualitative agreement between our theory and these sets of data
makes us conclude that the orbital response is indeed a crucial ingredient in the cases
where the nanoparticle interaction is negligible.

It should be remarked that for the small values of a and T used in fig. 3.10, the semi-
classical thermodynamic formalism becomes questionable. Notwithstanding, while
in the formalism in chapter 2 the temperature is the only parameter to smooth out the
oscillations of the density of states of an individual nanoparticle, in an ensemble of
nanoparticles there are other additional factors that contribute to smooth the density
of states and then reduce the values of ∆F(2). Among them, the size dispersion char-
acterized by P(a), the possibility of having deviations with respect to the perfectly
spherical shape, and effects of structural or impurity-induced disorder. It is based
on the latter effect that the canonical correction has been obtained for the problem of
persistent currents in metallic nanostructures [76, 77].

and 3.3 when deriving eqs. (3.8) and (3.17), respectively (verifying also the applicability of such an
approximation).
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For comparison purposes, we also present in fig. 3.10 (dashed line) Mens according
to the diagonal approximation (3.19). On the one hand, we see that the simple diag-
onal approximation is enough to provide a qualitative agreement with respect to the
experimental data. On the other hand, we verify that the effect of the size dispersion
δa, which is responsible for the difference between the two expressions, appears as a
key element in achieving a more quantitative agreement.

The existing data yielding a paramagnetic zero-field susceptibility are more diffi-
cult to relate with the theoretical prediction of figs. 3.4 and 3.6, and eqs. (3.14) and
(3.16), than those concerning the magnetization. While the value of χ that can be ex-
tracted from the magnetization curve of refs. [34, 35] is in qualitative agreement with
eq. (3.16) and the reported zero-field susceptibility follows a clear Curie law, the nu-
merical values associated to the experiment are two orders of magnitude larger than
the theoretical prediction. The inconsistency between the experimentally reported
values of the magnetization and susceptibility of refs. [34, 35] might be due to an
incorrect handling of the units [147].

The magnetization measurements of Y. Yamamoto et al. [37] yielded a paramag-
netic susceptibility for an ensemble of gold nanoparticles with 2ā = 1.9 nm and a
log-normal size distribution. The reported susceptibility follows a Curie-type law,
but with values which are several orders of magnitude smaller than the previously-
discussed data or the theoretical curve of fig. 3.6, and it has been explained from the
orbital moment of the Au 5d electrons.

The susceptibility results of Bartolomé et al. [46] on gold nanoparticles with natu-
rally thiol-containing protective agents, between T = 2.7 K and 10 K, exhibit a para-
magnetic response with a clear Curie law, but an order of magnitude smaller than
the data of refs. [34, 35]. The findings of ref. [46] have been interpreted by invoking
the holes of the Au 5d band induced by the thiols, and thus the comparison with our
ligand-independent theoretical approach is problematic.

Some of the reported ferromagnetic samples present an extremely narrow hystere-
sis loop [44, 45], such that a quasiparamagnetic zero-field susceptibility can be in-
ferred. The values thus obtained from the low-temperature data of refs. [44, 45] result
in a paramagnetic susceptibility which is one to two orders of magnitude smaller than
our theoretical prediction, depending on the nature of the protective ligands.

We thus conclude that the orbital magnetism contribution is always important for
analyzing the cases yielding a paramagnetic response of an ensemble of nanoparti-
cles. In the cases where the ligands do not considerably alter the electronic states of
the isolated nanoparticles, a qualitative agreement between theory and experiment
is obtained for the magnetization curves and in the fulfillment of a Curie-type law
of the zero-field susceptibility for a large range of temperatures (up to about room
temperature, for sufficiently small nanoparticles).

The diamagnetic response obtained in some experiments [40, 42, 44, 48] could also
be accounted for from the orbital magnetism, provided a narrow size dispersion or
a peaked size distribution of the nanoparticles in the ensemble allow for the fluctu-
ations of χ(1) (see figs. 3.1 and 3.2) to dominate over the paramagnetic contribution
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of χ(2). Another proposal to account for the diamagnetic behavior is to invoke the
effect of the spin–orbit coupling [42, 90], that unlike the case of persistent currents in
disordered rings [148], would reverse the sign of the magnetic response.

3.6 CONCLUSIONS FOR CHAPTER 3

In this chapter, we have investigated orbital magnetism in gold nanoparticles. Specif-
ically, we have considered spherical metallic particles in the jellium approximation
and treated the electron-electron interactions within a mean-field approach. The or-
bital response of individual as well as ensembles of nanoparticles with a smooth
size distribution have been calculated within a semiclassical formalism. While the
magnetic response at weak fields of an individual nanoparticle can be anything from
strongly diamagnetic to strongly paramagnetic depending on its size, the ensemble-
averaged response is always paramagnetic when neglecting the interparticle inter-
actions. In particular, we have predicted that the ensemble-averaged zero-field sus-
ceptibility should present a Curie-type law at low temperature, independent of the
average size of the nanoparticles. We have obtained a qualitative agreement with the
existing experimental data on the magnetization of ensembles of diluted nanopar-
ticles in the case where interparticle interactions are negligible and where the local
modifications induced by the surrounding ligands are irrelevant. Our results do not
depend on details of the electronic structure and are thus not limited to gold but can
be applied to any spherically-symmetric metallic nanoparticles. Moreover, the pro-
posed mechanism does not rely on organic ligands surrounding the particles.

An important conclusion of this chapter is to counter the claim [37, 38] that the
strong paramagnetic response of the nanoparticle ensemble constitutes a proof that
the individual nanoparticles are ferromagnetic. Indeed, we have shown that the or-
bital response of a large nanoparticle ensemble with a relatively broad size distri-
bution can attain a large paramagnetic value through the flux accumulation of the
underlying classical trajectories.

In order to obtain analytically-tractable results, we assumed that the nanoparticles
are perfectly spherical. Other symmetric geometries can be approached with the tools
presented in this chapter, like the cases of half-spherical and cylindrical nanoparticles
(analyzed in sec. 4.5 and appendix C.2, respectively.). Importantly, crystallographic
faceting at the surfaces of the particles, as well as static impurities inside the clus-
ters, would reduce the geometric symmetries and tend to render chaotic the under-
lying classical dynamics of the electrons. As is well known [83–85, 87, 88], the orbital
magnetism of classically-chaotic and/or disordered systems is less pronounced than
that of purely integrable ones. The high values of magnetic susceptibilities we obtain
should thus be taken with care when comparing our results with existing experiments
using larger nanoparticles and/or when disorder becomes important. However, the
qualitative trends we are predicting should not be affected by fine details of the elec-
tron dynamics.

The work presented in this chapter is an important step toward understanding
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the effect of orbital magnetism in assemblies of nanoparticles. While the results pre-
sented here may explain a tendency toward the low-field paramagnetic behavior of
certain samples, two potentially important ingredients for fully understanding some
experiments reporting an anomalous magnetic behavior of gold nanoparticles have
been put aside in this work, namely the interparticle magnetic dipolar interactions
and a nonsmooth, peaked size distribution. The former may be necessary to obtain
ferromagnetic behavior, as is observed in certain samples, and can in principle be ad-
dressed with the same thermodynamical formalism developed until this point [146].
The latter might occur depending on the fabrication process due to shell effects [1,
110]. The size dispersion was shown to be a crucial factor in determining the mag-
netic response, and in the limit where it becomes so small as to represent a peaked
size distribution, we no longer expect the vanishing of the contribution of χ(1) upon
the ensemble average. The resulting strong oscillation as a function of nanoparticle
size could explain the variation in the observed behavior from strong paramagnetism
to strong diamagnetism in macroscopically similar samples having very narrow size
distributions.

The suggestion that a paramagnetic response of the ensemble could turn into a
diamagnetic one under the influence of spin-orbit coupling [42, 90], in analogy with
the sign inversion of the magnetoconductance [92–94, 149], is the main subject of
chapter 4, where we study the weakly-relativistic effects in the magnetic response of
gold nanoparticles.



WEAKLY RELATIVISTIC CORRECTIONS
TO THE MAGNETIC SUSCEPTIBILITY

OF METALLIC NANOPARTICLES 4
In the previous chapter we only considered the orbital electronic dynamics in spher-
ical nanoparticles and found that the magnetic response of the non-interacting
(Gaussian-averaged) ensemble behaved paramagnetically. The large diversity of
magnetic behaviors of metallic nanoparticles, that includes also ferromagnetic and
strongly diamagnetic responses [16, 17], is hard to account for based solely on or-
bital magnetism. In sec. 1.4, we introduced the effects of spin–orbit coupling (SOC)
in confined systems. It has been suggested that SOC could be the main ingredient to
invert the magnetic response from paramagnetic to diamagnetic [42, 90] in ensembles
of gold nanorods, analogous to systems that show similar inversions such as the one
observed going from weak localization to weak antilocalization in various nanostruc-
tures [92–94, 149].

Kramer’s theorem (sec. 2.4.3) states that the degeneracy of the single-particle spec-
trum cannot be removed in the absence of magnetic fields, but the SOC can signifi-
cantly modify the statistical properties of the spectrum. The statistics of energy levels
in time-reversal symmetric (chaotic or disordered) confined systems changes from
orthogonal to symplectic (Gaussian or circular) distributions when going from van-
ishing to strong spin–orbit coupling [150, 151]. The previous transition is controlled
by the strength of the SOC, and therefore it is important to evaluate such a critical
parameter, a task that will be undertaken in this chapter. Knowing the strength of the
SOC is not only relevant to assess the possible switch between paramagnetic and dia-
magnetic behavior, but also relevant toward accounting for the reduced g-factor mea-
sured in the tunneling resonances of disordered metallic nanoparticles [99, 100, 103,
104]. Moreover, as bulk gold already presents noticeable relativistic features [133],
the SOC has also been invoked in phenomenological theoretical models attempting
to explain the anomalous ferromagnetic response of gold nanoparticles [65].

The SOC in gold nanoparticles may have different origins and in this chapter we
focus on the effects of SOC due to the spatial confinement. As we are considering the
electronic response in pure nanoparticles, the effects of SOC coming from the atomic
nuclei or from impurities are not considered here. In chapter 3, we saw that the
orbital zero-field susceptibility was amplified by orders of magnitude as compared
to the Landau susceptibility χL. It is thus important to estimate if confinement can
also lead to an important increase of the weakly relativistic corrections to the bulk
case, i.e. χ

(wr)
b (2.48).
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The spin, which was neglected in the previous chapter is reintroduced here in the
non-relativistic spectrum, as the Zeeman interaction (2.7) will now couple different
orbital subspaces when we include both, SOC and confinement. In this chapter we
work in the weakly relativistic limit obtained from the Dirac Hamiltonian in the pres-
ence of electric and magnetic fields (see sec. 2.4.2). The spherical geometry is con-
sidered in detail, leading to semi-analytical formulas for the zero-field susceptibility
in the presence of additional weakly relativistic effects such as the Darwin term and
relativistic corrections to the kinetic energy in the presence of magnetic fields. The
corrections to the non-relativistic ZFS, coming from SOC depend on the symmetry
of the problem and are dominated by the weakly-relativistic kinetic energy correc-
tion, which is reduced by a relativistic factor proportional to (vF/c)2. In order to
investigate the influence of symmetry, we also treat in detail the case of half-spherical
nanoparticles. For this geometry with reduced symmetry, the calculations require a
numerical treatment.

This chapter is organized as follows: In sec. 4.1 we present the remaining ingre-
dients for the weakly relativistic Hamiltonian, which we employ in order to assess
the relevance of weakly-relativistic effects for the ZFS of spherical nanoparticles. In
sec. 4.2 we treat in detail the relativistic kinetic energy correction in the absence of
spin-orbit coupling which will be important for comparison purposes. The perturba-
tive calculation of the ZFS in the presence of spin–orbit coupling is given in section 4.3
and the numerical calculations for the case of the sphere are presented in section 4.4.
The case of half-spherical nanoparticles is treated in sec. 4.5. We conclude this chapter
in sec. 4.6. The findings presented in this chapter are based on the results of ref. [152].

4.1 WEAKLY RELATIVISTIC DESCRIPTION

The weakly-relativistic Hamiltonian for an electron subject to a static electric field
was given in eq. (2.60). For our discussion we need to include also the static magnetic
induction field [91, 134].

The nonrelativistic Hamiltonian H(nr) = H(orb) +H(Z) was already described in
section 2.6. As we now include spin it is convenient to group the paramagnetic (2.9b)
and Zeeman (2.57) components in a term representing the coupling of the total mag-
netic moment

µ = −µB

h̄
(L + g0S) (4.1)

to the magnetic induction B, leading to

H(µ) = H(para) +H(Z)

= −µ · B . (4.2)

The weakly relativistic correction ∆H from eq. (2.59), can be obtained from the
Dirac equation using a Foldy–Wouthuysen transformation as detailed in appendix E.
The full term reads

∆H = H(k) +H(so−ame) +H(D) +H(r) , (4.3)
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where H(D) is the Darwin term from eq. (2.61) and H(r) from eq. (2.62) vanishes for
conservative potentials as previously discussed. The other two terms are different
from the case A(r) = 0 seen in eq. (2.60), and given by

H(k) = − 1
8m3c2

{
σ ·
[
p +

e
c

A(r)
]}4

, (4.4a)

H(so−ame) =
eh̄

4m2c2 σ ·
{

E(r)×
[
p +

e
c

A(r)
]}

. (4.4b)

The term H(so−ame) combines the spin-orbit coupling from (1.6) and the angular
magneto-electric (ame) [153] couplings. H(k) is the first weakly-relativistic correc-
tion to the kinetic energy and contains H(k−free) from eq. (2.54) with the addition of
magnetic and spin dependent terms.

The correction (4.4b) takes the form

H(so−ame) = H(so) +H(ame) , (4.5)

with

H(so) =
1

2m2c2 S · [∇Vmf(r)× p] , (4.6a)

H(ame) =
e

4m2c3 S · [∇Vmf(r)× (B × r)] , (4.6b)

while the Darwin term (2.61) can be written as

H(D) =
h̄2

8m2c2 ∇
2Vmf(r) . (4.7)

Our main interest is the effect of the SOC (1.6) correction on the magnetic response
of different kinds of nanoparticles. In order to assess its relevance, we need to also
examine the role of the other weakly-relativistic corrections.

4.1.1 HAMILTONIAN FOR THE SPHERICAL SYMMETRIC CASE

We here consider a spherically-symmetric confinement defined by a step poten-
tial (2.4). The spherical symmetry of the problem allows one to further simplify the
expressions of eqs. (4.6a) and (4.6b) for the spin-orbit and angular magneto-electric
couplings, respectively, as

H(so) =
1

2m2c2
1
r

(
dVmf

dr

)
S · L , (4.8a)

H(ame) = − µBB
2mc2h̄

r
(

dVmf

dr

)
sin (θ) S · êθ , (4.8b)

while the Darwin term (2.61) can be written as

H(D) =
h̄2

8m2c2
1
r2

d
dr

(
r2 dVmf

dr

)
. (4.9)
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The finite height V0 of the confining wall is responsible for the spill-out effect [113].
A proper description of this effect, as well as the lifetime of the surface plasmon res-
onance necessitates to go beyond the discontinuous form (2.4) of the confining po-
tential, including the abruptness of the potential jump at the nanoparticle surface. In
the case of the ZFS, the abruptness of the potential jump is not a crucial parameter,
and moreover, the careful analysis of the wave-function behavior close to a potential
discontinuity, that we perform next, shows that the precise value of V0 is not determi-
nant for the nonrelativistic ZFS, nor for the weakly-relativistic corrections (with the
exception of the Darwin contribution discussed in appendix G), justifying the limit of
V0 → ∞ commonly adopted in the nonrelativistic case [22, 68, 69].

When going from the description of the ideal model system to that of a gold
nanoparticle, we should in principle use gAu instead of g0 in the expression (4.1) for
the total magnetic moment. However, the small difference between gAu and g0, like
the one between m∗ and m, only induces very small corrections.

4.1.2 NONRELATIVISTIC SUSCEPTIBILITY WITH SPIN

As seen before in chapter 3, the magnetization and the ZFS in the nonrelativistic case
can be calculated in the case of a spherical geometry by quantum perturbation theory
[22, 68], or by the semiclassical expansions for the DOS developed in appendix B. We
showed in appendix D the connection between the two approaches. The quantum
procedure was derived in chapter 2 (secs. 2.2 and 2.3.2).

The action of a magnetic field over the spin through the term H(µ) of eq. (4.2) is, the
one hand, to break the degeneracy of the B = 0 eigenenergies without giving rise to a
new basis of eigenstates. On the other hand, the states Ψ(0)

n,l,mz,ms
[cf. eq. (2.10)] are no

longer eigenstates once the diamagnetic term H(dia) of eq. (2.9c) is considered under
a finite magnetic field. Thus, up to terms of order B2, the perturbed energies are

E(nr)
n,l,mz,ms

= E(0)
n,l + δE(nr)

n,l,mz,ms
, (4.10)

where δE(nr)
n,l,mz,ms

is the magnetic-field correction, which reads

δE(nr)
n,l,mz,ms

= E(µ)
mz,ms + E(dia)

n,l,mz
. (4.11)

Consistently with eq. (4.2), we denote

E(µ)
mz,ms = E(para)

mz + E(Z)
ms , (4.12)

with
E(Z)

ms = g0 µB ms B , (4.13)

E(para)
mz was defined in eq. (2.28) and E(dia)

n,l,mz
in eq. (2.29).
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According to eq. (2.24), the nonrelativistic ZFS is determined from the following
parameters directly obtained from eqs. (2.28), (2.29), and (4.13),

E(nr)
n,l,mz,ms

∣∣∣
B=0

= E(0)
n,l , (4.14a)

∂E(nr)
n,l,mz,ms

∂B

∣∣∣∣∣∣
B=0

= µB (mz + 2ms) , (4.14b)

∂2E(nr)
n,l,mz,ms

∂B2

∣∣∣∣∣∣
B=0

=
µ2

B
2E0

Rn,l Ymz
l . (4.14c)

Treating separately each of the field-dependent energy contributions (2.28), (4.13),
the nonrelativistic ZFS following from eqs. (2.24) and (4.14) can be written as

χ(nr) = χ(Z) + χ(orb) , (4.15)

in terms of a spin-dependent susceptibility χ(Z) and the orbital component χ(orb). The
latter admits the decomposition

χ(orb) = χ(para) + χ(dia) . (4.16)

Performing the mz sum in eq. (2.24), we have

χ(Z) = −2µ2
B

V
∞

∑
l=0

(2l + 1)
∞

∑
n=1

f ′µ̄0
(E(0)

nl ) , (4.17)

as well as the expressions form eqs. (2.33) [22, 68] with the replacement µ = µ̄0.
The mean chemical potential µ̄0 is associated with the spectrum of the Hamiltonian

H(0) presented in eq. (2.9a). Trading the sum over the principal quantum number n
by an integral over energy allows to recast eq. (4.17) as

χ(Z)

|χL|
= −9πE0

kFa

∞

∑
l=0

(2l + 1)
∫ ∞

0
dE ϱl(E) f ′µ̄0

(E) , (4.18)

where we have introduced the l-fixed density of states ϱl(E) corresponding to the
radial problem, itself related to the zero-field DOS from eq. (2.15) and (2.16). The
prefactor of 2 in the equation above takes into account the spin degeneracy, as we
follow the standard convention of using a spinless ϱl(E) and a spinful ϱ(E, B).

For a degenerate electron gas, where EF ≫ kBT, we use f ′µ(E) = −δ(E − µ), and
thus eq. (4.18) leads to the standard result of the spin-dependent susceptibility [138]

χ(Z) =
µ2

B
V ϱ(EF, 0) . (4.19)

In the unconstrained case of a → ∞, the use of the DOS per unit volume for
the zero-field, three-dimensional, free electron gas g(3D)(E) = (m/π2h̄2)

√
2mE/h̄2
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in eq. (4.19), results in the form (1.5) of the Pauli susceptibility. In the con-
strained case of a finite a, the trace formula separation (2.15a) and the fact that
ϱ̄(E, 0) = ϱ0 = g(3D)(E)V result in a mean spin-dependent susceptibility χ̄(Z) = χP.
Thus, the confinement only adds a small contribution to the bulk susceptibility, which
is associated with ϱosc(E, 0) [83].

In the constrained case, the numerical implementation of eqs. (4.17) and (2.33) leads
to the nonrelativistic ZFS χ(nr) presented in fig. 4.1 (in black) as a function of kFa. In
the shown interval, these numerical results are almost indistinguishable from those
in which χ

(nr)
b = 2|χL| is added to the semiclassical ZFS χ(1) = χ(orb)−osc of eq. (3.4).

The suppression of the ZFS oscillations for large sizes can be understood, at the semi-
classical level, by the thermal damping (2.41) acting on the contribution of each family
of classical periodic orbits. For very large a (inset), the oscillations of χ(nr) are quite
reduced, and we can see that they are around the bulk ZFS χ

(nr)
b , given by eqs. (1.4)

and (1.5), as the confinement becomes irrelevant in such a limit. The typical values of
χ(nr) are important in order to assess the relevance of the relativistic corrections to be
calculated in the sequel. Also for comparison purposes, we show in fig. 4.1 (in red)
the ZFS χ(2) + χ

(nr)
b arising from finite-N corrections to the free energy (2.46d) using

the semiclassical expression for the oscillating part of the density of states ϱosc(E, B)
given by eqs. (B.24), (2.17a), and (2.17b), as detailed in chapter 3. In addition, we
show in fig. 4.1 (blue line) the ZFS χd

ens + χ
(nr)
b of an ensemble of metallic nanopar-

ticles with an important size dispersion. Here, χd
ens is the ensemble average of χ(2)

over a Gaussian probability distribution of the size parameter a, cf. eq. (3.15).

4.2 KINETIC CORRECTION IN THE ABSENCE OF

SPIN–ORBIT COUPLING

The zero-field Dirac equation in a spherical potential box admits an exact solution
[119, 122]. While the inclusion of an infinitesimal magnetic field allowing to address
the ZFS can in principle be implemented as a perturbation [154], it is simpler to pro-
ceed from the weakly-relativistic Hamiltonian (4.3). The kinetic term (4.4a) can be

written as H(k) = −
{
H(nr) + eϕe

}2
/2mc2. Therefore, in the case of a hard wall con-

finement, and up to quadratic terms in B, it leads to the energy correction

E(k)
n,l,mz,ms

= − 1
2mc2

× ⟨Ψ(0)
n,l,mz,ms

|
(

p2

2m

)2

+
p2

m
H(µ) +

(
H(µ)

)2
+

p2

2m
H(dia) +H(dia) p2

2m
|Ψ(0)

n,l,mz,ms
⟩

= −

(
E(0)

n,l

)2

2mc2 + δE(k)
n,l,mz,ms

, (4.20)
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Figure 4.1: In black: nonrelativistic ZFS χ(nr) for kBT/µ̄0 = 5 × 10−3 (corresponding
to room temperature in the case of gold) obtained from eqs. (4.17)–(2.33)
(in units of the absolute value of the Landau susceptibility χL), as a func-
tion of the nanoparticle radius a (scaled with the Fermi wave vector kF).
In red: χ(2) + χ

(nr)
b , with χ(2) obtained from the finite-N correction (2.46d)

to the free energy and the oscillating part of the B-dependent density of
states ϱosc(E, B). In blue: ZFS of an ensemble of nanoparticles with an im-
portant size dispersion, χd

ens + χ
(nr)
b , where χd

ens is obtained by taking the
average of χ(2) over a Gaussian probability distribution (in size). Inset:
Corresponding ZFSs for larger nanoparticle radii, showing the approach
to the bulk value given by eqs. (1.4) and (1.5) indicated by a dashed line.
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where the B-dependent component is given by

δE(k)
n,l,mz,ms

= − 1
2mc2

[
2E(0)

n,l E(µ)
mz,ms +

(
E(µ)

mz,ms

)2
+ 2E(0)

n,l E(dia)
n,l,mz

]
, (4.21)

with E(0)
n,l , E(µ)

mz,ms , and E(dia)
n,l,mz

given, respectively, by eqs. (2.12), (4.12), and (2.29). Since
the product basis is constituted of eigenvectors of p4 and H(µ), the off-diagonal matrix
elements of H(k) are of quadratic order in B, and thus do not need to be considered.

Even if the modification of the nonrelativistic ZFS χ(nr) due to the kinetic correc-
tion (4.20) does not have a physical meaning by itself, it is nevertheless interesting to
calculate it in view of weighting its importance against the other weakly-relativistic
modifications. Moreover, in the case of a very large radius a, where the role of the
confining potential Vmf(r) should become irrelevant, the ZFS χ(nr−k) taking only into
account the modification of χ(nr) due to the correction (4.20), can be compared with
the bulk weakly-relativistic ZFS χ

(wr)
b of eq. (2.48).

An important aspect of the correction (4.20) is that it induces at B = 0 an energy
shift of all levels. In particular, within the grand canonical ensemble, the shift of the
Fermi level translates into a renormalization

∆µ(k) ≃ − µ̄2
0

2mc2 (4.22)

of the zero-field nonrelativistic mean chemical potential µ̄0.

The kinetic correction (4.20) results in the eigenenergies E(nr−k)
n,l,mz,ms

= E(nr)
n,l,mz,ms

+

E(k)
n,l,mz,ms

from which the ZFS χ(nr−k) can be obtained by using the parameters

E(nr−k)
n,l,mz,ms

∣∣∣
B=0

= E(0)
n,l


1 −

E(0)
n,l

2mc2


 , (4.23a)

∂E(nr−k)
n,l,mz,ms

∂B

∣∣∣∣∣∣
B=0

= µB (mz + 2ms)


1 −

E(0)
n,l

mc2


 , (4.23b)

∂2E(nr−k)
n,l,mz,ms

∂B2

∣∣∣∣∣∣
B=0

= µ2
B

(
1

2E0
Rn,lYmz

l


1 −

E(0)
n,l

mc2


− 1

mc2 (mz + 2ms)
2

)
. (4.23c)

Performing the mz and ms sums in eq. (2.24), while working up to linear order in
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E(0)
n,l /mc2, we have

χ(nr−k)

|χL|
=− 6π E0

kFa

∞

∑
l=0
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∞

∑
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

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mc2




− l(l + 1) + 3
mc2 fµ̄


E(0)

n,l


1 −

E(0)
n,l

2mc2







 . (4.24)

As discussed above, we are interested in the correction

∆χ(k) = χ(nr−k) − χ(nr) , (4.25)

where χ(nr) is defined in eq. (4.15), and thus associated with the mean chemical po-
tential µ̄0 of the nonrelativistic problem, while χ(nr−k) is associated with the renor-
malized mean chemical potential µ̄ = µ̄0 + ∆µ(k) [cf. eq. (4.22)]. We then write

∆χ(k)

|χL|
=− 6π E0

kFa mc2

∞

∑
l=0

(l + 1/2)

×
∞

∑
n=1

{
[l(l + 1) + 3] f ′′µ̄0

(E(0)
n,l ) +

Rn,l

E0
f ′µ̄0

(E(0)
n,l )

}

−

(
E(0)

n,l

)2

2mc2 − ∆µ(k)




+
6π E0

kFa mc2

∞

∑
l=0

(l + 1/2)

×
∞

∑
n=1

{
2[l(l + 1) + 3] E(0)

n,l f ′µ̄0
(E(0)

n,l ) +

(Rn,l

E0
E(0)

n,l + l(l + 1) + 3
)

fµ̄0(E(0)
n,l )

}
.

(4.26)

The first sum in the above equation results from the zero-field component of the
correction E(k)

n,l,mz,ms
, and thus it could have alternatively been derived by simply

implementing in the ZFS expressions (2.33) and (4.17), the shift of E(0)
n,l to E(0)

n,l [1 −
E(0)

n,l /2mc2], with the corresponding renormalization ∆µ(k) of the chemical potential.
The second sum in (4.26) represents the nontrivial effect of the magnetic-field depen-
dent contribution δE(k)

n,l,mz,ms
to the kinetic correction, given by eq. (4.21).

In fig. 4.2 we present the numerical evaluation of the kinetic correction ∆χ(k) to the
nonrelativistic ZFS, according to eq. (4.26), as a function of kFa. For large a (inset),
the values of ∆χ(k) oscillate around −1/3 |χL| (vF/c)2, consistently with the result
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Figure 4.2: Kinetic correction ∆χ(k) to the ZFS for kBT/µ̄0 = 5 × 10−3 obtained from
eq. (4.26) [in units of the absolute value of the Landau susceptibility χL
and multiplied by the scaling factor (c/vF)

2], as a function of the nanopar-
ticle radius a (scaled with the Fermi wave vector kF). Inset: ∆χ(k) (in the
same above-mentioned units as in the main panel) corresponding to larger
sizes, showing the approach to the weakly-relativistic bulk value −1/3 [cf.
eq. (2.48)] and indicated by a dashed line.
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(2.48) for the bulk ZFS χ
(wr)
b (see also appendix sec. A.3), since in such a limit the con-

finement becomes irrelevant and the kinetic correction is the only weakly-relativistic
effect that needs to be taken into account. The oscillations as a function of kFa are
much larger than the bulk value, but remain considerably smaller than the typical
values of χ(nr) exhibited in fig. 4.1 (and even of the finite-N correction characterizing
the response of an ensemble of nanoparticles, see the blue line in fig. 4.1).

The correction ∆χ(k) of eq. (4.26) admits a one-dimensional semiclassical treatment,
analogous to that of the nonrelativistic ZFS treated in appendix D. In particular, the
smooth part of ∆χ(k) can be evaluated along the lines of eqs. (D.2)–(D.4), and we
find in the leading order in kFa, that the smooth part of the first sum behaves as
1/5 (kFa)2 (vF/c)2, while the second sum cancels the previous contribution. The
next-leading term of the smooth part of ∆χ(k) is of order (kFa)0, but for the same rea-
sons discussed in appendix D, the correct asymptotic value χ

(wr)
b of the bulk yielded

by the numerical calculation, is not recovered by our semiclassical approach.

4.3 SPIN-ORBIT COUPLING IN A SPHERICAL

NANOPARTICLE

While the product eigenbasis of H(0) used in sec. 4.1.2, and characterized by the set
{λ} = {n, l, mz, ms}, remained the appropriate one once the term H(µ) of eq. (4.2) was
taken into account, the inclusion of the SOC term H(so) of eq. (4.8a) makes it more
convenient to change to the eigenbasis Φ(±)

n,j,mj
(2.63) of the total angular momentum

J = L + S, characterized by the set {λ̃} = {n, j, mj, l} and written in terms of spinor
spherical harmonics defined in eq. (2.64).

The associated eigenenergies of H(0) in the case of a spherical confining potential
are E (0)

n,j,(±)
= E(0)

n,j±1/2, and therefore there is degeneracy between the 2j+1 dimen-
sional subspace {n, j, (+)} and the 2j+3 dimensional subspace {n, j+ 1, (−)}, as they
are characterized by the same quantum number l.

The coupled basis remains an eigenbasis of the subspace {n, j, (+)} ⊕ {n, j +
1, (−)} once H(so) is taken into account, while the eigenenergies change according
to

E (so)
n,j,(±)

= ⟨Φ(±)
n,j,mj

|H(so)|Φ(±)
n,j,mj

⟩ = h̄2

4m2c2a2

[
∓
(

j +
1
2

)
− 1
]

I(so)
n,j±1/2 , (4.27)

with the radial matrix element

I(so)
n,l = a2

∫ ∞

0
dr r [Rn,l(r)]

2 V′(r) . (4.28)

For the potential (2.4), we have

I(so)
n,l = V0 a3 [Rn,l(a)]2 . (4.29)
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In the limit where the confining potential approaches a hard wall, the product
V0 [Rn,l(a)]2 remains finite [155]. Using the limiting expressions (G.6) and (G.7c) we
obtain

I(so)
n,l =

h̄2

ma2 ζ2
n,l , (4.30)

and therefore

E (so)
n,j,(±)

=

[
∓
(

j +
1
2

)
− 1
]

ζ2
n,j±1/2

E2
0

mc2 , (4.31)

independently of V0.
Obviously, E (so)

n,1/2,(−)
= 0, since the symmetry of the s-states (l = 0) renders the SOC

ineffective. The degeneracy between the subspaces {n, j, (+)} and {n, j + 1, (−)} for
B = 0 is broken by H(so). For B ̸= 0, the remaining degeneracy within each subspace
is lifted according to the different values of mj.

4.3.1 PERTURBATIVE TREATMENT OF THE MAGNETIC FIELD

Once the term H(µ) of eq. (4.2) is taken into account, mj is still a good quan-
tum number, but the coupled basis is no longer an eigenbasis of the subspace
{n, j, (+)} ⊕ {n, j + 1, (−)}. Therefore, in order to treat the terms H(µ), H(dia), H(k),
H(ame) in the two lowest orders in B, the perturbative approach in magnetic field of
sec. 4.1.2 yielding the nonrelativistic ZFS has to be extended using the decomposition
in subspaces of fixed mj. These are represented by

{n, j, (+)}⊕{n, j + 1, (−)} = Sp
n,j+1/2,(d) ⊕∪mj=+j

mj=−jSe
n,j+1/2,mj

⊕ Sp
n,j+1/2,(u) (4.32)

in terms of the down (d) and up (u) one-dimensional subspaces

Sp
n,l,(d/u) = {n, l + 1/2, (−)}

∣∣
mj=∓(l+1/2) , (4.33)

and the two-dimensional subspaces Se
n,l,mj

subtended by the vectors |Φ(±)
n,l∓1/2,mj

⟩ of

the coupled basis, associated with the quantum numbers {n, l ∓ 1/2, mj, l} with l ̸= 0
and |mj| ⩽ l − 1/2. The labels p (e) stand for “product” (“entangled”), characterizing
the one (two)-dimensional subspaces where the coupled basis does (does not) coin-
cide with the product basis. The choice of using the index l (instead of j) in order to
label the subspaces is motivated in view of the book-keeping for the sum over states.
We notice that the definition (4.33) is also valid for the subspaces with l = 0, which
are not considered in the decomposition (4.32), but should be included when taking
the sum over states yielding a thermodynamic quantity like the ZFS.

The Hamiltonian (2.59), restricted to the subspaces Se
n,l,mj

, can be expressed by the
2 × 2 matrix

Hn,l,mj =


 E(+)

n,l,mj
−µBB ℵl,mj

−µBB ℵl,mj E(−)
m,l,mj


 . (4.34)
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In the diagonal matrix elements E(±)
n,l,mj

we separate the field-independent and the
field-dependent contributions as

E(±)
n,l,mj

= E(0)
n,l,(±)

+ δE(±)
n,l,mj

, (4.35)

with

E(0)
n,l,(±)

= E(0)
n,l


1 −

E(0)
n,l

2mc2


+ E(D)

n,l + E(so)
n,l,(±)

. (4.36)

The first term in the right-hand side of the above equation represents the B = 0
nonrelativistic eigenvalue together with its kinetic energy correction, as expressed in
eq. (4.23a). The second term is the Darwin correction, given for the case of V0 ≫ E0
by eq. (G.13). Recalling eq. (4.31), it is convenient to express the SOC contribution as

E(so)
n,l,(±)

= E (so)
n,l∓1/2,(±)

=

[
∓
(

l +
1
2

)
− 1

2

]
ζ2

n,l
E2

0
mc2 . (4.37)

The spin splitting in the subspace Se
n,l,mj

is

∆n,l = E(0)
n,l,(−)

− E(0)
n,l,(+)

= E(so)
n,l,(−)

− E(so)
n,l,(+)

= 2
(

l +
1
2

)
ζ2

n,l
E2

0
mc2 . (4.38)

In reducing the Hamiltonian (2.59) to its 2 × 2 form (4.34), we are assuming an in-
finitesimal field B, and neglecting the coupling between the subspaces Se

n,l,mj
and

Se
n′,l,mj

. This last approximation requires ∆n,l ≪ E(0)
n+1,l − E(0)

n,l ≃ 2πζn,lE0, where

we have used the asymptotic form of the zeros of jl(ζ). The previous condition
translates into (l + 1/2)(vF/c)2 ≪ 2πkFa, which is always verified in the weakly-
relativistic limit since lmax + 1/2 ≃ kFa (see appendix D). Nevertheless, our pertur-
bative treatment of H(so) can become problematic in cases of quasi-degeneracies be-
tween eigenstates E(0)

n,l and E(0)
n′,l′ corresponding to different quantum numbers. We

remark that H(so) does not induce a renormalization of the chemical potential, since
the shift −E0E(0)

n,l /mc2 associated with each of the subspaces Se
n,l,mj

is compensated

by the correction lE0E(0)
n,l /mc2 characterizing each of the two subspaces Sp

n,l,(d/u).
The B-dependent components of the diagonal matrix elements (4.35) are given by

δE(±)
n,l,mj

= E(µ)
l,mj,(±)

+ E(dia)
n,l,mj,(±)

+ δE(k)
n,l,mj,(±)

+ E(ame)
n,l,mj,(±)

. (4.39)

The first term can be obtained with the aid of the Wigner–Eckart theorem (2.65).,
which allows us to write

E (µ)
j,mj,(±)

= ⟨Φ(±)
n,j,mj

|H(µ)|Φ(±)
n,j,mj

⟩ = j + 1/2
j + 1/2 ± 1/2

µBBmj , (4.40)
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independently of n, and therefore

E(µ)
l,mj,(±)

= E (µ)
l∓1/2,mj,(±)

=

(
1 ∓ 1/2

l + 1/2

)
µBBmj . (4.41)

The diamagnetic contributions in eq. (4.39) follow from the matrix elements

E (dia)
n,j,mj,(±)

= ⟨Φ(±)
n,j,mj

|H(dia)|Φ(±)
n,j,mj

⟩ =
[

1 +
m2

j

j(j + 1)

]
µ2

BB2

8E0
Rn,j±1/2 , (4.42)

where Rn,l has been defined in eq. (2.30). Thus,

E(dia)
n,l,mj,(±)

= E (dia)
n,l∓1/2,mj,(±)

=

[
1 +

m2
j

(l ∓ 1/2)(l ∓ 1/2 + 1)

]
µ2

BB2

8E0
Rn,l . (4.43)

The diagonal matrix elements of H(k) in the subspace Se
n,l,mj

can be obtained, up to
quadratic order in B, by a similar expression to that of eq. (4.20), where the vectors
|Ψ(0)

n,l,mz,ms
⟩ of the product basis have to be replaced by the ones of the coupled basis,

|Φ(±)
n,j,mj

⟩, leading to

E(k)
n,l,mj,(±)

= −

(
E(0)

n,l

)2

2mc2 + δE(k)
n,l,mj,(±)

, (4.44)

with

δE(k)
n,l,mj,(±)

=−
E(0)

n,l

mc2

(
E(µ)

l,mj,(±)
+ E(dia)

n,l,mj,(±)

)
− (µBB)2

2mc2

[
m2

j

(
1 ∓ 1

l + 1/2

)
+

1
4

]
.

(4.45)

The last contribution to δE(±)
n,l,mj

in eq. (4.39) results from the diagonal matrix ele-

ment of H(ame) in the coupled basis, which with the help of eqs. (H.1), (4.30), and
(H.7), can be written as

E(ame)
n,l,mj,(±)

= E (ame)
n,l∓1/2,mj,(±)

= ∓µBB
E(0)

n,l

2mc2

mj(l ∓ 1/2 + 1/2)
(l ∓ 1/2)(l ∓ 1/2 + 1)

. (4.46)

We remark that the expression (4.41) of E(µ)
l,mj,(±)

does not simply follow from the re-

sult (4.12) for E(µ)
mz,ms , since the latter represents the exact energy shift associated with

H(µ) in the product basis, while the former is just the first-order perturbative correc-
tion in the coupled basis. Similarly, the perturbative correction (4.43) for E(dia)

n,l,mj,(±)

does not simply follow from the analogous correction (2.29) for E(dia)
n,l,mz

, nor does
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δE(k)
n,l,mj,(±)

in eq. (4.45) from E(k)
n,l,mz,ms

in eq. (4.20). In the same vein, the angular

magneto-electric correction E(ame)
n,l,mj,(±)

of eq. (4.46) follows from the matrix element

E (ame)
n,l∓1/2,mj,(±)

in the coupled basis.

The off-diagonal matrix elements of the restricted Hamiltonian (4.34) need to be
only obtained up to linear order in B. Thus, the nonrelativistic component does not
have a term associated with H(dia), but consists only of

⟨Φ(−)
n,l+1/2,mj

|H(µ)|Φ(+)
n,l−1/2,mj

⟩ = −µBB

√
(l + 1/2)2 − m2

j

2(l + 1/2)
, (4.47)

independently of n. The only off-diagonal matrix element of H(k) that we need to
consider is

⟨Φ(−)
n,l+1/2,mj

|
(
− 1

mc2

)
p2

2m
H(µ)|Φ(+)

n,l−1/2,mj
⟩ = µBB

E(0)
n,l

2mc2

√
(l + 1/2)2 − m2

j

l + 1/2
. (4.48)

The remaining contribution to the off-diagonal matrix element arising from the
angular magneto-electric coupling is given by eqs. (H.8) and (H.12) as

⟨Φ(−)
n,l+1/2,mj

|H(ame)|Φ(+)
n,l−1/2,mj

⟩ = −µBB
E(0)

n,l

4mc2

√
(l + 1/2)2 − m2

j

l + 1/2
. (4.49)

The off-diagonal matrix element of Hn,l,mj with the form of eq. (4.34) is determined
by the B-independent dimensionless parameter

ℵl,mj =

√
(l + 1/2)2 − m2

j

2(l + 1/2)


1 −

E(0)
n,l

2mc2


 . (4.50)

The diagonalization of Hn,l,mj yields the B-dependent low (l) and high (h) eigenen-
ergies within the subspaces Se

n,l,mj
, respectively given by

E(l/h)
n,l,mj

=
E(−)

n,l,mj
+ E(+)

n,l,mj

2
∓

√√√√√



E(−)
n,l,mj

− E(+)
n,l,mj

2




2

+ µ2
BB2 ℵ2

l,mj
. (4.51)

In analogy with the nonrelativistic parameters of eq. (4.14), the contributions to the
ZFS stemming from the (l/h) eigenstates within the subspaces Se

n,l,mj
are determined
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by

E(l/h)
n,l,mj

∣∣∣
B=0

= E(±)
n,l,mj

∣∣∣
B=0

= E(0)
n,l,(±)

, (4.52a)

∂E(l/h)
n,l,mj

∂B

∣∣∣∣∣∣
B=0

=
∂E(±)

n,l,mj

∂B

∣∣∣∣∣∣
B=0

= µB mj





(
1 ∓ 1/2

l + 1/2

)
1 −

E(0)
n,l

mc2


∓

E(0)
n,l

2mc2
l ∓ 1/2 + 1/2

(l ∓ 1/2)(l ∓ 1/2 + 1)



 ,

(4.52b)

∂2E(l/h)
n,l,mj

∂B2

∣∣∣∣∣∣
B=0

=
∂2E(±)

n,l,mj

∂B2

∣∣∣∣∣∣
B=0

∓
2µ2

B ℵ2
l,mj

∆n,l

=
µ2

B
4





(
1 +

m2
j

(l ∓ 1/2)(l + 1 ∓ 1/2)

)
Rn,l

E0


1 −

E(0)
n,l

mc2




− 1
mc2

(
4m2

j

(
1 ∓ 1

l + 1/2

)
+ 1
)
∓

(l + 1/2)2 − m2
j

(E0/mc2)E(0)
n,l (l + 1/2)3


1 −

E(0)
n,l

2mc2




2




.

(4.52c)

The eigenenergies of the down (up) state of the subspace Sp
n,l,(d/u) can be written

as
E(d/u)

n,l = E(0)
n,l,(−)

+ δE(d/u)
n,l , (4.53)

with

δE(d/u)
n,l = E(µ)

l,∓(l+1/2),(−)
+ E(dia)

n,l,∓(l+1/2),(−)
+ δE(k)

n,l,∓(l+1/2),(−)
+ E(ame)

n,l,∓(l+1/2),(−)
.

(4.54)
Therefore, in addition to the parameters (4.52), we have to consider the contributions
to the ZFS associated with the (d/u) states, which follow from

E(d/u)
n,l

∣∣∣
B=0

= E(0)
n,l,(−)

, (4.55a)

∂E(d/u)
n,l

∂B

∣∣∣∣∣∣
B=0

= ∓µB(l + 1)



1 −

E(0)
n,l

mc2 +
E(0)

n,l

2mc2
1

l + 3/2



 , (4.55b)

∂2E(d/u)
n,l

∂B2

∣∣∣∣∣∣
B=0

= µ2
B

{
l + 1

l + 3/2
Rn,l

2E0


1 −

E(0)
n,l

mc2


− 1

mc2 (l + 1)2

}
. (4.55c)

The weakly-relativistic ZFS follows from the evaluation of eq. (2.24) using the param-
eters of eqs. (4.52) and (4.55).
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4.3.2 RELATIVISTIC CORRECTION TO THE ZERO-FIELD

SUSCEPTIBILITY

The weakly-relativistic ZFS will have contributions from p and e eigenstates, and
it can therefore be written as χ(wr) = χp + χe. Performing the mj summation in

eq. (2.24) for each subset of eigenstates while keeping up to linear terms in E(0)
n,l /mc2,

we have

χp

|χL|
=− 9πE0

kFa

∞

∑
l=0

∞

∑
n=1



(l + 1)2


1 −

2E(0)
n,l

mc2
l + 1

l + 3/2


 f ′µ̄

(
E(0)

n,l,(−)

)

+


 l + 1

l + 3/2
Rn,l

2E0


1 −

E(0)
n,l

mc2


− 1

mc2 (l + 1)2


 fµ̄

(
E(0)

n,l,(−)

)


 , (4.56a)

χe

|χL|
=− 3πE0

kFa

∞

∑
l=1

∞

∑
n=1

l





l − 1/2
l + 1/2


l2


1 −

2E(0)
n,l

mc2
l

l − 1/2


 f ′µ̄

(
E(0)

n,l,(+)

)

+ (l + 1)2


1 −

2E(0)
n,l

mc2
l + 1

l + 3/2


 f ′µ̄

(
E(0)

n,l,(−)

)



+




Rn,l

E0


1 −

E(0)
n,l

mc2


− l2 − l + 1

mc2


 fµ̄

(
E(0)

n,l,(+)

)

+


 l + 1

l + 3/2
Rn,l

E0


1 −

E(0)
n,l

mc2


− l(l + 1)

mc2


 fµ̄

(
E(0)

n,l,(−)

)

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
 . (4.56b)

In the right-hand side of eq. (4.56) we identify the first term of the sums, contain-
ing f ′̄µ(E(0)

n,l,(±)
), which generalize the nonrelativistic paramagnetic contributions of

eqs. (4.17) and (2.33a) including the corresponding weakly-relativistic corrections.
Similarly, the second term of the sums, containing fµ̄(E(0)

n,l,(±)
), generalizes the non-

relativistic diamagnetic contribution of eq. (2.33b). The third term in the sum of
eq. (4.56b), containing fµ̄(E(0)

n,l,(+)
) − fµ̄(E(0)

n,l,(−)
), yields a paramagnetic contribution

of the Van Vleck kind, since it follows from the second-order perturbation correction
in H(µ) appearing in the coupled basis, together with a weakly-relativistic correction.

Equation (4.56) can be directly evaluated from the knowledge of the zero-field,
weakly-relativistic eigenenergies (4.36). However, since we are interested in the rela-
tivistic corrections to the ZFS, we will consider

∆χ = χ(wr) − χ(nr) , (4.57)
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where χ(nr) is defined in eq. (4.15), and thus associated with the mean chemical poten-
tial µ̄0 of the nonrelativistic problem, while the weakly relativistic χ(wr) is associated
with the renormalized mean chemical potential

µ̄ = µ̄0 + ∆µ(k) + ∆µ(D) , (4.58)

where ∆µ(k) and ∆µ(D) are, respectively, given by eqs. (4.22) and (G.14).
Furthermore, for calculational purposes, it is convenient to treat separately the cor-

rections from the p and e contributions. Thus, we write

∆χ = ∆χp + ∆χe , (4.59)

where χ
(nr)
p and χ

(nr)
e have been worked out in appendix I. In the weakly-relativistic

limit, eqs. (4.56), (I.3), and (I.4), together with the form (4.36) of the zero-field, weakly-
relativistic energy correction and that of the renormalized mean chemical potential
(4.58), yield to first-order in E0/mc2

∆χp

|χL|
=− 9πE0
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∞

∑
l=0
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∞
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1
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2E0
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, (4.60a)

∆χe
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Grouping the two components of eq. (4.59), we have
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}
. (4.61)

Similarly to the discussion presented after eq. (4.26), we remark that the first sum in
eq. (4.61) corresponds to the zero-field weakly-relativistic correction of the eigenen-
ergies arising from the kinetic and Darwin terms. It could then be directly obtained
by implementing, in the nonrelativistic ZFS expressions (4.17)–(2.33), the shift from
E(0)

n,l to E(0)
n,l [1 − E(0)

n,l /2mc2] + E(D)
n,l , with the corresponding renormalization ∆µ of the

chemical potential. The first contribution in the second sum of eq. (4.61) corresponds
to the effect of H(so), while the remaining contributions arise from the magnetic-field
dependence of H(k) and H(ame).

4.4 NUMERICAL EVALUATION OF THE RELATIVISTIC

CORRECTIONS

When we evaluate numerically the weakly-relativistic correction ∆χ, according to
eq. (4.61), as a function of kFa, we find no noticeable difference with the results for
the kinetic correction ∆χ(k) on the scale of fig. 4.2. We therefore conclude that ∆χ is
dominated by ∆χ(k).

As discussed at the end of the last section, it is straightforward to disentangle in
∆χ the different contributions arising from the various Hamiltonian components of
eq. (4.3), and thus we write

∆χ = ∆χ(k) + ∆χ(D) + ∆χ(so) + ∆χ(ame) , (4.62)

where the kinetic correction ∆χ(k) is given by eq. (4.26). The corrections arising from
the energy shift associated with the Darwin term, the spin-orbit coupling, and the
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Figure 4.3: Weakly-relativistic corrections to the zero-field susceptibility arising from
the (a) Darwin, (b) spin-orbit, and (c) angular magneto-electric compo-
nents, for kBT/µ̄0 = 5 × 10−3, obtained from eq. (4.63), as a function of
the nanoparticle radius a, using the same scaling and physical parame-
ters in fig. 4.2. The dashed lines represent the mean (smooth), leading-
order in kFa, values of the different corrections according to eq. (4.64).
The insets present the corrections ∆χ(so) [panel (b)] and ∆χ(so−ame) =

∆χ(so) +∆χ(ame) [panel (c)] corresponding to large sizes (in the same units
as in the main panels), showing the approach to the values predicted by
the one-dimensional semiclassical approach given in eq. (4.64).
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angular magneto-electric effect are given, respectively, by
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∆χ(ame)
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= − 12π E0

kFa mc2
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) ∞

∑
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E(0)
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(
E(0)
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)
. (4.63c)

The behavior of ∆χ(k), including its asymptotic dependence in (kFa)0, has been
discussed in sec. 4.2. The numerical evaluation of the other weakly-relativistic cor-
rections to the ZFS, given by eq. (4.63), is presented in the three panels of fig. 4.3. In
all three cases, the typical values are much smaller than those of ∆χ(k), and we ob-
serve oscillations as a function of kFa around mean values. Using a one-dimensional
semiclassical treatment, analogous to that of the nonrelativistic ZFS (see appendix D)
and the kinetic correction (see sec. 4.2), we can evaluate the leading-order corrections
in kFa in the three cases. For the Darwin, spin-orbit, and angular magneto-electric
contributions, in leading-order in kFa, we have, respectively,

∆χ
(D)

|χL|
= −1

5

(
u−1 − 2

) (vF

c

)2
, (4.64a)

∆χ
(so)

|χL|
= −

(vF

c

)2
, (4.64b)

∆χ
(ame)

|χL|
=
(vF

c

)2
, (4.64c)

with u =
√

E0/V0.
Using the physical parameters of gold, we have ∆χ

(D)
/|χL| = −0.27 (vF/c)2 (kFa),

which is in good agreement with the slope associated to the secular behavior of the
very small oscillations present in fig. 4.3(a). The unbounded behavior obtained for
large a is unphysical, since it prevents of achieving the bulk value χ

(wr)
(b) . As dis-

cussed in appendix G, our perturbative approach is problematic for the Darwin term
when treating the discontinuous electric field resulting from an abrupt electrostatic
potential that confines fermions in a reduced (bag) region of space [119].

According to eqs. (4.64b) and (4.64c), we have ∆χ
(so−ame)

= 0 to leading order
in kFa, in agreement with the numerical results [see inset in fig. 4.3(c)] and with the



82 Weakly relativistic corrections to the magnetic susceptibility of metallic
nanoparticles

expectation that in the infinite-volume limit the spin-orbit and magneto-eletric cou-
plings become irrelevant and eq. (2.48) accounts for the weakly-relativistic ZFS. The
cancelation between the mean values of ∆χ(so) and ∆χ(ame) occurs despite the fact
that the oscillations of the former are one order of magnitude larger than those of the
latter. The comparison between figs. 4.2 and 4.3(b) indicates that ∆χ(so) is typically
more than an order of magnitude smaller than ∆χ(k).

The suppression of the oscillations of ∆χ(so) for large nanoparticle sizes is faster
than that of ∆χ(nr) since in the first case, in addition to the thermal damping (2.41)
acting on the contribution of each family of classical periodic orbits, we have the fact
that the SOC becomes comparatively weaker as a increases. Indeed, from eqs. (2.12)
and (4.37) we have E(so)

n,l,(±)
/E(0)

n,l = [∓(l + 1/2) − 1/2]E0/mc2, indicating that the
relative importance of the SOC decreases with a.

4.5 HALF-SPHERICAL NANOPARTICLES

As discussed at the end of the last section, the high symmetry of the spherical poten-
tial translates into the smallness of the SOC contribution to the ZFS. Thus, a reduction
of these symmetries appears as a way to boost the relative importance of the SOC.
A first step in the process of progressive destruction of symmetries is to consider a
half-spherical confining potential. Such a geometry has the advantage that its nonrel-
ativistic eigenstates at zero magnetic field can be identified as a subset of those of the
sphere, and many of the analytical developments performed for the case of the sphere
can be readily adapted for the case in which the magnetic field is applied along the
symmetry axis. Moreover, it is in metallic nanoparticles with the approximate shape
of a half-sphere (HS) that the smallest g-factors (as low as 0.3) have been reported
[100].

The kinetic and Darwin corrections are expected to change minimally when trad-
ing the spherical geometry by the HS, while the angular magneto-electric effect was
shown, for the sphere, to be typically one order of magnitude smaller than the one
arising from the SOC. Therefore, in this section we concentrate on the effect of the
SOC for the ZFS for the reduced symmetry case of half-spherical nanoparticles. Since
the total angular momentum is no longer a conserved quantity, the use of the cou-
pled basis is of no aid to treat the SOC, and thus we present our calculations in the
product basis, appealing to a numerical diagonalization once the SOC is included in
the Hamiltonian.

Similar considerations to those discussed in sec. 2.1, concerning the passage from
the ideal model of electrons confined in a sphere to the case of realistic nanoparticles,
also apply for the HS geometries studied in this section.
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êθ

êϕ

Figure 4.4: Half-spherical geometry with the coordinate axes used in the text. In
red: Classical periodic orbit with the topological indices (ν, η) = (1, 5). In
the case of the sphere (i.e. upper-right example of fig. 2.3) the associated
trajectory is contained on the equatorial plane, while for the half sphere the
periodic orbit is now contained in two planes (whose intersections with
the HS are indicated by the two blue semi-circles).

4.5.1 NONRELATIVISTIC SUSCEPTIBILITY

We consider noninteracting electrons, described by a Hamiltonian H(0) of the form
(2.9a), confined by a potential with the shape of a HS, which, with the choice of coor-
dinates of fig. 4.4, writes

V(r, θ) = V0 [Θ(r − a) + Θ(θ − π/2)] . (4.65)

For finite V0 such a potential does not lead to a separable Schrödinger equation, and it
has the unphysical feature of taking two different values (V0 and 2V0) in the classically
forbidden region. However, these shortcomings are no longer found in the limit V0 →
∞ of hard walls, where the corresponding eigenstates of H(0) are characterized by the
set of quantum numbers {λ} = {n, l, mz, ms} with the condition l + mz odd, and the
associated spinors Ψ(HS)

n,l,mz,ms
(r) have the form (2.10) with the orbital wave function

given by
ψ
(HS)
n,l,mz

(r) =
√

2 Rn,l(r)Ymz
l (ϑ) . (4.66)

The radial wave function Rn,l(r) is given in eq. (2.13). The condition l + mz being
odd arises since only the eigenstates of the sphere which are odd with respect to the
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reflection off the z = 0 plane can be eigenstates of the HS, together with the property
Ymz

l (π − θ, φ) = (−1)l+mzYmz
l (θ, φ) fulfilled by the spherical harmonics. We remark

that the previous restriction excludes the isotropic l = 0 states. The corresponding
eigenenergies E(0)

n,l are given by eq. (2.12).
The nonrelativistic case can be worked out along the lines presented in chapters 2

and 3 for the sphere, as the application of a magnetic field B = B êz leads to the
same energy corrections of eqs. (4.10)–(4.13). The ZFS of the half-sphere follows from
eq. (2.24) by summing over mz and ms with the restriction of l + mz being odd. In-
cluding the spin-dependent component, we have

χ(nr)−(HS)

|χL|
=− 6π

kFa

∞

∑
l=0

∞

∑
n=1

l
{
(l2 + 2)E0 f ′µ̄(E(0)

n,l )

+
(l2 − 3l/4 − 1)

(l − 1/2)(l + 3/2)
Rn,l fµ̄(E(0)

n,l )

}
. (4.67)

The numerical evaluation of the above expression for the nonrelativistic ZFS of
the HS leads to a result (not shown) that is indistinguishable from that of the sphere
(see the black solid line in fig. 4.1) for the presented kFa-interval, while very small
differences appear for smaller values of kFa.

The concordance of the ZFS of the sphere and the HS for not too small values of kFa
is understandable from a semi-classical viewpoint. Indeed, in fig. 4.4 we see that the
periodic orbits of the HS can be put in correspondence with those of the sphere [70]
(see fig. 2.3) by simply symmetrizing one of the two containing planes with respect
to the x−y plane and the flux of both trajectories defined by a magnetic field oriented
along the z-axis is the same.

4.5.2 SPIN-ORBIT COUPLING FOR A HS CONFINING POTENTIAL

In the hard wall limit of the potential (4.65) defining a half-spherical box, the spin-
orbit coupling (4.6a) is given by the Hamiltonian

H(so)−(HS) = H(dome) +H(floor) , (4.68)

where

H(dome) =
1

2m2c2
V0

r
δ(r − a)S · L , (4.69a)

H(floor) =
1

2m2c2
h̄V0

ir
δ
(

θ − π

2

)
S ·
(
−êφ∂r + êr

1
r sin θ

∂φ

)
, (4.69b)

represent, respectively, the effect of the dome and the floor of the confining potential.
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Writing S · L = (S+L− + S−L+)/2 + SzLz,1 we see that the contribution SzLz leads
to spin-conserving matrix elements of H(dome) which are diagonal in the indices mz
and ms. That is,

⟨Ψ(HS)
n′,l′,mz,ms

|H(dome)|Ψ(HS)
n,l,mz,ms

⟩ = (−1)(n−n′) mz ms δl′,l ζn′,l ζn,l
2E2

0
mc2 , (4.70)

where we have used that sgn
[
j′l(ζn,l)

]
= (−1)n, independently of the value of l.

The remaining terms of S · L result in spin-flip matrix elements of H(dome) which are
nondiagonal in the indices mz and ms, i.e.,

⟨Ψ(HS)
n′,l′,m′

z,m′
s
|H(dome)|Ψ(HS)

n,l,mz,ms=±1/2⟩ =

(−1)(n−n′) δm′
z,mz±1 δm′

s,−ms
ζn′,l′ ζn,l

√
(l ∓ m′

z + 1)(l ± m′
z) I (dome)

l′,l,m′
z

2E2
0

mc2 ,

(4.71)

where we have defined

I (dome)
l′,l,m′

z
=
∫

dome
dϑ
(

Ym′
z

l′ (ϑ)
)∗

Ym′
z

l (ϑ) . (4.72)

Since l + mz and l′ + m′
z are both odd, the two spherical harmonics in the previous

equation have different parities. Therefore, the integral over the dome does not triv-
ially vanish in the case that interests us, where m′

z = mz ± 1, and then l and l′ have
a different parity. Equation (J.14), in appendix J, provides the result of the integral
(4.72).

The Hamiltonian component (4.69b) writes

H(floor) =
1

4m2c2
h̄2V0

ir
δ
(

θ − π

2

)

×
((

σx sin φ − σy cos φ
)

∂r +
1
r
(
σx cos φ + σy sin φ + σz cot θ

)
∂φ

)
, (4.73)

and thus, the condition δ(θ − π/2) results in vanishing spin-conserving matrix el-
ements, while the nondiagonal, spin-flip matrix elements are given, in the limit of
large V0, by

⟨Ψ(HS)
n′,l′,m′

z,m′
s
|H(floor)|Ψ(HS)

n,l,mz,ms=±1/2⟩

=
h̄2V0

4m2c2 δm′
s,−ms

∫ a

0
dr r

∫ 2π

0
dφ exp (±iφ)ψ

(V0,n′,l′)
m′

z
(r, θ=π/2, φ)

×
{
∓ ∂r +

1
ir

∂φ

}
ψ
(V0,n,l)
mz (r, θ=π/2, φ) . (4.74)

1L± = Lx ± iLy are the ladder angular momentum operators.



86 Weakly relativistic corrections to the magnetic susceptibility of metallic
nanoparticles

0 2 4 6 8 10
0

1

2

3

4

5

l

m
z

· · ·
}

mj =
1
2

· · ·
}

mj =
3
2

· · ·
}

mj =
5
2

Figure 4.5: The l-mz plane for positive mj = mz + ms for the half-spherical nanoparti-
cle. Each arrow pointing up (down) represents the orientation of the spin
ms = 1/2 (ms = −1/2) for the allowed states l + mz odd and l > mz. At
zero-field, the Hamiltonian of the half-spherical nanoparticle only couples
states with the same mj.

where ψ
(V0,n,l)
mz (r, θ, φ) and ψ

(V0,n′,l′)
m′

z
(r, θ, φ) converge, respectively, to the orbital wave

functions ψn,l,mz(r, θ, φ) and ψn′,l′,m′
z
(r, θ, φ) when V0 → ∞. Thus, the limiting condi-

tion (J.8) and the form (2.13) of the radial wave function for the hard wall case allow
us to write

⟨Ψ(HS)
n′,l′,m′

z,m′
s
|H(floor)|Ψ(HS)
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, (4.75)

where l and l′ have different parities and we have expressed the integral over the
radial coordinate through

Jn′,l′,n,l,mz =
∫ 1

0

dζ

ζ
jl′(ζn′,l′ζ)

(
l ∓ mz − 1

ζ
jl(ζn,lζ)− ζn,l jl+1(ζn,lζ)

)
. (4.76)

Recalling that jl(ζ) ∼ ζ l/(2l + 1)!! for small values of ζ, and that l = 0 is not allowed
for the HS, we verify that the integral in eq. (4.76) is divergence-free.

The axial symmetry of the HS translates in the conservation of the z-component
of the total angular momentum. The subspaces with different mj = mz + ms are
not coupled by H(so)−(HS), and within each of these subspaces the coupling between
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two eigenstates Ψ(HS)
n,l,mz,ms

and Ψ(HS)
n′,l′,m′

z,m′
s

of H(0) only occurs in the following cases:
(i) {l′, m′

z, m′
s} = {l, mz, ms}; (ii) ms = 1/2 and {m′

z, m′
s} = {mz + 1,−1/2}; (iii)

ms = −1/2 and {m′
z, m′

s} = {mz − 1, 1/2} (with l and l′ having different parity in
the last two cases). These restrictions can be graphically represented in the plane
l-mz (see fig. 4.5), where only the subspaces with positive mj are considered. The
diagonalization within each of these subspaces (those with negative mj follow from
Kramer’s degeneracy) leads to the eigenstates of H(0) +H(so)−(HS)

Ψmj,p(r) = ∑
n,l,ms=±1/2
l>|mj−ms|

l+mj−ms ̸=2̇

C
mj,p
n,l,ms

Ψ(HS)
n,l,mj−ms,ms

(r) , (4.77)

labeled by the half-integer mj and the positive integer index p, with the associated
eigenenergies Emj,p.

4.5.3 PERTURBATIVE TREATMENT OF THE MAGNETIC FIELD

Under the application of a weak magnetic field B, the energy Emj,p picks up a correc-
tion δEmj,p. According to eq. (2.24), the latter determines the ZFS of the HS through
the parameters

∂ δEmj,p

∂B

∣∣∣∣∣
B=0

= µB ∑
n,l,ms

∣∣∣Cmj,p
n,l,ms

∣∣∣
2 (

mj + ms
)

, (4.78a)

∂2 δEmj,p

∂B2

∣∣∣∣∣
B=0

=
µ2

B
2E0

∑
n,l,ms

∑
n′

+1

∑
i=−1

(
C

mj,p
n′,l+2i,ms

)∗

× C
mj,p
n,l,ms

Rn′,l+2i,n,l Y
mj−ms

l,i Θ
(
l + 2i − |mj − ms|

)
, (4.78b)

where the sums over {n, l, ms} have the same restrictions as in eq. (4.77), and the
Heaviside function prevents the consideration of unphysical terms having l′ = l − 2.
The angular matrix elements are calculated over the whole sphere, where the diag-
onal ones Ymz

l,0 = Ymz
l are given by eq. (2.31), while the nonvanishing off-diagonal

(l′ = l ± 2) ones can be expressed, for i = ±1, as

Ymz
l,i = − 1

4(l + 1/2 + i)

√
[(l + 1 + i)2 − m2

z] [(l + i)2 − m2
z]

(l + 3/2 + i)(l − 1/2 + i)
. (4.79)

The radial matrix elements are

Rn′,l′,n,l =
1
a2

∫ a

0
dr r4 Rn′,l′(r) Rn,l(r) . (4.80)

The diagonal ones {n′, l′} = {n, l} are given by eq. (2.30), while the off-diagonal
ones can be obtained by numerical integration or by recurrence formulas, as shown
in appendix J.3.
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Figure 4.6: Red dots: SOC correction ∆χ(so)−(HS) to the nonrelativistic ZFS χ(nr)−(HS)

in a half-sphere, from eqs. (2.24) and (4.78), as a function of kFa. Black
line: reproduction of the result of fig. 4.3(b) obtained for the sphere using
eq. (4.63b).

4.5.4 SPIN-ORBIT CORRECTION FOR THE HALF-SPHERE

In fig. 4.6 we present the numerical evaluation of the SOC correction ∆χ(so)−(HS) to
the nonrelativistic ZFS χ(nr)−(HS), according to eqs. (2.24) and (4.78), as a function of
kFa (red dots). These results are indistinguishable from those corresponding to the
SOC correction for the sphere presented in fig. 4.3(b) and reproduced by the black
line of fig. 4.6. The symmetry reduction in going from the sphere to the HS is thus
not enough to yield a significantly enhanced SOC correction in the last case. Upon
increasing a, the SOC mixing of energy levels of the HS with different (n, l) is fa-
vored. But such a tendency is countered by the relative weakening of the SOC matrix
elements, as discussed at the end of sec. 4.4.

The ZFS correction ∆χ(so)−(HS), which is very close to the corresponding correction
in the sphere, can be very well approximated by only considering the energy shifts
arising from only the diagonal (in mz, ms, and n) matrix elements (4.70), as well as
the corresponding diagonal SOC matrix elements for the sphere in the product basis
(not shown). These accordances indicate that for the sphere, as well as for the HS, for
the considered kFa values, the SOC can be accounted for in first-order perturbation
theory.



4.6 Conclusions for chapter 4 89

4.6 CONCLUSIONS FOR CHAPTER 4

Motivated by measurements of the magnetization in ensembles of noble-metal
nanoparticles [16, 42] and the g-factor of an individual nanoparticle [99, 100], together
with the theoretical proposals pointing to the key role played by the spin-orbit cou-
pling in these experimental results [90, 103, 104], we considered in this chapter the
relevance of such a relativistic effect on the magnetic response of confined electrons.
In particular, we attempted to quantify the spin-orbit effect by going beyond the pre-
vious phenomenological approaches that assigned arbitrary values to its strength.
We focused on the extrinsic SOC originating from the confining potential, treating
model systems, and then discussing their applicability to the case of metallic nanopar-
ticles of different shapes. The relevance of the SOC in the magnetic response was
gauged against other weakly-relativistic corrections and finite-size effects inherent to
the mesoscopic regime.

For spherical geometries, the inclusion of the SOC and other relativistic effects
could be readily done, at the quantum level, by working in the coupled basis of the
total angular momentum, within a perturbative treatment of the magnetic field.

Analogously to the nonrelativistic zero-field susceptibility characterizing electrons
confined in a spherical geometry from chapter 3, the weakly-relativistic corrections
present oscillations as a function of kFa between paramagnetic and diamagnetic val-
ues, which are typically much larger than the background that sets the bulk response.
The oscillations corresponding to the SOC contribution are out-of-phase with respect
to those of the nonrelativistic ZFS. The typical values of the SOC contribution are
more than an order of magnitude larger than the ones due to the magneto-electric
coupling, and more than an order of magnitude smaller than those arising from the
kinetic energy correction. The latter, being the dominant weakly-relativistic correc-
tion to the ZFS, remains much smaller than the nonrelativistic ZFS. These small val-
ues of the weakly-relativistic corrections stem from their (vF/c)2 dependence, while
the reduced effect of the SOC correction is associated with the high spatial symmetry
of the spherical geometry.

In order to study the impact of a symmetry reduction on the magnetic response,
the formalism developed to treat the SOC in the sphere was adapted to the case of a
half-sphere. The nonrelativistic ZFS was shown to be the same for the sphere and the
half-sphere in the semiclassical limit of large kFa, as can be readily understood from
semiclassical arguments. The inclusion of the SOC in the HS leads to corrections of
the ZFS which are very close to those of the sphere, and therefore, much smaller than
the correction arising from the kinetic energy shift and the typical values of the non-
relativistic ZFS. The symmetry reduction when going from the spherical geometry to
that of the HS is not enough to render relevant the SOC effects due to the electron
confinement. Even if the HS confinement favors the SOC mixing of the unperturbed
states in comparison with the case of the sphere, such an effect is offset by the generic
suppression of the SOC matrix elements with the parameter (vF/c)2 and the size a.
The SOC is thus weak enough to remain perturbative, and therefore it does not in-
duce the transition in the statistical properties of the spectra necessary to reverse the
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sign of the magnetic response of a nanoparticle ensemble.
Further symmetry reduction would lead to more quasi-degeneracies in the B = 0

spectrum, enhancing the effect of the SOC. However, the cases of the quarter- and
eighth-sphere, which can be worked out similarly to that of the HS, do not show a
significant increase of the SOC contribution to the ZFS [156]. The case of cylindrical
nanoparticles is important (see app. C.2 for the non-relativistic case), as it is the geom-
etry considered in ref. [42]. At least in the most symmetric case where the magnetic
field is oriented along the cylinder axis, the SOC due to the confinement seems to
have minor importance [156]. Moving forward from integrable to chaotic geometries
will increase the importance of the SOC mixing, but at the same time will be accom-
panied by a reduction of the typical values attained by the nonrelativistic ZFS [85,
86].
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5.1 SUMMARY

Several experiments have reported very unusual magnetic properties of ensembles of
gold nanoparticles surrounded by organic ligands, including ferromagnetic, param-
agnetic, and (large) diamagnetic responses [16, 17]. Motivated by the limited theoret-
ical understanding of such diversity in magnetic behavior, we have investigated the
electronic magnetism in confined metallic systems. Focusing on the proposal that or-
bital magnetism is enhanced by quantum size effects, we have constructed a theoret-
ical model to describe the electronic magnetic response of individual and ensembles
of metallic nanoparticles.

The positively-charged ion lattice was treated within a jellium model and the
electron-electron interaction was approximated by adopting a mean field confine-
ment potential. The valence electron dynamics was described by a Hamiltonian that
includes the weakly relativistic and non-relativistic interactions with the magnetic
field in the limit of large cyclotron radius compared to its size (Rc ≫ a). The effect of
coating agents was not included in this work, where static electric and magnetic fields
are studied. The calculation of the energy spectrum and the thermodynamic quan-
tities such as the magnetic susceptibility and magnetic moments of these nanoparti-
cles were based on quantum perturbation theory together with semiclassical devel-
opments. The semiclassical expansion of the free energy allows to take into account
the canonical corrections which are important for finite sizes.

In chapter 3, we investigated through a theoretical approach the possibility that the
observed magnetization of an ensemble of gold nanoparticles could be explained by
an orbital contribution enhanced by the quantum confinement. We calculated the or-
bital component of the zero-field susceptibility (ZFS) for an individual nanoparticle
using a semiclassical expansion of the free energy, which coincides very well with the
quantum perturbative approach in the grand canonical ensemble [22, 68]. The domi-
nating grand canonical contribution to the ZFS resulted in a function of the radius of
the nanoparticle with rapidly alternating sign, changing the response between para-
magnetic and diamagnetic, and attaining values that are several orders of magnitude
larger than the Landau susceptibility. When considering the ensemble average of
a large number of non-interacting nanoparticles with Gaussian size distribution, the
ZFS results to be always paramagnetic, a behaviour stemming from the canonical cor-
rections associated with fine-size effects. Under a semiclassical treatment, we show
that the ZFS of the ensemble follows a Curie-type law for small nanoparticle sizes
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and/or low temperatures. Importantly, we compared our theoretical prediction of
the magnetization of an ensemble of nanoparticles with the measurements of existing
experiments that observed a large paramagnetic response [34, 35, 38] and we found a
good agreement with our microscopic theory (without any fitting parameter).

As the calculated orbital response only exhibited a paramagnetic susceptibility, the
diamagnetism and ferromagnetism observed in other experiments remained unex-
plained. Motivated by the theoretical suggestion that spin–orbit coupling could lead
to a sign inversion of the magnetic susceptibility [90], we studied in detail such a
possibility in chapter 4. As spin–orbit coupling can have various possible origins, we
focused our analysis on the most relevant case, evaluating the contribution of SOC
on the ZFS influenced by the self-consistent confinement potential. We quantified the
contribution of the SOC to the ZFS by gauging it against the ones generated by other
weakly-relativistic corrections, including the angular magneto-electric coupling, the
Darwin term, and corrections to the kinetic energy under a magnetic field. Two ideal
geometries were considered, the sphere and the half-sphere, focusing on the expected
increased role of the spin-orbit coupling upon a symmetry reduction. The matrix ele-
ments of the different weakly-relativistic corrections were obtained and incorporated
in a perturbative treatment of the magnetic field, leading to tractable semi-analytical
and semiclassical expressions for the case of the sphere, while a numerical treatment
becomes necessary for the half-sphere. The correction to the zero-field susceptibility
arising from the spin-orbit coupling in the sphere is quite small, and it is dominated
by the weakly-relativistic kinetic energy correction, which in turn remains consider-
ably smaller than the typical values of the nonrelativistic zero-field susceptibility. We
showed that the symmetry reduction going from the sphere to the half-sphere does
not translate into a sign inversion of the total susceptibility.

Most of the theoretical studies considering the effect of the SOC on the symme-
tries of the Hamiltonian, and its physical consequences, treat the strength of such
interaction as a phenomenological parameter. Our work took a completely different
approach, trying to first obtain an accurate microscopic estimation of the coupling
strength in particularly simple systems, and then determining its effect on measur-
able quantities. At the theoretical level, our work opened new avenues to explore,
some of them sketched in the next section. At the same time, we expect that our
results will motivate more systematic experimental studies, specially concerning the
different temperatures regimes, the importance of the nanoparticles size distribution
and the characteristics of the spatial organization (separation between nanoparticles).

5.2 OUTLOOK

The plethora of reported magnetic responses described in chapter 1 are diverse and
cover many possible regimes. It is possible that there is no unique theory that can
explain all the observed behaviors. Careful experimental investigations and theoreti-
cal analysis still need to be carried out. Many modern techniques like spin-polarized
STM and magnetic force microscopy (MFM), spin-polarized tunnel microscopy (SP-
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STM) and nanoSQUIDS could provide some insight to the magnetic behavior of sin-
gle or pairs [146] of nanoparticles and could provide some evidence of the orbital
origin of the magnetic response [17, 62].

Recent experiments have found that an instantaneous giant magnetic moment can
be induced in ensembles of gold nanoparticles when interacting with pulsed light
in the absence of an applied magnetic field [157]. Based on hydrodynamic and ab-
initio calculations, it is claimed that this large magnetic moment originates from the
coherent orbital motion of electrons [157]. Further analysis is needed to understand
if the static and time-dependent cases are comparable and the calculations from this
thesis would have to be adapted to treat dynamical fields.

The description presented in this thesis is limited and more ingredients can still be
explored and adapted. Mainly, we ignored the effects of electron-electron interactions
beyond a mean-field treatment, as well as intraparticle interactions. The experimen-
tally observed ferromagnetic responses in lattices of gold nanoparticles [49] suggest
that interactions between nanoparticles may induce a collective macroscopic behav-
ior. Our model indicates that nanoparticles with slightly different size could have
radically different orbital magnetizations. If that is the case, some nanoparticles could
possess large magnetic moments, leading to important dipole-dipole interactions be-
tween nanoparticles in a sample. Such an interaction suggests a complex model of
random magnetic moments reminiscent to that of spin-glasses, with the complication
that each nanoparticle does not hold a magnetic moment at zero-field. Ferromag-
netic responses from dipole-dipole interactions of a dimer were theoretically investi-
gated in ref. [146], where it was found that aligned and anti-aligned magnetic-ordered
phases are possible when the absolute values of the susceptibilities are of the order
of 1, susceptibilities that have only been observed in ferromagnetic materials.1 For a
linear chain of identical paramagnetic particles [146], the values of the susceptibility
decrease with the size of the chain until reaching a plateau. However the tempera-
tures and dispersion in sizes needed to observe a magnetic ordering are not necessar-
ily reached by most experiments. If the spatial ordering of nanoparticles plays a key
role, other interactions may be necessary, possibly enhanced by the ligand-coating. It
was also found [146] that for small susceptibilities, the diamagnetic behavior of the
dimer was favored when the magnetizations are on the same axis, but a careful study
has to be carried out when generalizing this result to the case of 3D ensembles of
nanoparticles.

For large magnetic fields, the magnetic response of metals is described by the De
Haas-Van Alphen effect [23, 24, 159], where the magnetization oscillates as a func-
tion of the applied field. In these systems, anomalies in the oscillating magnetiza-
tion of gold and other noble metals had to be explained by an inversion of the B
and H fields [160, 161], leading to non-linear phenomena sometimes known as the
Shoenberg effect. In astrophysical systems like neutron stars and white dwarfs, the

1For negative susceptibilities, χ ≈ −1/4π is observed in superconductors, in which the magnetic
field is null inside the material (perfect diamagnetism). However lower susceptibilities have been
reported [158] and are of interest for the development of metamaterials.
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fields are intense enough, and this effect has been invoked to explain the spontaneous
magnetization of these astronomical bodies, an effect known as the Landau orbital
ferromagnetism [162]. As similar oscillations appear in finite systems, even at low
magnetic fields, one can wonder if the Shoenberg effect is also responsible for locking
the magnetization of metallic nanoparticles and producing the observed hysteresis
loops. The difficulty of this hypothesis is that it requires absolute values of the ZFS
of the order χ ≈ 1/4π [163]. This possibility has been partially explored [156], but
requires very special conditions (small size dispersion, low temperatures) that could
be of interest for future experiments.

Large diamagnetic susceptibilities were experimentally observed in ensembles of
gold nanorods [42]. If confinement corrections to the spin-orbit coupling contribution
are not the origin of this response, one may wonder if the shape of the nanorods
is playing a significant effect. We have shown that cylindrical nanoparticles have
a very similar magnetic response to that of the sphere when the magnetic field is
parallel to its long axis, described in appendix C.2. Despite that, if the magnetic field
is aligned in other directions, contributions of the Van Vleck kind become important,
which amounts to include the contribution of quasiperiodic orbits (and increasing the
calculation time). If the geometry is related to the diamagnetic response, the details
of the faceting of the nanoparticles could also have an important effect. However,
chaotic behavior and disorder is expected to reduce the magnetic response [83–85, 87,
88].

These limitations highlight the difficulty of providing a complete picture. It re-
mains to be studied, if any of these effects is enough to produce a change in the
oscillating susceptibility necessary to produce a non-paramagnetic ensemble aver-
age. However we do not discard the possibility, that some combination of these
effects: dipole-dipole interactions, orbital Landau ferromagnetism and geometrical
effects could work together to provide a large spectrum of magnetic response, sensi-
tive to all kinds of experimental conditions. We propose that all three effects should
be carefully theoretically studied.

In this thesis, we have also approximated the ionic lattice by a charged jellium and
we have neglected contributions from the band structure. In our calculations, quan-
tum perturbation theory was carried out by differentiating the spectrum in a per-
turbative regime. The introduction of lattice-like models leads to interesting fractal
spectra like the Hofstadter butterfly, found in a 2D tight binding square lattice with
a magnetic field [164]. Fractality is not an issue as we are considering finite systems,
where the spectrum remains differentiable [165]. The effects of the band structure of
gold can also provide some corrections to the spectrum and could be tackled with
pseudopotentials as a multipole expansion [114].

The effect of ligands was not considered in this work. The idea of spontaneous
magnetic moments produced by a ”Fermi hole” in the d shell, created by an electron
leaving a surface atom when forming a covalent bond with the ligand atoms, was
indeed one of the first theories proposed [34]. This idea has been invoked in different
ways [37, 38, 40, 64]. However the modification of the density of states by the organic
ligands be can be quite complex, specially in the case of strong chemical bonds [166].
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If by charge transfer mechanisms, the ligands modify significantly the work function
of gold [167] or behave in such a way that the d band modifies the metallic behav-
ior of electrons in gold [64, 168], then further analysis has to be carried to extend
our theory taking into account those effects as a function of the different capping
agents. A certain number of first principle calculations of the different energy scales
in ligand-metal interactions have been developed [166, 168] and could be adapted to
the description of gold nanoparticles. Nevertheless, not every ligand that has been
explored experimentally is expected to modify the metallic behavior significantly [42,
54, 63, 108].

Lastly, we indicate that calculations carried out in this thesis can be certainly
adapted to semiconducting quantum dots. The band structure of semiconductors
leads to a rich effective dynamics described by stronger spin–orbit couplings. In el-
ements like silicon, a spin–orbit coupling emerges in confined systems [169, 170],
which is usually negligible in the bulk. When describing quantum electronic trans-
port in these systems, the occupation of the dots is very sensitive to the energy scales
and selection rules, leading to Coulomb [171] and spin blockades [172, 173] of the cur-
rent. Early calculations show that spin–orbit and angular magnetoelectric couplings
can lead to novel blockade effects in coherent double quantum dots [156]. An inves-
tigation of the orbital magnetic and SOC effects in these structures can be motivated
considering the implications of semiconductors for nanotechnology and quantum in-
formation processing.
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ZERO-FIELD SUSCEPTIBILITY OF A
FREE ELECTRON GAS A

In this appendix we derive the non-relativistic and weakly relativistic Landau suscep-
tibilities, working in the grand-canonical ensemble. In sec. A.1.1 we obtain the bulk
ZFS of metals following the quantum mechanical formalism. In sec. A.2 we recover
the Landau (orbital susceptibility) from the knowdledge of the density of states as a
way to illustrate the semiclassical calculation. In sec. A.3 we calculate the relativistic
bulk ZFS in order to retrieve the corrections to the bulk susceptibility in the weakly
relativistic limit.

According to classical mechanics, Bohr-Van Leeuwen theorem [19, 20] states that at
thermal equilibrium, the magnetization of a finite system must be null. Thus diamag-
netism, paramagnetism, and even ferromagnetism, can only be explained by quan-
tum mechanics.

The orbital magnetic susceptibility of a three dimensional Fermi gas is known as the
Landau susceptibility. This quantization leads to a the bulk zero-field susceptibility
of metals given by χ

(nr)
b = 2|χL|, which is the sum of the orbital contribution given by

−|χL| and the spin contribution coming from the Zeeman term (2.57) known as Pauli
susceptibility which is 3|χL|.

Lev Landau in his paper of 1930 [23, 24], not only derived the orbital susceptibility
of metals at small magnetic fields but also predicted the oscillations that appear at
high magnetic fields, the so called De Haas–Van Alphen effect, which was observed a
few months after in the same year [159]. The latter regime can be well described using
semiclassical approximations, allowing to measure the Fermi surface of metals. Anal-
ogously, for confined systems one is allowed to expand the susceptibility in terms of
semiclassical orbits as long as kFaT/TF ≪ 1, where TF is the Fermi temperature.

A.1 NON-RELATIVISTIC LANDAU LEVELS

From Landau’s quantization, we know that free electrons under a uniform magnetic
field B = Bêz are quantized in terms of a principal quantum number nL, the spin
projection ms and the wavevector kz along the direction of the field, such that the
energy of the Landau levels reads [24]

E(L)
nL,ms(kz) = h̄ωc

(
nL + ms +

1
2

)
+

h̄2k2
z

2m
, (A.1)
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which is the result from the Pauli Hamiltonian in the absence of a confining potential,
V(r) = 0, under symmetric gauge. Note that a third quantum number related to the
angular momentum is missing from the expression of the energy, which contributes
to the degeneracy of the states.

As we will be taking derivatives with respect to the magnetic field, let us rewrite
the Landau levels of eq. (A.1), in terms of B and the Bohr magneton µB as

E(L)
nL,ms(kz) =

h̄2k2
z

2m
+ 2µBB(nL + 1/2 + ms). (A.2)

The third hidden quantum number mz does not appear in the expression of the en-
ergy. The level degeneracy, for fixed kz, due to this missing quantum number, is

G(B) = µBBmA/πh̄2, (A.3)

where A is the area that is transversal to the field [24].

A.1.1 NON RELATIVISTIC BULK SUSCEPTIBILITY

In order to calculate the bulk ZFS, we use the formulas for the grand canonical poten-
tial, analogous to eq. (2.22) and (2.24). As we are calculating the bulk contribution, we
can take the thermodynamic limit, where the choice of thermodynamical potential is
irrelevant.

For the Landau levels (A.2), we have that

Ω(µ, B) = −β−1
∫ ∞

−∞

dkz

2πL−1

∞

∑
nL=0

∑
ms=± 1

2

G(B) ln
(

1 + e−β[E(L)
nL,ms (kz)−µ]

)
, (A.4)

where L is the dimension of the box in the direction of the field, such that V = AL.
Yet we have to be careful as the sum over nL in eq. (A.4) is divergent at zero field.
Let us start by doing the sum over ms as we note that the energies are just the same
shifted by 1 quanta h̄ωc, so we have

Ω(µ, B) = −β−1
∫ ∞

−∞

dkz

2πL−1 G(B)

×
{

ln
(

1 + e−β[E(L)
0 (kz)−µ]

)
+ 2

∞

∑
nL=1

ln
(

1 + e−β[E(L)
nL (kz)−µ]

)}
, (A.5)

where E(L)
nL (kz) = 2µBBnL + h̄2k2

z/2m. Next we develop the second sum using Euler-
McLaurin formula (for a function Fn that vanishes as n → ∞)[24], it states that

∞

∑
n=1

Fn ≈
∫ ∞

0
F (x)dx − 1

2
F (0)− 1

12
F′(0) (A.6)
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which allows us to write

Ω(µ, B) ≈ Ω0 − β−1
∫ ∞

−∞

dkz

2πL−1 G(B)

×
{

ln
(

1 + e−β[E0(kz)−µ]
)
− ln

(
1 + e−β[E0(kz)−µ]

)
+

2µBBβ

6
fµ

(
h̄2k2

z
2m

)}
,

(A.7)

where fµ(E) is the Fermi-Dirac distribution and

Ω0 = −2β−1
∫ ∞

0
dx
∫ ∞

−∞

dkz

2πL−1
G(B)
2µBB

ln
(

1 + e−β[x+ h̄2k2
z

2m −µ]

)
(A.8)

does not depend on B.
Let us calculate the susceptibility, noting that we only want terms that remain at

B = 0,

χ
(nr)
b =

β−1

V
∫ ∞

−∞

dkz

2πL−1 2D′(B)
µBβ

3
fµ

(
h̄2k2

z
2m

)
(A.9)

substituting G(B) yields

χ
(nr)
b =

2mµ2
B

3π2h̄2

∫ ∞

0
dkz fµ

(
h̄2k2

z
2m

)
=

2mµ2
B

3π2h̄2 kF = 2|χL| (A.10)

where we changed the limits of integration and assumed a degenerate electron gas.
As discussed in the introduction, the result is χ

(nr)
b = χP + χL, where the Pauli sus-

ceptibility is χP = |χL|.

A.2 LANDAU ORBITAL SUSCEPTIBILITY FROM THE

DENSITY OF STATES

Let us check the case where there is no spin interaction. When there is only the orbital
contribution the energies are

E(L−orb)
nL (kz) = 2µBB(nL + 1/2) +

h̄2k2
z

2m
, (A.11)

where the degeneracy per level is 2G(B) due to spin degeneracy.
To provide an alternative derivation, let us calculate the Landau susceptibility from

the density of states. Starting from the definition (2.14) and the spectrum of the Lan-
dau levels (A.11) we derive the density of states ϱ

(orb)
b for the bulk

ϱ
(orb)
b (E) =

1
2

ϱ0(h̄ωc)
nmax

∑
nL=0

√√√√ 1

E/h̄ωc −
(

nL + 1
2

) (A.12)
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Figure A.1: Density of states of a gas of electrons in a magnetic field (solid line). The
dashed line corresponds to the density of states without magnetic field.

where we have integrated over kz and ϱ0(E) is the 3D unconfined density of states
from eq. (2.47). The sum over nL goes up to the upper bound of the relation
nmax < E/h̄ωc − 1/2. For a comparison between the free solution and ϱ

(orb)
b see fig-

ure A.1. Under a static magnetic field, the singularities in the density of states appear
whenever a new Landau level (A.11) is available.

The expression (A.12) is not very convenient due to the magnetic field-dependent
limit of the sum. In order to calculate the susceptibility we introduce Poisson’s sum-
mation formula (PSF) which allows us to approximate discrete sums. Let F (x) and its
derivatives be bounded and continuous except maybe for a finite number of points,
then

nmax

∑
nL=nmin

F (nL) =
∞

∑
ηL=−∞

∫ nmax+1/2

nmin−1/2
F (x)e2πiηLxdx, (A.13)

where nmin is the lower limit of the sum.
The PSF allows us to rederive the density of states (2.14) but this time integrating

first over n and performing a Gaussian integral in kz, we obtain

ϱ
(orb)
b (E) = ϱ0(E) + ϱ0

(
h̄ωc

2

) ∞

∑
ηL=1

(−1)ηL

√
1

ηL
cos

(
2πηL

E
h̄ωc

− π

4

)
. (A.14)

The phase shift of π/4 in the argument of the cosine in eq. (A.14) is generally called
a Maslov index and it depends on the dimensionality as it does not appear for the
2D case, cf. ref. [88]. Note that we are able to write the density in the form of a trace
formula as in (2.15).

For the case h̄ωc ≪ kBT ≪ µ we can use directly (A.12) and the Euler-MacLaurin
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formula [24]. The thermodynamic potential (2.18) in this limit is

Ω(T, µ, B) = Ω0(µ) + 2V
mω2

c
48π2 kF, (A.15)

with Ω0 independent of B. Now we can obtain the ZFS from eq. (1.3), which recovers
χL.

A.3 RELATIVISTIC LANDAU LEVELS AND

SUSCEPTIBILITY

The relativistic energies are easily obtained for systems where there are only mag-
netic fields (no electric potential) [137] from a Foldy–Wouthuysen transformation (see
app. E.3). The relativistic energy spectrum reads

E(rel)
n,ms (kz) =

√
(mc2)2 + 2mc2E(L)

nL,ms(kz)− mc2 (A.16)

where we shifted the energies by mc2 in order to recover the non-relativistic energy at
first order in (vF/c)2. The degeneracy of each level is still G(B) (A.3). The calculation
of the thermodynamic potential is analog to that of the first section, after applying
the Euler-MacLaurin formula, it yields

Ω(rel)(µ) = Ω(rel)
0 −

∫ ∞

0

dkz

πL−1 G(B)
µBB

3

fµ

(√
(mc2)2 + (h̄kzc)2 − mc2

)

√
1 +

(
h̄kz

mc

)2
, (A.17)

where

Ω(rel)
0 =− 2β−1

∫ ∞

0
dx
∫ ∞

−∞

dkz

2πL−1
G(B)
2µBB

× ln
(

1 + exp
{
−β

[√
(mc2)2 + (h̄kzc)2 − mc2 − µ

]})
, (A.18)

independent of B.
The bulk zero-field relativistic susceptibility reads

χ
(rel)
b =

2mµ2
B

3π2h̄2

∫ ∞

0
dkz

fµ

(√
(mc2)2 + (h̄kzc)2 − mc2

)

√
1 +

(
h̄kz

mc

)2
= 2|χL|

(
h̄kF

mc

)−1

arcsinh
(

h̄kF

mc

)
,

(A.19)
where arcsinh(x) is the inverse of the hyperbolic sine.

Eq. (A.19) coincides with that of ref. [132] and recovers χ
(wr)
b (2.48) in the weak

relativistic limit.





SEMICLASSICAL DENSITY OF STATES
OF A SPHERICAL WELL B

In this appendix we calculate the semiclassical density of states of a spherical bil-
liards. Michael V. Berry and Michael Tabor based their formalism on the EBK
(Einstein–Brillouin–Keller) quantization [126, 174, 175], which is a generalization of
the old Bohr-Sommerfeld quantization scheme. It allows to convert the discrete sum
for the density of states (2.14) into integrals over action-angle variables or canonical
coordinates, without passing explicitly by the path integral formalism [123]. We start
this chapter by introducing action-angle variables and EBK quantization in sec. B.1,
followed from the purely classical treatment of the spherical billiards in sec. B.2. In
section B.3 we compare the EBK quantization with the quantum solution of an elec-
tron in a sphere with hard walls. The semiclassical density of states without magnetic
field is recovered in sec. B.4 and with magnetic field in sec. B.5.

B.1 EBK QUANTIZATION

Suppose we have a separable classical Hamiltonian H(cl) with coordinates indexed by
i∈{1, 2, · · · , d}, where each coordinate pair variable-momentum is written qi and pi,
respectively. If every (qi, pi) pair is described by a closed orbit or a periodic function,
then we can write the angle-action variables {Si} of the system as [176]:

Si =
∮

pidqi ; ∀i (B.1)

where
∮

refers to the integral over the smallest closed trajectory of the variable i. In
phase space, the action-angle coordinates fill a d-torus [177]. Sometimes the action-
angle variables (B.1) are simply called action variables as are equivalent to the cal-
culation of the action S =

∮
pdq in one-dimensional systems. If the Hamiltonian is

separable, the total action of the system is the sum of all the Si [176],

S =
d

∑
i=1

ΛiSi, (B.2)

where the Λi are dimensionless numbers that relate the proportion between the peri-
ods of motion

τi =
∂Si

∂E(cl)
, (B.3)
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for each (pi, qi) pair, where E(cl) = H(cl) is the total energy. To assure the full motion
follows a closed orbit, all the periods τi must be commensurable, that is for a given
i, j we have

Λjτj = Λiτi, (B.4)

with Λi, Λj positive integers.
Having defined the action-angle variables, EBK quantization is given by the fol-

lowing rule:

Si = 2πh̄
(

ni + λ
(D)
i /4 + λ

(vN)
i /2

)
; ni = 0, 1, 2, · · · (B.5)

where λ
(D)
i is the number of classical turning points in the primitive period of the

variable (Dirichlet conditions) and λ
(vN)
i is the number of hard walls (von Neumman

conditions) [177]. The EBK method has been demonstrated to be equivalent to the
connection formulas in WKB approximation to assure the continuity of the wavefunc-
tion [177]. EBK quantization is an improvement over Bohr-Sommerfield quantization
of old quantum theory, in the sense that it takes into account the conjugate points or
Maslov indexes, λ

(D)
i and λ

(vN)
i of the trajectories.

B.2 CLASSICAL SPHERICAL BILLIARDS

To derive the semiclassical quantization of an electron under spherical confinement,
we can start by solving the dynamics of a classical particle inside the spherical cav-
ity. A fundamental property of metallic nanoparticles is its characteristic size, much
smaller than the electronic mean free path in the bulk1, thus we can assume a ballistic
motion since no impurities are around. Under low density of impurities, a charged
particle travels freely with the ions screened out by the other electrons. So the Hamil-
tonian can be considered to be of the form

H(cl) =
p2

r
2m

+
p2

θ

2mr2 +
1

sin2(θ)

p2
φ

2mr2 + V(r) (B.6)

where pr, pθ and pφ are the classical canonical momenta associated to r, θ and φ,
respectively. Here we assume that V(r) is a hard wall potential (V0 → ∞ in eq. (2.4)).
The motion of this system was already illustrated in figure 2.3.

The Hamiltonian (B.6) has three constants of motion [176]: the total energy E(cl) =

H(cl) as the Hamiltonian is time-indedepent, the z-component angular momentum:
Lz = pφ as φ does not appear in H(cl), and the magnitude of the angular momen-
tum L2 = p2

θ + L2
z csc θ as V depends only on r. As V(r) is a central potential, the

Hamiltonian can be reduced to a one-dimensional problem written as

H(cl) =
p2

r
2m

+ V(ce)(r). (B.7a)

1For gold the electronic mean free path is about 40 nm [178].
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where we identify the centrifugal effective potential

V(ce)(r) =
L2

2mr2 + V(r). (B.7b)

The three angle-action integrals for the spherical billiard are

Sφ =
∫ 2π

0
pφdφ = 2π|Lz|, (B.8a)

Sθ =
∮

pθdθ = 2
∫ π−θ0

θ0

√
L2 − L2

z csc2(θ)dθ = 2π(L − |Lz|), (B.8b)

and

Sr =
∮

prdr = 2
∫ a

a0

√
2mE(cl) − L2

r2 dr

= 2
[√

2mE(cl)a2 − L2 − L arccos
(

L√
2mE(cl)a2

)]
. (B.8c)

Here θ0 is the smallest value such that sin(θ0) = L2
z/L2, determining two turning

points of the θ-motion. Also, a0 =
√

L/2mE(cl)a2 is a smooth turning point and a is
a hard wall for the r-motion. Unfortunately for this problem, Ir is a transcendental
equation of E, so it cannot be solved analytically for E(Ir, L).

Let us also calculate the radial period or period of libration, given by

τr(L) =

√
(ap(cl))2 − L2

E(cl)
, (B.9)

and the arcangle Θ̃ swept between apogee and perigee according to [126], as the ratio
between Ir and L

Θ̃ = −∂Ir

∂L
=

1
π

arccos
(

L
ap(cl)

)
. (B.10)

The Hamiltonian (B.7) is independent of Lz, so each set of constants L and Ir indi-
cates a infinite family of orbits. The commensurability condition (B.4) is imposed by
noting that τθ = τφ as they are calculated implicitly from Ir = Ir(E(cl), L = Iθ + Iφ)
from eq. (B.16). By making ντθ = ητr, with ν, η integers, we obtain the commensura-
bility condition (B.4) for the spherical billiard:

L = ap(cl) cos
(

φνη

)
, (B.11)

where p(cl) = h̄k(cl) =
√

2mE(cl) and φνη = πν/η the is half the angle spanned
between to consecutive bounces with the boundaries of the sphere.

The motion is now clear, each family of orbits is described by regular polygons and
star polygons labeled with two indexes (ν, η), so that ν is the winding number and η
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in the number of bounces with the walls, as in fig. 2.3. Under this condition the total
action (B.2) reads Sνη = p(cl)ηLνη, where Lνη = 2ηa sin φνη is the distance between
two consecutive bounces with a hard wall times, η i.e. the length of the trajectory. The
libration period and the arcangle are given by τr,η,ν = mLνη/p(cl)η and πΘ̃νη = φνη,
respectively.

B.3 EBK QUANTIZATION FOR THE SPHERICAL BILLIARD

Now to obtain the semiclassical spectrum we use the EBK quantization (B.5). For the
motion along φ, there are no turning points, it quantizes as

Sφ = 2π|Lz| = 2πh̄nφ. (B.12)

For the θ-motion there are two classical turning points θ0 and π − θ0 from (B.8a), so
λ
(D)
θ = 2 and

Sθ = 2π(L − |Lz|) = 2πh̄(nθ + 1/2). (B.13)

The motion along r has one smooth turning point a0 and the hard wall at r = a from
(B.8c), so λ

(D)
r = 1 and λ

(vN)
r = 1:2

Sr = 2πh̄ (n − 1/4) ; n = 1, 2, · · · (B.14)

Comparing to the standard quantization L2 = h̄2l(l + 1) and Lz = h̄mz, we make the
following transformation l = nφ + nθ, and mz = ±nφ, in order to obtain [179] :

{
Lz = h̄mz ; mz = 0,±1, · · · , l
L = h̄ (l + 1/2) ; l = 0, 1, · · · , lmax

(B.15)

where lmax is such that L ≃ ap(cl). The condition for the total angular momentum L
is equivalent to the Langer correction for WKB approximation, L2/h̄2 = l(l + 1) →
(l + 1/2)2 [180].

Finally, our eigenenergies can be obtained by solving k from the following formula:

π(n − 1/4)−
√
(k(cl)

n,l a)2 − (l + 1/2)2 + (l + 1/2) arccos


 l + 1/2

k(cl)
n,l a


 = 0 (B.16)

derived from EBK quantization of (B.8c), where k(cl)
n,l =

√
2mE(cl)

n,l /h̄. The eigenenergy
equation (B.16) coincides with Keller and Rubinow solutions for spherical billiards
[124].

Our semiclassical equations can be compared with the exact quantum mechanical
results for the infinite spherical well, eq. (2.12).

2The minus sign is because we decided to start to count from n = 1.
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However the semiclassical calculation (B.16) is more treatable algebraically when
calculating the density of states, compared to finding the roots {ζn,l} of the spheri-
cal Bessel functions. The EBK result is a good approximation as it is always close to
the exact result. We give a comparison between the exact and semiclassical results
using EBK, shown in table B.1. The EBK method is valid for high values of energies
and angular momentum, nevertheless even for low values of l and n the error of the
semiclassical solutions is lower than 1%. This is no coincidence as the asymptotic
forms for the zeroes of the spherical Bessel functions lead to the semiclassical eigen-
ergy equation [124]. The whole idea of using EBK is that it allows us to integrate the
density of states by summing over the orbits (ν, η), which have a more simpler form
compared to the Bessel zeros given by l and n.

l n ζn,l (exact) k(cl)
n,l a (EBK) Relative error (1 − k(cl)

n,l a/ζn,l)

0 1 3.14159 3.1012 0.0128581

2 6.28319 6.26322 0.00317807
3 9.42478 9.41149 0.00140956
4 12.5664 12.5564 0.000792304

1 1 4.49341 4.45754 0.0079825

2 7.72525 7.70755 0.00229079
3 10.9041 10.8921 0.00110024

2 1 5.76346 5.72846 0.00607195

2 9.09501 9.07832 0.00183468
3 12.3229 12.3117 0.000915193

3 1 6.98793 6.95284 0.0050212

2 6.98793 6.95284 0.0050212

Table B.1: Numerical roots for the energy eigenvalues E = E0ζ2
n,l of a 3D spherical billiard,

calculated from the Schrödinger equation (exact) and using the semiclassical ap-
proximations (EBK). Third column indicates the relative error between the exact
and the EBK solutions.

.

B.4 SEMICLASSICAL DENSITY OF STATES IN THE

ABSENCE OF MAGNETIC FIELD

In this subsection we derive the density of states from the EBK quantization [126, 174].
The idea is to integrate the density of states by connecting the problem to action-angle
coordinates using Poisson summation formula (A.13) to sum over the the different
indexes. The exact quantum mechanical problem is completely determined by a set
of quantum numbers n, l, mz, so that the density of states (2.14) reads

ϱ(E) = 2
∞

∑
n=1

∞

∑
l=0

l

∑
mz=−l

δ(E − E(0)
n,l ). (B.17)
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where the factor of 2 takes the spin degeneracy into account.
The eigenergies do not depend on the quantum number mz, so that the sum gives

directly
l

∑
mz=−l

1 = 2l + 1. (B.18)

This sum is not that trivial when B ̸= 0, as we will see in the next section. We can
sum over each index at a time using Poisson summation formula (A.13) and replace
quantum numbers {λ} = {n, l, mz} by semiclassical topological numbers {Λ} =
{ν, η} according to EBK quantization. For the principal quantum number n we use
PSF and the EBK quantization of Sr (B.14) to recover

ϱosc(E) =
1

πh̄

∞

∑
η=−∞
(η ̸=0)

eηπi/2
∫ ∞

πh̄/2

∞

∑
l=0

(2l + 1)δ
(

E −H(cl)
l (Sr)

)
eiηSr/h̄dSr, (B.19)

where H(cl)
l (Sr) indicates the Hamiltonian as a function of Sr and L = h̄(l + 1/2)

and the properties of the Dirac delta allowed us to integrate over the energy surface3

given by equation (B.16). In eq. (B.19) η is a topological index related to the classical
trajectories coming from the PSF, not to be confused with n. To perform the integral
(B.19) we also need to set the lower limit h̄ → 0, being a small parameter in semiclas-
sical physics. This procedure yields

ϱosc(E) = 2
lmax

∑
l=0

(2l + 1) ϱosc
l (E) , (B.20a)

where

ϱosc
l (E) = 2

∞

∑
η=−∞
(η ̸=0)

[
1

2πh̄
τ
(l)
r eiη(Sr/h̄+π/2)

]
, (B.20b)

where τ
(l)
r = τr(h̄(l + 1/2)) defined by (B.9) and

lmax =

⌊√
E
E0

− 1
2

⌋
. (B.21)

Note that the argument inside the square bracket in (B.20b), along with the sum over
η, has the form of Gutzwiller trace formula [123], because the radial motion can be
reduced to a one dimensional problem with a centrifugal potential. We could have
started our problem by noting that 1D systems are not degenerate, thus Gutzwiller
formula is valid if we only consider the radial contribution.

3We use
∫

δ(x0 − f (x))dx =
∫

δ(F−1(x0)− x)/|F ′(x0)|dx where F (x0) = 0.



B.4 Semiclassical density of states in the absence of magnetic field 111

The next step is to perform a PSF to remove l using its respective EBK quantization
for L (B.15):

ϱosc(E) =
1

πh̄3

∞

∑
η=−∞
(η ̸=0)

∞

∑
ν=−∞
(ν ̸=0)

(−1)ν
∫ ∞

0
2Lτr(L)ei(ηSr+2πνL)/h̄+ηπi/2dL (B.22)

where we have reduced the problem to an integral that we can calculate by sta-
tionary phase approximation. The stationary phase condition, in this case ηΘ̃ = ν
is defined by the arcangle equation (B.10) and fixed the commensurability condition
from eq. (B.11). To finally carry out the integral we extend the lower limit to −∞,
obtaining:

ϱosc(E) =
1

πh̄5/2 ∑
{ν,η}

0<ν/η<1/2

(−1)ν 2Lτr(L)
(
|η|∂Θ̃

∂L

)−1/2
∣∣∣∣∣

L=ap cos φνη

× eiSνη(E)/h̄+ηπi/2+i sign(η)π/4, (B.23)

where the whole action appears in the exponent.
Where the sum is now restricted to the interval 0 < ν/η < 1/2. Adding negative

and positive terms in the sum we recover4

ϱosc(E) =
2

πh̄5/2

∞

∑
ν=1

∞

∑
η=2ν+1

(−1)ν 2Lτr(L)
(

η
∂Θ̃
∂L

)−1/2
∣∣∣∣∣

L=pa cos φνη

× cos
(

Sην(E)
h̄

− 3η
π

2
+

π

4

)
, (B.24)

which is equivalent to Creagh-Littlejohn trace formula for rotational symmetric sys-
tems [181]. We kept the factor 2L coming from the sum over mz up to this point,
because it will be important in the following section when we introduce a finite mag-
netic field. Note that we neglected the diametrical orbits η = 2ν as they represent a
higher order in h̄ and will not contribute to the magnetic susceptibility [117].

Finally, as already worked the classical solution of all these quantities in the pre-
vious section, we can substitute them explicitly to obtain the oscillating density of
states presented in eq. (2.16). Similar equations have been derived for 2D systems
using alternative semiclassical methods, e.g. ref.[182]. Keep in mind that we are sum-
ming over families of orbits, as for every η and ν there are infinite possible planes of
motion in the sphere.

4To be able to compare with other formulas, we have replaced ηπ/2 → −3ηπ/2 which is equivalent
due to the periodicity of trigonometric functions.
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B.5 SEMICLASSICAL DENSITY OF STATES AT FINITE

MAGNETIC FIELDS

The problem of adding a magnetic field to the spherical billiard complicates the possi-
bility to calculate the action-angle variables as H(dia) in eq. (2.9c) breaks the spherical
rotational symmetry of the system. A magnetic field B = Bêz bends the trajectories
in the x − y plane. However, if we take the limit of large cyclotron radii (small B or
large energies) so that Rc ≫ a, then the bending of the orbits can be seen as a neg-
ligible next order correction [117]. In this limit, Creagh’s formula for systems with
broken symmetry [183] can be used calculate a modulation factor Mνη of eq. (2.17b)
to recover ρosc(B) of eq. (2.17a). The oscillating density of states, as well as the den-
sity of states without magnetic field of eq. (2.16), can be obtained by integrating over
the group measure of the system, in this case related to the special group of rotations
SO(3) [181].

We propose for this appendix, to derive eq. (2.17b) with an heuristic method that
we have developed to obtain this factor using the same Berry-Tabor theory that we
used to calculate the density of states without magnetic field.

We recall that the factor 2L in the density of states for the case B = 0 (B.24) comes
from the sum over mz (B.18) and the EBK quantization for L (B.15). This sum (B.18)
could have waited up to the very end of the calculation.

Let us consider a perturbation that modifies very slightly the trajectories, then the
density of states remains the same except for a change in the action. For our case
of interest, the total action S(B = 0) =

∮
p · dr gets modified by vector potential

p → p + e
cA(r). The action then reads

S(B) =
∮ (

p +
e
c

A(r)
)
· dq = S0 + ∆S(B) (B.25a)

where S0 = S(B = 0) is the action without magnetic fields, and

∆S(B) =
e
c

ϕ(B) (B.25b)

where ϕ(B) = HAνη cos ξ is the magnetic flux enclosed by the orbit and ξ is the
inclination angle between the normal to the plane of the orbit and the z-axis. The
surface Aw,n spanned by the orbit can be calculated from polygon formulas [177] and
was defined next to eq. (2.17b) . The expansion of the action (B.25a) is only possible
when ∆S(B)/S0 ≈ a/Rc ≪ 1.

The factor 2L of the ρosc (B.24) that came from the sum over mz in (B.18) now reads:

l

∑
mz=−l

ei∆S(B)/h̄
∣∣∣

L=ap cos φνη

=
l

∑
mz=−l

e2πi cos ξmz
l ϕνη(B)/ϕ0

= sin
(

2π
ϕνη(B)

ϕ0

)
csc
(

πϕνη(B)
kaϕ0 cos φνη

)
, (B.26)
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where we have used the classical relation between the components of the orbital
angular momentum and its semiclassical quantization: cos ξ = Lz/L → cos ξmz

l =
mz/(l + 1/2). The argument in the cosecant in eq. (B.26) is equivalent to ηa/Rc and
can considered small when η is not too large, as it is the same condition to expand
the action. Additionally, the thermal factor R(Lν,η/LT) assures that η remains small.
For this reason, we proceed to expand the cosecant to recover the factor 2L times the
modulation factor rom Berry-Tabor theory, as

l

∑
mz=−l

ei∆S/h̄ ≈ 2ka cos φνηj0

(
2π

ϕνη(B)
ϕ0

)
=

2L
h̄

∣∣∣∣
L=ap cos φνη

×M(orb)
νη (B). (B.27)

which demonstrates eq. (2.17b). This modulation factor of eq. (2.17b) has been proved
to be correct in numerical comparison with the full quantum solution [117].





ORBITAL SUSCEPTIBILITY OF A
METALLIC NANOPARTICLE FROM

QUANTUM PERTURBATION THEORY C
In this appendix we illustrate in sec. C.1 the calculations to obtain the grand canon-
ical ZFS for spherical metallic nanoparticles by following the steps of D.A. van
Leeuwen [22] and in sec. C.2 we reproduce the same methodology for a cylindrical
confinement with a magnetic field parallel to its axis.

C.1 SPHERICAL NANOPARTICLES

We recall that the eigenenergies of the infinite spherical potential without magnetic
field are given by the zeroes of the Bessel functions ζnl as in (2.27). The eigenfunctions
ψn,l,mz can be found in eq. (2.11). This calculation could be a relatively complicated
procedure as we have to use degenerate perturbation theory (same energies for dif-
ferent mz) and second order perturbation theory to be consistent up to the order of
B2. Nevertheless, for a spherical geometry under symmetric gauge, the paramagnetic
term H(para) in eq. (2.9b) is trivial and leads to eq. (2.28), as our basis is composed of
eigenstates of this operator with quantum numbers mz. Moreover as Lz is diagonal
in this basis, H(para) first order perturbation theory is exact (no higher orders in B).
Consequently, we only have to apply first order non-degenerate perturbation to the
diamagnetic term in eq. (2.9c). If the geometry was different, we would have to add a
Van Vleck term that comes from second order perturbation of the terms proportional
to B.1

To calculate the expectation value of the diamagnetic term (2.9c) we write it down
in spherical coordinates as x2 + y2 = r2 sin(θ) and we separate it into two integrals

∫
ψ∗

n,l,mz
(r)

x2 + y2

a2 ψ∗
n,l,mz

(r) d3r = Ymz
l ×Rn,l, (C.1)

given by an angular part,

Ymz
l =

∫ 2π

0

∫ π

0
|Ymz

l (θ, φ)|2 sin3(θ)dθdφ, (C.2)

and a radial part,

Rnl =
2

|jl+1(ζnl)|
∫ 1

0
j2

l (ζnlr) r4dr. (C.3)

1Van Vleck term is important to conserve gauge invariance [22].
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The integral over the angular part, given in the main text (2.31), can be obtained
easily either by using the recursion of the associated Legendre polynomials Pmz

l , given
by

(2l + 1)
√

1 − x2Pmz
l (x) = −Pmz+1

l+1 (x) + Pmz+1
l−1 (x), (C.4)

or by using the identities of Wigner 3-j symbols.
The radial integral (C.3) needs a more specialized knowledge of the spherical Bessel

functions. The integral can be derived with the help of Schaftheitlin’s reduction for-
mula [184], given by

(ns + 2)
∫ ζ0

0
ζ(ns+2)J2

ℓ(ζ)dζ = (ns + 1)
[
ℓ2 − 1

4
(ns + 1)2

] ∫ ζ0

0
ζnsJ2

ℓ(ζ)dζ

+
ζ
(ns+1)
0

2

{[
ζ0J

′
ℓ(ζ0)−

1
2
(ns + 1)Jℓ(ζ0)

]2

+

[
ζ2

0 − ℓ2 +
1
4
(ns + 1)2

]
J2
ℓ(ζ0)

}
,

(C.5)

for any ζ0, ℓ and integer ns. Eq. (C.5) returns the result of equation (2.30), with the
replacements ℓ = l + 1

2 , ζ0 = ζn,l and ns = 1.
Having the perturbed energies we can insert our calculation in the quantum equa-

tion for the zero-field susceptibility (2.24) to recover.

χ(orb) = −2
µ2

B
V

∞

∑
n=1

∞

∑
l=0

l

∑
mz=−l

[
f ′µ(E(0)

n,l )m
2
z + f ′µ(E(0)

n,l )2E0Rn,lYmz
l

]
, (C.6)

where the factor of 2 accounts for the spin degeneracy and the energies in the Fermi-
Dirac distribution do not depend on mz as have taken at B = 0. The sums over the
mz can be carried out using that

l

∑
mz=−l

m2
z =

2
3

l(l + 1)(l + 1
2), (C.7)

and its corolary
l

∑
mz=−l

Ymz
l =

4
3
(l + 1

2). (C.8)

Dividing the susceptibility in equation (C.6) by χL , we recover (2.33).

C.2 CYLINDRICAL CONFINEMENT SUBJECT TO A FIELD

ALONG THE AXIS

A strong diamagnetic response has been observed in ensembles of gold nanorods [42].
In this section, we derive the magnetic susceptibility of a single nanorod, approxi-
mated as a cylinder. We limit this calculation to the grand canonical ZFS with the
magnetic field B = Bêz coinciding with the rod long-axis.
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We start by solving Schrödinger equation of an electron in cylindrical confine-
ment of radius a and height az with hard walls. Our potential is V(ρ, z)(cyl) =
limV0→∞ V0[Θ(ρ − a) + Θ(|z| − az/2)] where ρ, φ, z are the usual cylindrical vari-
ables (radius, azimuthal angle, height). The Hamiltonian without magnetic field is

H(cyl)
0 = p2

2m + V(cyl)(r, z). Here ρ = x2 + y2 is the radial distance in cylindrical coor-
dinates.

The equations for the orbital wavefunction are to be obtained using separation of
variables:

ψ
(cyl)
n,mz,nz(r) = Rn,mz(ρ)Φmz(φ)Znz(z) (C.9)

The equation for Znz(z) in the interior of the cylinder

− d2

dz2 Znz(z) = k2
nz Znz(z) (C.10)

which is equivalent to the single particle in a infinite unidimensional well, whose
eigenfunctions are given by

Znz(z) =
√

2
az

{
sin(knz z) ; (nz − 1) odd
cos(knz z) ; (nz − 1) even (C.11)

and
knz =

πnz

az
(C.12)

where nz is a positive integer.
For the transversal section, we are left with the following Schrödinger equation:

[
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂φ2

]
Rn,mz(ρ)Φmz(φ) = k2

n,mz Rn,mz(ρ)Φmz(φ) (C.13)

where k2
nz + k2

n,mz = 2mEn,mz,nz /h̄2 is the respective eigenergy. As usual the angular
part is set to

Φmz(φ) =
1√
2π

eimz φ (C.14)

where mz is any integer, and the factor (2π)−1/2 is just for normalization. The final
equation to solve is

[
1
ρ

d
dρ

(
ρ

dRn,mz(ρ)

dρ

)]
+

[
k2

n,mz −
m2

z
ρ2

]
= Rn,mz(ρ) (C.15)

which is just Bessel equation. We are only interested in the solutions that are bounded
withing 0 < r < a so we set

Rn,mz(ρ) =

√
2

a
J|mz|(kn,mz ρ)

|J|mz|+1(kn,mz a)| (C.16)
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at the interior of the cylinder, where Jl(ρ) is the Bessel function of the first kind, and

kn,mz =
ξn,|mz|

a
(C.17)

where ξn,mz is the n-th root of Bessel function Jl(ρ). Finally the eigenenergies of the
system are

E(nr−cyl)
n,mz,nz = E0

[
ξ2

n,|mz| + π2r2
0n2

z

]
. (C.18)

where n, nz are positive integers and mz is any integer. and r0 = a/az as the ratio
radius-height of the cylinder.

C.2.1 PERTURBATIVE ENERGIES UNDER A MAGNETIC FIELD

From a minimal coupling substitution and using the symmetric gauge for the vector
potential A = B × r/2, the non relativistic Hamiltonian under a magnetic field reads

H(nr−cyl) = H0 +
µB

h̄
BLz +

µ2
BB2

4E0a2 ρ2. (C.19)

Due to the choice of gauge and symmetry of the problem, our previous eigenfunc-
tions are also eigenfunctions of the Hamiltonian with magnetic field up to linear
terms in B, as

Lzψn,mz,nz(r) = h̄mz. (C.20)

For the diamagnetic term in B2, we consider perturbation theory up to first order,
which means that we have to calculate the following integral:

R(cyl)
n,mz =

1
a2

∫
|Rn,mz(ρ)|2ρ3 dρ =

2
ξ4

n,|mz|[J|mz|+1(ξn,|mz|)]
2

∫ ξn,|mz |

0
[J|mz|(x)]2x3 dx,

(C.21)
which can be calculated using the Schafheitlin’s reduction formula (C.5), which yields

∫ ξn,|mz |

0
[J|mz|(x)]2x3 dx =

1
6

[
1 + 2

(
m2

z − 1
)

ξ2
n,|mz|

]
ξ4

n,|mz|[J|mz|+1(ξn,|mz|)]
2, (C.22)

and simplifies as

R(cyl)
n,mz =

1
3

[
1 + 2

(
m2

z − 1
)

ξ2
n,|mz|

]
. (C.23)

Finally the energies under a magnetic field (up to second order perturbation theory)
are

E(nr−cyl)
n,mz,nz = E(0−cyl)

n,mz,nz + µBBmz +
µ2

BB2

4E0
R(cyl)

n,mz (C.24)
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Figure C.1: Room temperature (T/TF = 5 × 10−3) zero-field susceptibility of a cylin-
der for different ratios r0 = a/az. The value az = 4a/3 correspond to
the ratio where the volume of the cylinder is equal to the volume of the
sphere.

C.2.2 GRAND CANONICAL ZFS FOR A CYLINDRICAL

CONFINEMENT

As with the sphere, the magnetic zero field susceptibility is derived from eq. (2.24)
taking into account the spin-degeneracy. For the cylinder, the susceptibility yields

χ(cyl)

|χL|
= −6πr0

kFa

∞

∑
n=1

∞

∑
nz=1

[
R(cyl)

n,0 fµ(E(0−cyl)
n,0,nz

) + 2
∞

∑
mz=1

2E0m2
z f ′µ(E(0−cyl)

n,mz,nz ) +R(cyl)
n,mz fµ(E(0−cyl)

n,mz,nz )

]

(C.25)
The ZFS (C.25) for two different ratios r0 is plotted in figure C.1. Verifying the value

of the susceptibility for large kFa we confirm numerically that χ(cyl) → −|χL|. The
oscillations are of the same order of magnitude as those of the orbital susceptibility
of the sphere, c.f. fig. 3.1. We observe that the amplitudes of the oscillations of the
ZFS (C.25) are proportional to r0. This proportionality is due to flux accumulation,
for larger r0 the orbits have a flux in relation to the volume of the cylinder. This ex-
pression for χ(cyl) is more costly numerically than that for the ZFS of the sphere (2.33)
as it comprises three sums, instead of two. Calculations of the susceptibility when
the magnetic field is not in the main axis of the cylinder, include an additional Van
Vleck-like term (with a duplication of the number of required summation indices),
leading to an increase of the computation time.





EQUIVALENCE BETWEEN QUANTUM
AND SEMICLASSICAL CALCULATIONS

OF THE ZERO-FIELD SUSCEPTIBILITY D
In this appendix, we verify the equivalence between the quantum calculation for the
zero-field susceptibility χorb in eqs. (2.33) and its semiclassical version χ(1) from eq.
(3.4).

The semiclassical evaluation of χ(orb) can be addressed by trading in eqs. (2.33) the
sums over the principal quantum number n by energy-integrals and the use of the
Poisson summation formula for the sum over l, resulting in

χ(para)

|χL|
= − 6πE0

kFa

∫ ∞

0
dE f ′µ̄0

(E)
+∞

∑
ν=−∞

∫ √
E/E0−1/2

−1/2
dl

× exp (2πiνl) l
(

l +
1
2

)
(l + 1) ϱl(E) , (D.1a)

χ(dia)

|χL|
= − 6π

kFa

∫ ∞

0
dE fµ̄0(E)

+∞

∑
ν=−∞

∫ √
E/E0−1/2

−1/2
dl

× exp (2πiνl)
(

l +
1
2

)
Rl(E) ϱl(E) , (D.1b)

where l is now understood as a continuous variable. Following eq. (2.30), we have
defined Rl(E) = (1/3) [1 + (2E0/E)(l + 3/2)(l − 1/2)].

In the leading order in kFa ≫ 1, the smooth part of χ(orb) is obtained by using ϱ̄l(E)
in eqs. (D.1) and only keeping the ν = 0 term of the sum,

χ̄(para)

|χL|
= − 3

kFa

∫ ∞

0
dE f ′µ̄0

(E)
(

E
E0

)1/2

×
∫ 1

0
dζ ζ

(
E
E0

ζ2 − 1
4

)√
1 − ζ2 , (D.2a)

χ̄(dia)

|χL|
= − 1

kFa E0

∫ ∞

0
dE fµ̄0(E)

(
E
E0

)1/2

×
∫ 1

0
dζ ζ

(
1 + 2ζ2 − 2

E/E0

)√
1 − ζ2 . (D.2b)
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Performing the integration over the variable ζ = (l + 1/2)
√

E0/E we have

χ̄(para)

|χL|
= − 1

kFa

∫ ∞

0
dE f ′µ̄0

(E)
(

E
E0

)1/2( 2E
5E0

− 1
4

)
, (D.3a)

χ̄(dia)

|χL|
= − 1

kFaE0

∫ ∞

0
dE fµ̄0(E)

(
E
E0

)1/2(3
5
− 2E0

3E

)
. (D.3b)

An integration by parts in eq. (D.3b) leads to

χ̄(dia)

|χL|
=

1
kFa

∫ ∞

0
dE f ′µ̄0

(E)
(

E
E0

)1/2( 2E
5E0

− 4
3

)
. (D.4)

Thus, the leading-order term in kFa of χ̄(para) and χ̄(dia) cancel each other, and χ̄(orb)

is then given by next-order contributions.1 However, such terms are not captured by
the expressions of eqs. (D.3), which are only valid in the leading order in kFa, since
they result from E and l integrations in which the form (B.9) was used beyond its
regime of validity of E/E0 ≫ (l + 1/2)2. In ref. [85] it is shown that the magnetic
field dependence of ϱ̄(E, B), given by the so-called zero-length trajectories, results in
χ̄(orb) = χL, while the numerical evaluation of eqs. (4.17)–(2.33) presented in Fig. 4.1
approaches, in the limit of large radius a where the role of the confinement potential
becomes irrelevant, the bulk result given by eqs. (1.4)–(1.5) (see the inset in Fig. 4.1).

The fact that χ̄(orb)/|χL| is of order (kFa)0, points to the importance of χosc, which
is obtained by using ϱosc

l (E) in eq. (D.1). The rapidly oscillating (in E) phases
2πν ± ηSl(E)/h̄ allow us to perform a stationary-phase (sp) integration over l with
the condition lsp =

√
E/E0 cos (πν/η)− 1/2, yielding

χ(para)−osc

|χL|
=− 6

√
π

kFa

∫ ∞

0
dE f ′µ̄0

(E)
(

E
E0

)1/4

× ∑
ν>0

η>2ν

(−1)ν

√
η

sin3/2 φνη cos φνη

×
[

E
E0

cos2 φνη −
1
4

]
cos

(
θνη(k)

)
, (D.5a)

χ(dia)−osc

|χL|
=− 2

√
π

kFaE0

∫ ∞

0
dE fµ̄0(E)

(
E
E0

)1/4

× ∑
ν>0

η>2ν

(−1)ν

√
η

sin3/2 φνη cos φνη

×
[

1 + 2 cos2 φνη −
2E0

E

]
cos

(
θνη(k)

)
. (D.5b)

1For the degenerate case, in the leading order in kFa, we have that χ̄(para) = |χ̄(dia)| = (2/5) (kFa)2.
Notwithstanding, we stress that the separation between χ(para) and χ(dia) is only for computational
purposes, and lacks physical reality.
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The restriction of ν ̸= 0 appears since these contributions, considered in eqs. (D.2),
lead to χ̄(orb). Only positive values of ν are kept, as the sign of ν is associated with
the orientation in which the periodic orbit is traveled. The condition η > 2ν appears
as a restriction for the stationary-phase value lsp to be within the integration interval.
The stationary-phase procedure yielding (D.5) is analogous to that allowing to link
ϱosc

l (E) and ϱosc(E, 0) [112]. Since we work in leading-order in kFa, we can neglect the
last terms in the square brackets of eqs. (D.5).

In the low-temperature limit, we use fµ̄0(E) = Θ(µ̄0 − E) and, with the help of
Fresnel integrals, to leading order in kFa, we find

χ(dia)−osc

|χL|
=− 2

√
π(kFa)1/2 ∑

ν>0
η>2ν

(−1)ν

η3/2 sin1/2 φνη cos φνη

× (1 + cos2 φνη) sin
(
θνη(kF)

)
. (D.6)

Thus, χ(dia)−osc ∼ (kFa)1/2 is of lower order in kFa than χ(para)−osc ∼ (kFa)3/2, and in
the semiclassical limit we have χ(orb)−osc = χ(para)−osc.

The integration of f ′̄µ0
(E) multiplied by a rapidly oscillating function of E results in

a general expression [85], that when applied to eq. (D.5a) yields back χ(orb)−osc = χ(1)

from eq. (3.4).





FOLDY-WOUTHUYSEN
TRANSFORMATION E

E.1 THE PROBLEM OF ZITTERBEWEGUNG

At first glance, Dirac’s equation (2.49) can be non-intuitive. Gregory Breit in 1928
[185], had discovered an unusual property of the α matrices. In Heisenberg’s picture,
the evolution of the position operator can be written as

∂ri

∂t
=

i
h̄
[H(Dirac), ri], (E.1)

where ri is the i-th component of the position operator. This equation (E.1) leads to the
following relation ∂ri/∂t = αic, which identifies αc as the ”velocity operator”. The
unusual part comes when calculating the expectation value of the velocity squared,
i.e. 〈(

∂r
∂t

)2
〉

= c2. (E.2)

The Ehrenfest theorem states that the expectation value of a quantum operator should
recover our classical intuition, but (E.2) seems to imply that Dirac’s electron is always
traveling at the speed of light!

This result has been understood as an artifact now known as zitterbewegung1 and
comes from the mixed representation of particle-antiparticle components of Dirac’s
equation. As we will see next, this apparent paradox disappears when we perform a
Foldy–Wouthuysen transformation.

E.2 FOLDY–WOUTHUYSEN TRANSFORMATION FOR A

FREE PARTICLE

Let us suppose Ψ = e−UΨ, where U is a time independent unitary operator. Then
if HΨ = EΨ, for an eigenstate Ψ with energy E for a Hamiltonian H, we want to
enforce HΨ′ = He−UΨ = e−UEΨ, i.e. H′Ψ′ = EΨ′, where H′ = eUHe−U , such that
H′ is diagonal for two spinors (separate particle-antiparticle states).

1German for jittery motion. The name comes from the fact that integrating (E.1) leads to a mean
position that oscillates back and forth with speed c, around the classical linear trajectory.
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To treat Dirac’s Hamiltonian (2.49), we will need the following property of the Pauli
matrices

σiσj = δij + iϵijkσk, (E.3)

where we used Einstein summation notation for double indexes, δij is the Kronecker
delta and ϵijk is the Levi-Civita tensor, which implies that the Dirac α follow a similar
identity

αiαj =

(
0 σi
σi 0

)(
0 σj
σj 0

)
= σiσj = δij + iϵijkσk. (E.4)

Other easy to prove identities are α2
i = 1, (γ0)

2 = 1, {αi, γ0} = 0, where {, } is the
anti-commutator, and (α · p)2 = |p|2.

Let us consider the following ansatz,

U = γ0
α · p
|p| θ(p), (E.5)

where θ(p) is a function of p. Then

e±U =
∞

∑
n=0

1
n!

(
±γ0

α · p
|p| θ(p)

)n
=

∞

∑
n=0

an

n!
, (E.6)

and we have
n = 0, a0 = 1
n = 1, a1 = ±U
n = 2 a2 = −[θ(p)]2

n = 3 a3 = ±U [θ(p)]2
...

...

(E.7)

All this can be summarized as

e±U = cos θ ± γ0
α · p
|p| sin θ, (E.8)

where we now write θ = θ(p). We proceed by calculating the modified Hamiltonian:

H(Dirac−FW) = eUH(Dirac)e−U = eU
(
α · pc + γ0mc2

)(
cos θ − γ0

α · p
|p| sin θ

)

= eU
[(

α · pc + γ0mc2
)

cos θ +

(
γ0|p|c −

α · p
|p| mc2

)
sin θ

]

=

(
cos θ + γ0

α · p
|p| sin θ

) [(
α · pc + γ0mc2

)
cos θ +

(
γ0|p|c −

α · p
|p| mc2

)
sin θ

]

=
(
α · pc + γ0mc2

)
(cos2 θ − sin2 θ) + 2 sin θ cos θ

(
γ0|p|c −

α · p
|p| mc2

)
(E.9)
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Thus finally we have

H(Dirac−FW) =
α · p
|p|

[
|p|c cos(2θ)− mc2 sin(2θ)

]
+ γ0

[
mc2 cos(2θ) + |p|c sin(2θ)

]
.

(E.10)
We can eliminate the non-diagonal term (first term in(E.10)), by choosing
tan(2θ(Dirac)) = |p|/(mc). With this choice and using tan2 x + 1 = sec2 x, we find
that

cos(2θ(Dirac)) =

[
1 +

( |p|
mc

)2
]−1/2

(E.11)

and

sin(2θ(Dirac)) = cos(2θ(Dirac))
|p|
mc

. (E.12)

So finally the Hamiltonian reads

H(FW−Dirac) = γ0

√
(mc2)2 + |p|2c2, (E.13)

as expected from classical relativistic mechanics. The sign given by γ0 determines
the particle-antiparticle solutions. Note that the antiparticles solutions seem to have
negative energy which lead Paul Dirac to propose the concept of the Dirac sea and
the prediction of the existence of antiparticles.

Note that if we calculate now the velocity operator in Heisenberg picture, we obtain
a different thing

(
dri

dt

)

(FW)

=
i
h̄
[H(Dirac−FW), ri] = γ0

pic2
√

p2c2 + m2c4
. (E.14)

Taking the norm squared and inverting the equation we find

p2 = m
(

dr
dt

)2

(FW)

[
1 − 1

c2

(
dr
dt

)2

(FW)

]−1

, (E.15)

which is the natural expression for the momentum in special relativity as a function of
the velocity. Thus after a Foldy-Wouthuysen separation, the zitterbewegung paradox
disappears as the particle-antiparticle components behave as expected by classical
special relativity. This procedure is still valid under the influence of a magnetic field
as long as ϕe(r) = 0, as we will see next.

E.3 FOLDY-WOUTHUYSEN TRANSFORMATION IN THE

PRESENCE OF A MAGNETIC FIELD

Dirac Hamiltonian in an time-independent external field is obtained from Dirac’s
equation (2.49) after a minimal coupling substitution. Let us work out the case where
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ϕe(r) = 0, such that H(EM−Dirac)|ϕe=0 = H(mag). By analogy with the previous part
let us write everything in terms of O = α · (p + eA/c), so that H(mag) = Oc + γ0mc2,
which can be diagonalized by using

U (mag) = γ0
O
|O|θ

(mag), (E.16)

which leads to tan(2θ(mag)) = |O|/mc,2 and consequently

H(mag−FW) = γ0

√
(mc2)2 +O2c2. (E.17)

Note that in general as long as ϕe(r) = 0, we have that

H(mag−FW) = γ0mc2

√

1 + 2
H(nr)

mc2 , (E.18)

where

H(nr) =
O2

2m
(E.19)

is the non-relativistic Hamiltonian. To end this section let us develop O2:

|O|2 = αiαj

(
pi −

q
c

Ai

) (
pj −

q
c

Aj

)

= (δij + iϵijkσk)
(

pi −
q
c

Ai

) (
pj −

q
c

Aj

)
=
∣∣∣p − q

c
A
∣∣∣
2
− i

q
c

ϵijkσk
(

pi Aj + Ai pj
)

=
∣∣∣p − q

c
A
∣∣∣
2
− h̄q

c
σ · [∇× A], (E.20)

where we used symmetry properties of the Levi-Civita symbol (antisymmetric ten-
sor) and the fact that [pi, f (x)] = −ih̄∂i f (x). In that way we recover the Pauli Hamil-
tonian in the absence of potentials (2.56), whose solutions are the relativistic Landau
levels of eq. (A.16).

E.4 DIRAC ELECTRON IN A POTENTIAL

Let us now solve the general case H(Dirac−EM) of (2.55) for ϕe ̸= 0. Let us call E =
−eϕe, and note that [E , γ0] = 0 and {O, γ0} = 0, so E is even and O is odd by
commutation with γ0 (hence their labels).

Inspired in the solution above, let us calculate the solution for weak fields, for small
O/mc, thus the right U is about

U ≈ γ0
O
|O|θ

(mag) ≈ γ0
O

2mc
, (E.21)

2Here θmag = θmag(|O|), depends on the absolute value of O to avoid problems of commutation with
γ0.
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and we will expand Hmc using Baker–Hausdorff–Campbell identity [119].

H(FW−Dirac−EM) = eUH(Dirac−EM)e−U = H(Dirac−EM) + [U ,H(Dirac−EM)]

+
1
2!
[U , [U ,H(Dirac−EM)]] +

1
3!
[U , [U , [U ,H(Dirac−EM)]]] · · ·

(E.22)

In order to solve the nest of commutator it is useful to note that [O, γ0] = −2γ0O.3

The full calculation of (E.22) will not be reproduced here (see [119]), the result yields

H(FW−Dirac−EM) = γ0mc2 + E + γ0
O2

2m
+ γ0

[O, E ]
2mc2 − O3

3m2c
− [O, [O, E ]]

8m2c3

− γ0O4

8m3c2 − γ0[O, [O, [O, E ]]]
48m3c4 +

γ0O5

30m4c3 +
[O, [O, [O, [O, E ]]]]

4!24(mc)4 + · · · (E.23)

Notice that (E.23) still has odd powers of O, which we want to avoid because that
couples the particle-antiparticle subspaces. In order to get rid of the undesired terms
we need to do consequtive Foldy-Wouthuysen transformations. Putting all odd terms
in γ0 under a new operator O′ and the even terms under a new operator E ′. This
procedure has to be repeated at least three times in order to get rid of all the odd
powers of O up to order (mc2)−1. The whole procedure is in detail in [119]. The final
result is a new Hamiltonian H(Dirac−wr) given by

H(Dirac−wr) = γ0mc2 + E + γ0
O2

2mc2 − γ0
O4

8m3c2 − [O, [O, E ]]
8m2c2 (E.24a)

which heuristically is equivalent to (E.23) without the odd powers of O up to first
relativistic correction.

To end this appendix we give the result for fifth term in eq. (E.24a):

[O, [O, E ]] = −h̄σ · [∇E × (p +
e
c

A)]− h̄2∇2E − ih̄σ · ∇ × E . (E.25)

Selecting for the particle-component of the Hamiltonian, recovers the weeakly rela-
tivistic corrections ∆H defined that are found in eq. (4.3).

3In general for two operators O1 and O2 that anti-commute, {O1,O2} = 0, we have that [O1,O2] =
−2O2O1.





SIMPLIFIED SEMICLASSICAL
EVALUATION OF THE MAGNETIC

SUSCEPTIBILITY F
In this appendix, we provide a simplified semiclassical calculation (sec. F.1) of the
grand-canonical orbital magnetic susceptibility leading to tractable expressions, as
in eq. (3.8) in chapter 3. We use a similar formalism in sec. F.2, together with the
so called diagonal approximation, that conly considers selected pairs of trajectories
in the corresponding semiclassical sum, to demonstrate the Curie-type law for the
orbital magnetic susceptibility of noninteracting ensembles of metallic nanoparticles
that arises at low temperature and/or for small sizes [cf. eq. (3.16) in the main text].

F.1 EVALUATION OF THE GRAND-CANONICAL ORBITAL

MAGNETIC SUSCEPTIBILITY

In the limit of low temperatures and/or small sizes (kFa T
TF

≪ 1), we replace the ther-
mal factor appearing in the semiclassical expansion (3.4) by a Heaviside step function
that limits the contributing trajectories to the maximal length Lmax = αLT, yielding
the condition on the topological index η ⩽ ηc, with
ηc = αLT/2a = (α/π)(kFa T

TF
)−1 ≫ 1. Here, the parameter α ≃ 1.6 is chosen in such

a way that the thermal factor (2.41) presents the maximum derivative. Taking into
account the above restriction and reordering the summations over ν and η in eq. (3.4)
then lead to

χ(1)

|χL|
≃ 6

√
π(kFa)3/2

∞

∑
η=3

νmax(η)

∑
ν=1

Re
{

e−iθνη(kF)
}

× (−1)ν cos3 φνη sin3/2 φνη√
η

. (F.1)

We have defined νmax(η) = ⌊ η−1
2 ⌋ for 3 ⩽ η ⩽ ⌊ηc⌋ and νmax(η) = ⌊ η

π arcsin
(

ηc
η

)
⌋ for

η ⩾ ⌈ηc⌉. The grid of points that represent the topological indexes (ν, η) contributing
to the double sums of eq. (F.1) are represented by red dots in fig. F.1.

The summation over the winding number ν in eq. (F.1) is then expressed using the
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η

ν0

ν =
η − 1

2

ν =
η

π
arcsin

(
ηc
η

)

ηc

ηc/π
↓

Figure F.1: Topological indexes (ν, η) contributing to the double sums in eqs. (F.1)
and (F.5) (red dots). The critical value ηc = αLT/2a separates the two
summation regions with different values of νmax(η) given by the explicit
formulas (solid lines). The dotted line depicts the limiting value of νmax
when η → ∞.
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Poisson summation formula, yielding

νmax(η)

∑
ν=1

(−1)ν cos3 φνη sin3/2 φνη e−iθνη(kF) =

+∞

∑
l=−∞

∫ νmax(η)+1/2

1/2
dν cos3 φνη sin3/2 φνη eiΞνη,l , (F.2)

with the phase Ξνη,l = (2l + 1)πν − θνη. The above integral over ν is then per-
formed using a stationary phase approximation that results in the stationary points
ν̄ = (η/π) arccos ([l + 1/2]/kFa). Imposing that the latter belong to the ν integration
interval in eq. (F.2) gives the following restriction over the index l:

2kFa cos
(

π

η

[
νmax(η) +

1
2

])
⩽ 2l + 1 ⩽ 2kFa cos

(
π

2η

)
. (F.3)

Substituting ℓ = 2l + 1 in eq. (F.2) thus leads to

νmax(η)

∑
ν=1

(−1)ν cos3 φνη sin3/2 φνη e−iθνη(kF) =

∑
odd ℓ

(
ℓ

2kFa

)3
√

1 −
(

ℓ

2kFa

)2√ η

πkFa
e−iηSℓ , (F.4)

where the reduced radial action Sℓ is defined in eq. (3.9) and where the summation
over the odd integer ℓ is restricted by the condition (F.3). Incorporating the result (F.4)
into eq. (F.1) then yields eq. (3.8).

F.2 DERIVATION OF THE CURIE-TYPE LAW FOR

ENSEMBLES OF NONINTERACTING NANOPARTICLES

Here and in what follows, we adopt the notation of previous section with the modifi-
cation of changing the individual nanoparticle radius a by the average radius ā of the
ensemble.

Starting the diagonal (in trajectory pairs) provided by eq. (3.15), in the limit
kF ā T

TF
≪ 1 we replace the thermal factor squared by a Heaviside step function which

cuts trajectories longer than Lmax = αLT, leading to

χd
ens

|χL|
≃ 18πkF ā

∞

∑
η=3

νmax(η)

∑
ν=1

F νη
νη , (F.5)

with F νη
νη = 1

η cos4 φµη sin3 φµη [cf. eq. (3.7)]. Like in the case of appendix F.1, the grid
(ν, η) of points contributing to the double sums of eq. (F.5) are represented by red dots
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in fig. F.1. Since F νη
νη has a smooth dependence on ν, we approximate the summation

over ν in eq. (F.5) by an integral, leading to

νmax(η)

∑
ν=1

F νη
νη ≃ 1

π

{
1
5

[
cos5

(
π

η

)
− cos5

(
πνmax(η)

η

)]

− 1
7

[
cos7

(
π

η

)
− cos7

(
πνmax(η)

η

)]}
. (F.6)

In eq. (F.5) the summation over η is dominated by relatively large values of η.
Therefore we make the approximation cos5 (π/η) ≈ cos7 (π/η) ≈ 1 in the expres-
sion above. Moreover, for η ⩽ ⌊ηc⌋, we have cos

(
πνmax(η)/η

)
≃ sin (π/2η), so

that cos5 (πνmax(η)/η
)

≈ cos7 (πνmax(η)/η
)

≈ 0, while for η ⩾ ⌈ηc⌉, we have
cos

(
πνmax(η)/η

)
= [1 − (ηc/η)2]1/2. Thus, eq. (F.5) yields

χd
ens

|χL|
≃ 18πkF ā

{
2ηc

35
+
∫ ∞

ηc

dη


1

5


1 −

[
1 −

(
ηc

η

)2
]5/2




− 1
7


1 −

[
1 −

(
ηc

η

)2
]7/2





}

(F.7)

in the limit ηc ≫ 1. Performing the remaining η integral, we find the Curie-type law
(3.16), with the prefactor C as given in eq. (3.17).



DARWIN CORRECTION G
In this appendix, we consider the Darwin correction for a spherically symmetric con-
finement, given by the Hamiltonian contribution H(D) of eq. (4.9). In order to address
the corresponding matrix elements, we first tackle a technical issue concerning the
eigenvalues and eigenvectors of a spherical box confined by a finite-height potential.

G.1 FINITE BOX SPHERICAL POTENTIAL

The spherical symmetry of the potential (2.4) allows to write the eigenstates as in
eqs. (2.10)–(2.11), where the radial wave function of the bound states is given by

Rn,l(r) =

√
2
a3

1
|cn,l|1/2





jl (kn,l r) , r ⩽ a ,

jl(kn,l a)
kl(κn,l a)

kl (κn,l r) , r > a .
(G.1)

We follow the standard convention of using jl(ζ) for the spherical Bessel function of
the first kind and order l. Similarly, we note kl(ζ) the modified spherical Bessel func-
tion of the second kind and order l, obtained from the imaginary-argument spher-
ical Hankel function h

(1)
l (ζ), i.e., kl(ζ) = −ilh

(1)
l (iζ). The condition of a bound

state implies that its energy E(0)
n,l = E0(kn,l a)2 is smaller than V0. We have defined

E0 = h̄2/2ma2 and κn,l =
√

2m(V0 − E(0)
n,l )/h̄. The normalization is settled by the

constant

cn,l =

(
jl(kn,l a)
kl(κn,l a)

)2

kl−1 (κn,l a) kl+1 (κn,l a)

− jl−1 (kn,l a) jl+1 (kn,l a) . (G.2)

The allowed E(0)
n,l and kn,l result from the solutions of the quantization condition

κn,l a
k′l(κn,l a)
kl(κn,l a)

= kn,l a
j′l(kn,l a)
jl(kn,l a)

, (G.3)

which can be recast as

κn,l a
kl+1(κn,l a)
kl(κn,l a)

= kn,l a
jl+1(kn,l a)
jl(kn,l a)

, (G.4)
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once we employ the useful recurrence relationship

q′l(ζ) =
l
ζ

ql(ζ)− ql+1(ζ) , (G.5)

valid for ql(ζ) = jl(ζ), as well as for ql(ζ) = kl(ζ).
In the limiting case of a hard-wall potential (V0 → ∞), the support of the wave

function is r < a, and the previous expressions result in

kn,l a → ζn,l , (G.6a)

cn,l → [jl+1(ζn,l)]
2 , (G.6b)

where ζn,l stands for the nth root of jl(ζ), and thus the radial wave function (G.1)
takes the simpler form of eq. (2.13).

In the case where V0 is large but remains finite, the second-order expansion of (G.4)
around ζn,l in the small parameter u =

√
E0/V0 allows to write the corrections to

eq. (G.6) and to other important parameters as

kn,l a ≃ ζn,l

(
1 − u + u2

)
, (G.7a)

cn,l ≃ [jl+1(ζn,l)]
2
(

1 + 3u + 3u2
)

, (G.7b)

jl(kn,l a) ≃ jl+1(ζn,l) ζn,l u , (G.7c)

jl(kn,l a) j′l(kn,l a) ≃ − [jl+1(ζn,l)]
2 ζn,l

(
u + 2u2

)
, (G.7d)

κn,l a ≃ u−1 − 1
2

ζ2
n,l u + ζ2

n,l u2 . (G.7e)

It is important to remark that eq. (G.7c) is valid up to quadratic order in u, and this
limiting condition leads to the expression (4.30) of the SOC radial matrix element,
which does not depend on V0.

G.2 MATRIX ELEMENTS FOR THE DARWIN CORRECTION

According to eq. (4.9), the diagonal Darwin energy correction is

E(D)
n,l =

E0

4mc2 I(D)
n,l , (G.8)

with the radial matrix element

I(D)
n,l = a2

∫ ∞

0
dr [Rn,l(r)]

2 d
dr

(
r2 dVmf

dr

)
. (G.9)

For the potential (2.4) we have V′
mf(r) = V0 δ(r − a) and therefore the integral (G.9)

can be trivially performed, yielding

I(D)
n,l = − V0 a4 d

dr
[Rn,l(r)]

2
∣∣∣∣
r=a

, (G.10)
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that, using the form (G.1) of the radial wave function, results in

I(D)
n,l = − 4V0

kn,l a
|cn,l|

jl (kn,l a) j′l (kn,l a) . (G.11)

According to eq. (G.7c), the radial matrix element I(D)
n,l diverges as

√
V0 in the large

V0-limit. Such a divergence is unphysical since an infinite V0 would imply an infinite
electric field, for which the weakly-relativistic approach leading to eq. (4.3) would not
be valid. The subtleties related with a relativistic particle hitting a steep wall are ex-
tensively discussed in the literature [119, 122]. The appearance of a divergence in our
weakly-relativistic approach calls for a systematic expansion in the small parameter
u =

√
E0/V0, as presented in the first part of this appendix. In addition, we need to

verify that the physical constants of the problem are such that we work in the regime
of validity of the perturbative approach. For the case of gold nanoparticles, the val-
ues of EF = 5.5 eV and W = 4.3 eV [138] result in u ≃ 0.75 (kFa)−1. Therefore, in the
semiclassical limit of kFa ≫ 1, to which our study is restricted, u is indeed a small
parameter.

Using the second-order expressions of eq. (G.7), the radial matrix element (G.11)
can be approximated by

I(D)
n,l = 4V0 ζ2

n,l u (1 − 2u) , (G.12)

and thus, the Darwin energy correction is

E(D)
n,l =

E2
0ζ2

n,l

mc2

(
u−1 − 2

)
. (G.13)

Notice that the forms (G.13) and (4.31), respectively, of the Darwin and spin-orbit
energy corrections, are both valid up to terms of order (V0)

0. We remark that, while
H(D) couples states with different n, the resulting second-order corrections in vF/c
can be neglected.

Similarly to the case of the kinetic correction treated in section 4.2, the Darwin
energy (G.13) induces, at B = 0, a renormalization of the chemical potential

∆µ(D) =
(

u−1 − 2
) µ̄0 E0

mc2 . (G.14)





MATRIX ELEMENTS FOR THE
ANGULAR MAGNETO-ELECTRIC

COUPLING H
In this appendix we calculate the matrix elements of the angular magneto-electric
Hamiltonian H(ame) restricted to the subspace Se

n,l,mj
, as discussed in section 4.3.1.

According to eq. (4.8b) the diagonal matrix element is

E (ame)
n,j,mj,(±)

= ⟨Φ(±)
n,j,mj

|H(ame)|Φ(±)
n,j,mj

⟩

=
µBB
4mc2 I(so)

n,j±1/2 I
(d−ame)(±)
j,mj

. (H.1)

The radial matrix element coincides with that arising from the spin-orbit coupling
(4.30) since, in the hard-wall limit,

∫ a

0
dr r3 [Rn,l(r)]

2 V′(r) = I(so)
n,l . (H.2)

Using the standard notation σ± = σx ± iσy, the angular matrix element is

I (d−ame)(±)
j,mj

= ⟨Υ(±)
j,mj

| sin2 θ σz −
sin θ cos θ

2

(
e−iφσ+ + eiφσ−

)
|Υ(±)

j,mj
⟩ . (H.3)

The spin-conserving component of I (d−ame)(+)
j,mj

is given by

⟨Υ(+)
j,mj

∣∣∣ sin2 θ σz

∣∣∣Υ(+)
j,mj

⟩ = −mj

2

(
j(j + 2) + j + 1 + m2

j

j(j + 1)(j + 2)

)
. (H.4)

Since the two spin-flip components coincide, we only need

⟨Υ(+)
j,mj

| sin θ cos θ e−iφσ+|Υ(+)
j,mj

⟩

(= −1)(mj+1/2)

√
2π

15

√
(j + 1)2 − m2

j

j + 1

∫
dϑ Y

−(mj+1/2)
j+1/2 (ϑ)Y1

2 (ϑ)Y
mj−1/2
j+1/2 (ϑ)

= (−1)(mj+1/2)

√
2
3

√
(j + 1)2 − m2

j

×
(

j + 1/2 j + 1/2 2
0 0 0

) (
j + 1/2 j − 1/2 2

−(mj + 1/2) mj − 1/2 1

)
, (H.5)
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where we have used the integration formula of three spherical harmonics in terms of
Wigner-3j symbols. The first of the 3j symbols can be trivially calculated, while the
use of Regge and permutation symmetries for the second one leads to1

⟨Υ(+)
j,mj

| sin θ cos θ e−iφσ+|Υ(+)
j,mj

⟩ = mj

2

(j + 1)2 − m2
j

j(j + 1)(j + 2)
. (H.6)

Proceeding analogously with the other basis vector Υ(−)
j,mj

, while combining the spin-
conserving and spin-flipping components, we have

I (d−ame)(±)
j,mj

= ∓ mj(j + 1/2)
j(j + 1)

. (H.7)

The off-diagonal matrix element of H(ame) restricted to the subspace Se
n,l,mj

is

⟨Φ(−)
n,j,mj

|H(ame)|Φ(+)
n,j,mj

⟩ = µBB
4mc2 I(so)

n,j±1/2 I
(od−ame)(±)
j,mj

, (H.8)

with

I (od−ame)
j,mj

= ⟨Υ(−)
j+1,mj

| sin2 θ σz −
sin θ cos θ

2

(
e−iφσ+ + eiφσ−

)
|Υ(+)

j,mj
⟩ . (H.9)

The spin-conserving component of I (od−ame)(+)
j,mj

is given by

⟨Υ(−)
j+1,mj

| sin2 θ σz|Υ(+)
j,mj

⟩ = −1
2

√
(j + 1)2 − m2

j

(j + 1)

(
1 +

m2
j

j(j + 2)

)
. (H.10)

Since here too the two spin-flip components coincide, we only need

⟨Υ(−)
j+1,mj

| sin θ cos θ e−iφσ+|Υ(+)
j,mj

⟩

= −(−1)(mj+1/2)

√
8π

15
mj

j + 1

∫
dϑ Y

−(mj+1/2)
j+1/2 (ϑ)Y1

2 (ϑ)Y
mj−1/2
j+1/2 (ϑ)

= −
m2

j

2

√
(j + 1)2 − m2

j

j(j + 1)(j + 2)
, (H.11)

1We used the identity
(

j1 j2 j1 − j2 + 1
mj −mj 0

)

= (−1)−j1+2j2−mj 2mj

√
(2j2 − 1)!

√
(2j1 − 2j2 + 1)!

√
(j1 + mj)!

√
(j1 − mj)!

(j1 − j2)!
√
(2j1 + 2)!

√
(j2 − mj)!)

√
(j2 + mj)!

.
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and thus

I (od−ame)
j,mj

= − 1
2

√
(j + 1)2 − m2

j

(j + 1)
. (H.12)

which leads to the off-diagonal matrix element (4.49). The simple structure of the
angular matrix elements (H.7) and (H.12) is a consequence of the Wigner–Eckart the-
orem (2.65) applied to the diagonal and off-diagonal matrix elements of H(ame), given
by eqs. (H.1) and (H.8), respectively.





NONRELATIVISTIC SUSCEPTIBILITY
USING THE COUPLED BASIS I

As discussed in Secs. 4.3 and 4.3.1, the treatment of the SOC is greatly simplified
by working in the coupled basis of total angular momentum within the subspace
decomposition (4.32). It is therefore useful to recast the nonrelativistic ZFS as the sum
of two components arising from the p (product) and e (entangled) states associated,
respectively, with the subspaces Sp

n,l,(d/u) and Se
n,l,mj

, writing

χ(nr) = χ
(nr)
p + χ

(nr)
e . (I.1)

The p-states (d/u) are characterized, respectively, by the quantum numbers
{n, l, mz = −l, ms = −1/2} and {n, l, mz = l, ms = +1/2} of the product basis, that
can be expressed in a compact way as {n, l, mz = ∓l, ms = (1/2)(mz/l)}. According
to eq. (4.10), at finite magnetic field, these states are associated with the energies

E(nr) (d/u)
n,l = E(0)

n,l ∓ µBB(l + 1) + E(dia)
n,l,∓l . (I.2)

Applying eq. (2.24) and summing over mz = ∓l we have

χ
(nr)
p

|χL|
=− 9πE0

kFa

∞

∑
l=0

∞

∑
n=1

{
(l + 1)2 f ′µ̄0

(
E(0)

n,l

)
+

Rn,l

2E0

l + 1
l + 3/2

fµ̄0

(
E(0)

n,l

)}
. (I.3)

In the nonrelativistic case, the subspace Se
n,l,mj

can be characterized by the product-

basis states with quantum numbers {n, l, mz = ∓l, ms = −(1/2)(mz/l)} and
{n, l, mz ∈ [−l + 1, l − 1] , ms = ±1/2}. For each couple (n, l), there are two states
of the first kind and 4l − 2 of the second one, whose energies at finite magnetic field
follow from eq. (4.10). Once the sum over mz is performed in eq. (2.24), they yield

χ
(nr)
e

|χL|
=− 3πE0

kFa

∞

∑
l=1

∞

∑
n=1

l
{(

2l2 + 1
)

f ′µ̄0

(
E(0)

n,l

)
+

Rn,l

E0

2l + 5/2
l + 3/2

fµ̄0

(
E(0)

n,l

)}
. (I.4)

Obviously, the addition of eqs. (I.3) and (I.4) results in the expression of χ(nr) pre-
sented in sec. 4.1.2 [cf. eq. (4.15)].





MATRIX ELEMENTS FOR THE CASE OF
THE HALF-SPHERE J

In this appendix we prove a general result concerning the limiting values of the wave
function and its derivative at a potential discontinuity, in one- and three-dimensional
geometries, which is crucial in order to obtain the spin-orbit matrix elements (4.70)
and (4.74). We also use nontrivial recurrence relations allowing to calculate the angu-
lar matrix element (4.71) and the radial one, eq. (4.80).

J.1 A THEOREM ABOUT THE WAVE-FUNCTION VALUES

CLOSE TO A POTENTIAL BARRIER

We consider a one-dimensional Schrödinger equation with a potential barrier of
height V0 at x = a (see Fig. J.1). We will prove that its solutions ψ(x) verify

lim
V0→∞

√
2mV0

h̄
ψ(a) = −ψ′(a−) . (J.1)

Without loss of generality, we take V(x) = 0 for x ∈ (a − ϵ, a) and V(x) = V0
for x ∈ (a, a + ϵ), where ϵ is a small, but finite length. Integrating the Schrödinger
equation in the small interval (a − ϵ, a + ϵ) yields

− h̄2

2m
[
ψ′(a + ϵ)− ψ′(a − ϵ)

]
+ V0

∫ a+ϵ

a
dx ψ(x) = E

∫ a+ϵ

a−ϵ
dx ψ(x) . (J.2)

Assuming that the barrier extends to x = +∞, we have ψ(x) = ψ(a) exp (−κx) in
the interval (a, a + ϵ), with κ =

√
2m(V0 − E)/h̄. Taking the limit of large V0 while

keeping a finite value of ϵ we obtain

ψ′(a + ϵ) = −κ ψ(a) exp (−κϵ) ≃ 0 , (J.3a)

V0

∫ a+ϵ

a
dx ψ(x) ≃ V0

κ
ψ(a) . (J.3b)

Thus, in the leading order in V0, eq. (J.2) can be recast as

h̄2

2m
ψ′(a − ϵ) +

√
V0h̄2

2m
ψ(a) = 0 . (J.4)
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xa

V (x)

V0

Figure J.1: Sketch of a one-dimensional sharp potential barrier of height V0 at x = a.

Since ψ′(x) is a continuous function in the open interval (a− ϵ, a), we promptly obtain
the announced result (J.1). The particular case of the radial wave function is contained
in eq. (G.7) and has been used in obtaining eq. (4.30).

The calculation of the spin-orbit matrix elements in the case of the HS necessitates
the generalization of (J.1) to a two-dimensional potential barrier. Since the poten-
tial (4.65) defining the confinement in the HS with a finite height V0 has cylindri-
cal symmetry, mz is a good quantum number, and the eigenfunctions have the form
ψmz(r, θ, φ) = fmz(r, θ) exp (imz φ), with fmz verifying

− h̄2

2m

(
1
r2 ∂r r2 ∂r +

1
r2 sin θ

∂θ sin θ ∂θ −
m2

z

r2 sin2 θ

)
fmz(r, θ) + V(r, θ) fmz(r, θ)

= E fmz(r, θ) . (J.5)

Marching on the footprints of the derivation for the one-dimensional case, we inte-
grate the previous equation in the small angular interval (π/2 − ϵ, π/2 + ϵ), obtain-
ing

− h̄2

2m

(
2 ϵ

r2 ∂r r2 ∂rfmz(r, θ)

∣∣∣∣
θ=π/2

+
1
r2 ∂θ fmz(r, θ)

∣∣∣∣
θ=π/2+ϵ

θ=π/2−ϵ

− 2 ϵ m2
z

r2 fmz(r, θ)

∣∣∣∣
θ=π/2

)

+ V0

∫ π/2+ϵ

π/2
dθ fmz(r, θ) = 2 ϵ E fmz(r, θ)

∣∣∣∣
θ=π/2

. (J.6)

In the leading order in V0 we have fmz(r, θ) =

fmz(r, θ = π/2) exp (−
√

2mV0r2[θ − π/2]/h̄) in the interval (π/2, π/2 + ϵ). Thus,
taking the limit of large V0 and then that of ϵ → 0 we obtain

r
√

2mV0

h̄
fmz(r, θ=π/2) ≃ − ∂θ fmz(r, θ)

∣∣∣∣
θ=π/2−

, (J.7)
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which generalizes eq. (J.1) to the case of a two-dimensional potential barrier with
cylindrical symmetry.

Taking the hard-wall limit of V0 → ∞ for the potential (4.65), the solutions
ψ
(V0,n,l)
mz (r, θ, φ) converge towards the orbital wave functions (4.66), with the condi-

tion of l + mz being odd. Thus, we can write
√

mV0

h̄
ψ
(V0,n,l)
mz (r, θ=π/2, φ) ≃ −

√
l(l + 1)− mz(mz + 1)

Rnl(r)
r

e−iφ Ymz+1
l (θ=π/2, φ) ,

(J.8)
where we have used

∂Ymz
l (θ, φ)

∂θ
= mz cot(θ)Ymz

l (θ, φ) +
√
(l − mz)(l + mz + 1) e−iφ Ymz+1

l (θ, φ) , (J.9)

taking θ = π/2.

J.2 ANGULAR INTEGRAL OF THE MATRIX ELEMENT

(4.71)

The angular integral (4.72) appearing in the nondiagonal matrix element (4.71) of
H(so)−(HS) can be expressed as

I (dome)
l′,l,m′

z
=

1
2

√
(2l + 1)(2l′ + 1)

√
(l − m)!(l′ − m′

z)!
(l + m′

z)!(l′ + m′
z)
Ym′

z
l′,l , (J.10)

where we have used the definition of the spherical harmonic Ymz
l (ϑ) in terms of the

associated Legendre function Pmz
l (cos θ) [with the standard convention of assigning

the Condon-Shortley phase (−1)mz to the latter], and introduced

Ym′
z

l′,l =
∫ 1

0
dx P

m′
z

l′ (x) Pm′
z

l (x) . (J.11)

In the case that interests us, with l′+m′
z odd and l +m′

z even, we can prove, directly
from the differential equations fulfilled by the associated Legendre functions Pm′

z
l and

P
m′

z
l′ with l ̸= l′, the following useful identity:

Ym′
z

l′,l = − l′ + 1 − m′
z

l′(l′ + 1)− l(l + 1)
P

m′
z

l (0) Pm′
z

l′+1(0) , (J.12)

which, together with the relationship

P
m′

z
l (0) =

(−1)(l+m′
z)/2

2l
(l + m′

z)!

( l+m′
z

2 )! ( l−m′
z

2 )!
, (J.13)
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valid for even l + m′
z, lead to

I (dome)
l′,l,m =

(−1)m+(l+l′+1)/2

2l+l′

√
(2l + 1)(2l′ + 1)

l(l + 1)− l′(l′ + 1)

√
(l + m)! (l − m)!
( l+m

2 )! ( l−m
2 )!

√
(l′ + m)! (l′ − m)!

( l′+m−1
2 )! ( l′−m−1

2 )!
,

(J.14)
allowing to give a closed expression to the nondiagonal matrix element (4.71) of
H(dome).

J.3 DEFINITE INTEGRALS OF TWO SPHERICAL BESSEL

FUNCTIONS

The radial matrix elements (4.80), appearing in the perturbative treatment of the mag-
netic field for the HS of sec. 4.5.3, as well as in the diagonalization to obtain the finite-
field spectrum of the sphere in fig. 2.4, can be expressed as

Rn′,l′,n,l =
2 L(4)

l′,l (ζn′,l′ , ζn,l)

|jl′+1(ζn′,l′) jl+1(ζn,l)|
, (J.15)

with

L(q)
l′,l (α, β) =

∫ 1

0
dζ ζq jl′(αζ) jl(βζ) , (J.16)

and where α and β are such that jl−2(α) = 0 and jl(β) = 0, respectively.
The particular case of Rn′,l,n,l appearing in the first term of eq. (4.78b) requires a

simpler term
K(q)

l (α, β) = L(q)
l,l (α, β) , (J.17)

invoking the definite integral of two spherical Bessel functions with the same order.
Using repetitively the recursive formulas developed for the indefinite integrals of
spherical Bessel functions of the same order [186], we have

K(4)
l (α, β) =

(
α2 + β2

2αβ

)l

K(4)
0 (α, β)−

l

∑
d=1

(
α2 + β2)d−1

(2αβ)d

{
2jl−d(α) jl−d(β)

− α

(
2 [2(l − d) + 3]

α2 − β2 − 1
)
jl+1−d(α) jl−d(β)

+ β

(
2 [2(l − d) + 3]

α2 − β2 + 1
)
jl−d(α) jl+1−d(β)

}
(J.18)

with

K(4)
0 (α, β) =

1
2αβ

{
1

(α − β)3

[
2(α − β) cos (α − β) +

(
(α − β)2 − 2

)
sin (α − β)

]

− 1
(α + β)3

[
2(α + β) cos (α + β) +

(
(α + β)2 − 2

)
sin (α + β)

]}
.

(J.19)
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The recursive formulas developed for the indefinite integrals of spherical Bessel
functions of different orders [186] allow us to write

L(4)
l−2,l(α, β) =

2l − 1
2

α

β
K(4)

l−1 (α, β)− 2l + 1
2

K(4)
l−2 (α, β) , (J.20)

which can be directly evaluated from eq. (J.18), and also expressed as

L(4)
l−2,l (α, β) =

1
4

[
(2l − 1)

(
α

β

)2

− 2l − 3

] [(
α2 + β2

2αβ

)l−2

K(4)
0 (α, β)

−
l−2

∑
d=1

(
α2 + β2)d−1

(2αβ)d

{
2jl−2−d(α) jl−2−d(β)

− α

(
2 [2(l − d)− 1]

α2 − β2 − 1
)
jl−1−d(α) jl−2−d(β)

+ β

(
2 [2(l − d)− 1]

α2 − β2 + 1
)
jl−2−d(α) jl−1−d(β)

}]

+
2l − 1

4
α

β2

(
2 [2l − 1]
α2 − β2 − 1

)
jl−1(α) jl−2(β) . (J.21)

The integral L(4)
l+2,l (α, β) can be obtained from the expression of L(4)

l−2,l (α, β) above
by implementing the shift of l to l + 2 while exchanging the role of α and β. The
closed form of the definite integrals of two spherical Bessel funcions, developed in
this appendix, constitutes a general result that may find its applications beyond the
use of evaluating the matrix elements for the problem at hand.
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