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1 Charge carrier transport in a doped semiconductor

We consider a semiconductor with equilibrium electron and hole concentrations n0 and p0,
respectively. In the following, we shall address carrier transport phenomena and the non-
equilibrium electron and hole concentrations are denoted n(r, t) and p(r, t), respectively. The
elementary charge is denoted e (> 0). We introduce the electron and hole mobilities, µn and µp,
respectively. The diffusion coefficient of electrons and holes are denoted Dn and Dp, respectively.

1.1 Drift and diffusion currents

(a) In the presence of an external electric field E, express the electron and hole drift current
densities, denoted Jdrift

n and Jdrift
p , respectively. For a given orientation of E, draw the

electron and hole fluxes as well as the electron and hole current densities. Connect the
electron (hole) mobilities to the electron (hole) conductivities σn(p).

(b) In the presence of charge carrier concentration gradients, we define the electron and hole
diffusion current densities Jdiff

n and Jdiff
p , respectively. Give their expressions as a function

of n(r, t) [p(r, t)] and Dn [Dp] and, as in the previous question, qualitatively draw, both for
electrons and holes, the charge carrier concentration gradient, the associated particle flux,
and the associated diffusion current density.

(c) Write the total current density Jtot.

1.2 Doped semiconductor

We now consider an homogeneously doped semiconductor with an electronic gap EG and we focus
on the case of an electron-doped (i.e., n-doped) system, where doping arises from an impurity
band, with donor concentration Nd, situated at an energy δE � EG below the conduction band
minimum.

(a) Give an example of an n-doped semiconductor. Explain qualitatively (no calculations are
requested) how n0 can be determined in the following three temperature regimes: kBT �
δE (frozen regime); kBT & δE (saturation regime); kBT � δE (intrinsic regime). The
temperature is denoted T and kB is the Boltzmann constant.

(b) Draw qualitatively ln (n0) as a function of 1/T .

(c) In the following, we shall consider the saturation regime. Express the charge neutrality
condition. Knowing that the intrinsic charge concentration at room temperature is typically
ni ∼ 1016 m−3 and that Nd ∼ 1020 m−3, give a numerical estimate of p0. Comment on this
result and justify why holes are called “minority carriers” in an n-doped semiconductor.
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1.3 Continuity equation for minority carriers in an n-doped semiconductor

In the following we consider, for simplicity, a one-dimensional (1d) problem along the x axis.

(a) Write the continuity equation that connects the hole concentration and J tot
p in the absence

of generation and recombination of charge carriers.

(b) We now consider generation and recombination of electron-hole pairs. How can electron-
hole pairs be generated and then recombine in a semiconductor? Justify precisely that the
difference between the electron-hole pair generation and recombination rates can be written
as β (n0p0 − np), where the (x, t) dependence of n and p is implicitly considered. What is
the physical meaning and the dimension of β?

(c) Still in the case of an n-doped semiconductor, demonstrate that one can approximate the
difference between the generation and recombination rates as (p0 − p)/τp. What is the
physical meaning and the dimension of τp?

(d) Demonstrate that the continuity equation for holes writes

∂p

∂t
= Dp

∂2p

∂x2
− µp

∂(pE)

∂x
+
p0 − p
τp

. (1.1)

1.4 Diffusion of minority carriers in a 1d n-doped semiconductor

We consider a 1d n-doped semiconductor in which a constant excess of carriers (electrons and
holes) ∆p0 = ∆n0 is maintained in the region x 6 0, whereas no excess carriers are injected in
the region x > 0, such that limx→∞ p(x) = p0. For now, we neglect the internal electric field
E(x) that may arise within the semiconductor. This approximation will be relaxed in question
1.4(d).

(a) Using Eq. (1.1) and the boundary conditions, express ∆p(x) = p(x)−p0 for any x and draw
∆p(x). You may introduce Lp =

√
Dpτp. What is the physical meaning of Lp?

(b) Assuming local quasi-neutrality, one can write ∆n(x) = n(x)−n0 ≈ ∆p(x). Express Jdiff
p (x)

and Jdiff
n (x).

(c) What must be the value of the total current density J tot(x)?

(d) Using this condition, express the electric field E(x) as a function of Lp, Dn, Dp, σn and σp.
Comment on this result.

We now consider that a constant excess of holes ∆pl is maintained for x 6 0, whereas a
similar deficit of holes ∆pr is maintained for x > w (w > 0). In the following, we neglect the
internal electric field.

(e) Solve again the continuity equation (1.1) and, using the boundary conditions, express ∆p(x)
in the region 0 6 x 6 w. Give simplified expressions for ∆p(x) in the two limiting cases
w � Lp (long device configuration) and Lp � w (short device configuration).

(f) Plot ∆p(x) in the two configurations introduced above.

(g) Determine the simplified expression of Jdiff
p (x) in the short and long device configuration,

respectively. Comment on the differences between these two expressions.
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2 Paramagnetism of degenerate and nondegenerate free elec-
trons

We consider a three-dimensional (3d) gas of N � 1 noninteracting free electrons of mass m
and spin s = 1/2 placed in a magnetic field B directed along the z axis. Each electron has a
magnetic moment of modulus equal to the Bohr magneton µB with two possible orientations
with respect to the applied magnetic field. We note T the temperature, β = 1/kBT , and µ the
electron chemical potential.

(a) Show that the density of states g(E) per unit volume for free electrons in a 3d system in the
absence of a magnetic field as a function of the energy E is given by g(E) = K

√
E, where

K is a constant to be determined.

(b) We apply a weak magnetic field such that µBB � µ. Considering only the effect of the
additional Zeeman term on the spin degree of freedom, give the new dispersion relation
(with respect to the B = 0 case) and the densities of states g±(E) for spins parallel (+) and
antiparallel (−) to the magnetic field B, respectively.

(c) In the degenerate case of βµ� 1, indicate graphically the occupation as a function of energy
f(E) of electronic states at T = 0 K and at T > 0 K.

(d) Calculate the number of electron spins per unit volume parallel (n+) and antiparallel (n−)
to the magnetic field.

(e) Determine the magnetization M and the paramagnetic susceptibility χ of electrons at T =
0 K.

(f) We now consider the nondegenerate case of low electron density, where we can approximate
the Fermi–Dirac distribution by f(E) ≈ e−β(E−µ). Calculate M and χ as a function of
the electron density and the temperature. Explain why the Curie law is obtained for the
susceptibility of nondegenerate electrons.
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