

OPTIMIZING SURFACE-BASED QUANTUM ARCHITECTURES WITH QUANTUM OPTIMAL CONTROL THEORY

Denis Jankovic^{1,2,3,4}, Jean-Gabriel Hartmann^{4,5}, P.A. Hervieux⁴, M. Ruben³, C. Wolf^{1,2}.

¹ IBS Center for Quantum Nanoscience (QNS), Seoul, South Korea, <u>denis.jankovic@gns.science</u>

Optimal Control Theory (QOCT) provides a powerful framework for steering quantum systems with high precision—an essential capability for fast and accurate quantum operations. This talk explores QOCT's role in advancing surface-based quantum platforms: nuclear-spin qudits in lanthanide single-molecule magnets (SMMs), holmium single-atom magnets (SAM) on surfaces whose nuclear spins can serve as qudits with an extraordinarily small Landau—Zener gap, and electronic-spin qubits controlled by electron spin resonance scanning tunneling microscopy (ESR-STM).

In SMMs such as TbPc₂, nuclear spin manifolds (e.g., I = 3/2) offer multi-level qudits that enable compact quantum gate implementations. Experiments by Godfrin *et al.*^{1,2} have demonstrated quantum gate operations and even Grover's algorithm using electrically driven nuclear spins. However, scaling to higher-dimensional qudits introduces more decoherence channels, potentially offsetting their advantages. Recent theoretical studies have clarified when qudits can outperform equivalent multiqubit schemes, provided operations are fast and high-fidelity^{3,4}. Here, QOCT—combined with models of nuclear spin-electric field coupling—offers a way to tailor control fields and preserve this performance edge. Moreover, the same theoretical framework can be applied to Ho SAM-based nuclear spin qudits that can be controlled via ESR-STM.

Meanwhile, ESR-STM also allows for atomic-scale manipulation of individual electronic spins, with Wang *et al.*⁵ achieving coherent single-qubit and small-scale multiqubit gates (CNOT and CCNOT). Yet, crucial milestones—like scalable entanglement and robust n-qubit operations—remain unmet⁶. To address this, we develop realistic models of spin dynamics using open quantum system simulations and apply QOCT to design optimal, experimentally viable gate protocols.

In both cases, QOCT serves as a bridge between physical modeling and experimental feasibility, enabling precise control under realistic constraints. By tackling platform-specific decoherence and control challenges, this work supports the development of scalable, surface-based quantum information technologies.

References

- [1] S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 2014, 344, 1135.
- [2] C. Godfrin, A. Ferhat, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, F. Balestro, *Phys. Rev. Lett.* **2017**, *119*, 187702.
- [3] D. Janković, J.-G. Hartmann, M. Ruben, P.-A. Hervieux, npj Quantum Inf. 2024, 10, 59.
- [4] J.-G. Hartmann, D. Janković, R. Pasquier, M. Ruben, P.-A. Hervieux, Quantum 2025, 9, 1690.
- [5] Y. Wang, Y. Chen, H. T. Bui, C. Wolf, M. Haze, C. Mier, J. Kim, D.-J. Choi, C. P. Lutz, Y. Bae, S. Phark, A. J. Heinrich, *Science* **2023**, *382*, 87.
- [6] C. Wolf, A. J. Heinrich, S. Phark, ACS Nano 2024, 18, 28469.

² Ewha Womans University, Seoul, South Korea

³ Karlsruhe Institute for Technology, Karlsruhe, Germany

⁴ Institut de Physique et de Chimie des Matériaux de Strasbourg, Strasbourg, France

⁵ Institut de Chimie de Strasbourg, Strasbourg, France