
BASH programming
http://www.gnu.org/software/bash/

Basic tutorial to BASH programming

Sébastien LE ROUX sebastien.leroux@ipcms.unistra.fr

INSTITUT DE PHYSIQUE ET DE CHIMIE DES MATÉRIAUX DE STRASBOURG,
DÉPARTEMENT DES MATÉRIAUX ORGANIQUES,

23 RUE DU LOESS, BP43,
F-67034 STRASBOURG CEDEX 2, FRANCE

SEPTEMBER 12, 2023

http://www.gnu.org/software/bash/
mailo:sebastien.leroux@ipcms.unistra.fr

Contents

Contents i

1 Linux system 1

1.1 User management . 1
1.2 File permissions . 2
1.3 Environment variables . 4

1.3.1 Introduction . 4
1.3.2 Working principles of environment variables 5

2 The BASH "Bourne-Again" SHell 7

2.1 What is a shell ? . 7
2.2 The BASH command interpreter . 8
2.3 Bash scripting . 9
2.4 Scripting instructions . 11

let - numerical variables . 12
if - the conditional tests . 13
for - the loops . 17
while - conditional loops . 19
until - conditional loops . 20
case - testing and branching . 21
function - advanced scripting . 23

2.5 Examples . 25

3 Command glossary 31

3.1 Standard commands . 31
3.2 Redirection commands . 34
3.3 Bash commands . 35
3.4 Filter commands . 35

i

Linux system

For detailed references see [1, 2].

1.1 User management

The Linux system is designed as a multi-user system, it means that many users can work with
the system at one time. That is, on a Linux system it is possible to distinguish three types of
users:

• The "super" user or administrator (often called root) who can do everything in particular
administrate and thus change the configuration of the system.

• The "sudoers" for "super user do"-users who can use the "sudo" command to request
admin privileges. When using the "sudo" command, suoders are required to confirm
their identity by entering their user password.

• The "standard" user who plays, works, in short who uses the computer but with a restricted
access.

Depending on the Linux distribution the super user can:

• Have an account on the computer and therefore access his/her personal home directory
(/root). In that case to administrate the computer the super user has to log-in using the
"su -" command.

• Not have an account, then only users that have been granted permission can administrate
the computer using the "sudo" command.

Notice that on a Linux system it is usual to find group of users, ie. users that share the same
privileges and that have been gathered into a group.

1

Chapter 1. Linux system 2

1.2 File permissions

The purpose of this section is to introduce the basic ideas on the file permission system on a
Linux/Unix system. On a Linux system file permissions does not necessarily means adminis-
trating the system by installing the driver for the newly installed piece of hardware or updating
the program library of the computer. Understanding the file permission system of the Linux
system is the most basic prerequisite to becoming a ’Power’ user, ie. a user having the power
to understand what he/she is doing with the computer.

The golden rule of a Linux/Unix system is that everything is a file. The computer is seen by the
operating system as a file tree and hence each component (screen, keyboard, mouse, graphic
card ...) is seen as a file. When a hardware component is added to the computer, a file is added
in the tree of the operating system /. Therefore permissions to manipulate the hardware from
the software point of view are handled like the one of a file on the hard drive.
In a file tree one can distinguish two objects the first are the ’simple files’ and the second the
’directories’. For both permissions are handled on the same way:

• The different permissions that can be granted for a simple file are:

– read: to visualize its content

– write: to modify its content (ex: editing)

– execute: to execute its content (ex: program)

• The different permissions that can be granted for a directory are:

– read: to visualize its content

– write: to modify its content (ex: adding new files)

– execute: to go inside this directory (ex: changing directory)

To obtain the information regarding the permissions of a file in the Linux tree one case use the
"ls -l" command (see section [Sec. 3.1]):

user@localhost ~/Desktop]$ ls -lh MyFile

-rwxrw-r--. 1 user ipcms 1.0K 15 févr. 2011 MyFile

The syntax for this line is the following:

• "-" means "file", alternatively "d" means directory and "s" means symbolic link.

• "rwxrw-r-" are the permissions on the file.

• "1" is the number of physical links of the file with the hard drive.

• "user" is the name of the owner of the file.

2

3 1.2. File permissions

• "ipcms" is the name of the group the owner of the file belongs to.

• "1.0K" is the size of the file on the hard drive.

• "15 févr. 2011" is the last modification date of the file.

• "MyFile" is the name of the file

The permissions on the file can be decomposed in 3 series of 3 letters: r (for read), w (for write)
and x (for execute), also the symbol "-" in place of a letter means that the permission is denied.
The first 3 letters refer to the owner of the file, the second to the group the owner belong to, and
the third to all other users of the computer. In the case of the file "MyFile" the owner of the
file ("user") has all permissions (read, write execute). The members of the group the owner of
the file belongs to (so the members of the group "ipcms") can read and modify the file. Finally
other users can only read the file "MyFile".
It is possible to define the access, utilization or modification permissions of a file with the
"chmod" command (see section [Sec. 3.1]) and using 3 numbers:

• 1 = execute

• 2 = write

• 4 = read

As well as their combinations:

• 3 = 1 + 2 = execute + read

• 5 = 1 + 4 = execute + write

• 6 = 2 + 4 = write + read

• 7 = 1 + 2 + 4 = execute + write + read

Finally we distinguish the 3 classes of users for whom it is possible to grant permissions on a
file, the owner, the group the owner belongs to and all other users recognized by the system.
The permissions on the file being granted for each category of user by a single combination of
the number 1, 2 and 4.
For example it is possible to grant permissions 644 to a file:

user@localhost ~/Desktop]$ chmod 644 MyFile

The command will grant permission to read and modify the file to the owner, thus removing the
permission to execute it. It will grant permission to read the file to all other users (members of
the group the owner belongs too, and else) and remove the permissions to modify and execute
the file.

3

Chapter 1. Linux system 4

1.3 Environment variables

Adapted from the Wikipedia web page

1.3.1 Introduction

Environment variables are a set of dynamic named values that can affect the way running pro-
cesses will behave on a computer. They can be said in some sense to create the operating
environment in which a process runs.
In a Linux system each process has its own private set of environment variables. By default,
when a process is created it inherits a duplicate environment of its parent process, except for
explicit changes made by the parent when it creates the child. From shells such as bash, you can
change environment variables for a particular command invocation by indirectly invoking it via
env or using the ENVIRONMENT_VARIABLE=VALUE command notation (see section [Sec. 3.3].
Examples of environment variables include:

• PATH: lists directories the shell searches, for the commands the user may type without
having to provide the full path.

• HOME: indicates where a user’s home directory is located in the file system.

• PWD: indicates the working directory.

• TERM: specifies the type of computer terminal or terminal emulator being used.

• SHELL: specifies the type of command interpreter being used (BASH, TCSH ...).

• PS1: specifies how the prompt is displayed in the Bourne shell and variants.

Shell scripts and batch files use environment variables to communicate data and preferences
to child processes. They can also be used to store temporary values for reference later in the
script.
In Unix/Linux, an environment variable that is changed in a script or compiled program will
only affect that process and possibly child processes. The parent process and any unrelated
processes will not be affected.
In Unix, the environment variables are normally initialized during system start-up by the system
init scripts, and hence inherited by all other processes in the system. Users can modify them in
the profile script for the shell they are using.
The variables can be used both in scripts and on the command line. They are usually referenced
by putting special symbols in front of or around the variable name. For instance, to display the
program search path, in most scripting environments, the user has to type:

user@localhost ~]$ echo $PATH

The command env (see section [Sec. 3.3]), displays all environment variables and their values.

4

5 1.3. Environment variables

1.3.2 Working principles of environment variables

A few simple principles govern how environment variables achieve their effect.

• Local to process
Environment variables are local to the process in which they were set. That means if we
open two terminal windows (Two different processes running shell) and change value of
environment variable in one window, that change will not be seen by other window.

• Inheritance
When Parent process creates a child process, the child process inherits all the environment
variable and their values which parent process had.

• Case sensitive
The names of environment variables are case sensitive.

• Persistence
Environment variables persistence can be session-wide or system-wide.

5

The BASH "Bourne-Again" SHell

2.1 What is a shell ?

From the official GNU Bash web page:

At its base, a shell is simply a macro processor that executes commands. The term macro
processor means functionality where text and symbols are expanded to create larger expres-
sions.

A Unix shell is both a command interpreter and a programming language. As a command
interpreter, the shell provides the user interface to the rich set of gnu utilities. The programming
language features allow these utilities to be combined. Files containing commands can be
created, and become commands themselves. These new commands have the same status as
system commands in directories such as /bin, allowing users or groups to establish custom
environments to automate their common tasks.

Shells may be used interactively or non-interactively. In interactive mode, they accept in-
put typed from the keyboard. When executing non-interactively, shells execute commands read
from a file.

A shell allows execution of commands, both synchronously and asynchronously. The shell
waits for synchronous commands to complete before accepting more input; asynchronous
commands continue to execute in parallel with the shell while it reads and executes additional
commands. The redirection constructs permit fine-grained control of the input and output of
those commands. Moreover, the shell allows control over the contents of commands environ-
ments.

Shells also provide a small set of built-in commands (built-ins) implementing functionality
impossible or inconvenient to obtain via separate utilities. For example, cd, break, continue,
and exec cannot be implemented outside of the shell because they directly manipulate the shell
itself. The history, getopts, kill, or pwd built-ins, among others, could be implemented in

7

Chapter 2. The BASH "Bourne-Again" SHell 8

separate utilities, but they are more convenient to use as built-in commands.

While executing commands is essential, most of the power (and complexity) of shells is
due to their embedded programming languages. Like any high-level language, the shell
provides variables, flow control constructs, quoting, and functions.

2.2 The BASH command interpreter

From the official GNU Bash web page:

Bash is the shell, or command language interpreter, that will appear by default in most of
the GNU operating systems. Bash is an sh-compatible shell that incorporates useful features
from the Korn shell (ksh) and C shell (csh). It is intended to conform to the IEEE POSIX
P1003.2/ISO 9945.2 Shell and Tools standard. It offers functional improvements over sh for
both programming and interactive use. In addition, most sh scripts can be run by Bash without
modification.

The improvements offered by BASH include:

• Command line editing

• Unlimited size command history

• Job Control

• Shell Functions and Aliases

• Indexed arrays of unlimited size

• Integer arithmetic in any base from two to sixty-four

The manual is available online at http://www.gnu.org/software/bash/manual/.

Start-up scripts

When Bash starts it executes commands in a variety of different scripts.

• When Bash is invoked as an interactive login shell it:

1. First reads and executes commands from the file /etc/profile, if that file exists.

2. Then looks for ∼/.bash_profile (in Unix/Linux language ∼ = $HOME),
∼/.bash_login and ∼/.profile, in that order, and reads and executes com-
mands from the first one that exists and is readable.

• When an interactive shell that is not a login shell is started, Bash reads and executes
commands from ∼/.bashrc, if that file exists.

8

http://www.gnu.org/software/bash/manual/

9 2.3. Bash scripting

• When a login shell exits, Bash reads and executes commands from the file
∼/.bash_logout, if it exists.

2.3 Bash scripting

The command line

The command line or prompt is the interactive mode offered to users to enter commands typed
from the keyboard.
The prompt, can look like (Ubuntu Linux):

user@localhost:~$

or (Fedora Linux):

user@localhost ~]$

user = the name of the user who opened the terminal
localhost = the name of the computer

∼ = the active location in the directory structure.

From this command line the user can enter directly any command available in the $PATH or al-
ternatively the direct path to the target command. On the prompt command(s), option(s),
argument(s) redirection(s) and regular expression(s) are separated by
empty spaces, and are numbered according to their order of appearance on the line, starting
from 0 for the first element:

user@localhost:~$ cat MyFile | grep -v 'MyKeyword'

On the previous line:

Object Number

The "cat" command 0
The "MyFile" argument 1
The "|" redirection 2
The "grep" command 3
The "-v" option 4
The 'MyKeyword' regular expression 5

9

Chapter 2. The BASH "Bourne-Again" SHell 10

Bash script

A script is always composed of at least two lines:

#!/bin/bash

This little example illustrates how to say 'Hello' in Bash programming

echo "Hello"

The first tells the system which program to use to run the script, here the Bash command
interpreter; the other lines describe the commands to be performed.
Comments can be inserted at any place using the "#" followed by a space.

In Bash like in any other programming language you will find many, somewhat different and
somewhat alike, possibilities to achieve the same goal. In the next pages I provide a very short
introduction, as well as few very simple examples, to the most useful (in my very humble
opinion) Bash scripting instructions. Since these examples are based on my small experience, I
am pretty sure that it exists other tools worth being presented thereafter but still missing so far.
Time will (hopefully) help me to correct this, otherwise, for, I quote, "An in-depth exploration
of the art of shell scripting", simply read the amazing Advanced Bash-Scripting Guide written
by Mendel Cooper [2].

10

http://www.tldp.org/LDP/abs/html/

11 2.4. Scripting instructions

2.4 Scripting instructions

Option(s) and argument(s)

It is possible to pass option(s) and/or argument(s) to a script by referring to the number they
will appear on the command line (see section [Sec. 2.3]), ex:

user@localhost ~]$ MyScript MyOption1 MyOption2 MyArg

Corresponding possible structures of the file MyScript that contains command(s):

#!/bin/bash

ls -$1$2 $3

or

#!/bin/bash

OPT1=$1

OPT2=$2

ARG=$3

ls -$OPT1$OPT2 $ARG

If MyOPtion1, MyOption2 and MyArg are respectively l, t and MyFile then the script MyScript
will simply be equivalent to:

user@localhost ~]$ ls -lt MyFile

11

Chapter 2. The BASH "Bourne-Again" SHell 12

let - numerical variables

In Bash scripting it possible to assign a numerical value to a variable, in that case the declaration
of the variable is particular and uses the let command:

Examples

Ex 1:

#!/bin/bash

let VAL=0

Ex 2:

#!/bin/bash

NUM=‘cat MyFile | wc -l‘

let VAL=$NUM

The following syntax can be used to increment a numerical variable in Bash scripting using the
let command:

#!/bin/bash

Option 1

let NUM=1

let NUM=$NUM+1

Option 2

let NUM=1

let "NUM+=1"

And similarly with the - operator, notice that the increment (here 1) could be different.

12

13 2.4. Scripting instructions

if - the conditional tests

Comparison operators

• Basic comparisons:

-f = exists and is a file

-d = exists and is a directory

-h = exists and is symbolic link

-r = has read permission

-w = has write permission

-x = has execute permission

-O = you are the owner of the file

-nt = is newer than

-ot = is older than

! = is false

• Integer comparisons:

-eq = is equal to

-ne = is no equal to

-gt = is greater than

-ge = is greater than or equal to

-lt = is less than

-le = is less than or equal to

• String comparisons:

= = == = is equal to

!= = is not equal to

-z = string is null

-n = string is not null

13

Chapter 2. The BASH "Bourne-Again" SHell 14

General syntax of the "if" command

#!/bin/bash

if [TEST]; then

We do something

fi

General syntax of the "if-else" command

#!/bin/bash

if [TEST]; then

We do something

else

We do something else

fi

General syntax of the "if-elif-else" command

#!/bin/bash

if [TEST]; then

We do something

elif [TEST]; then

We do something else

else

We do something else

fi

14

15 2.4. Scripting instructions

Examples

Ex 1:

#!/bin/bash

if [-f MyFile]; then

cp MyFile MyFile.bkp

fi

Ex 2:

#!/bin/bash

NUM=‘cat MyFile | wc -l‘

let VAL=$NUM

if [$VAL -eq 100]; then

echo "MyFile is 100 lines long"

fi

Ex 3:

#!/bin/bash

if [-d MyDirectory]; then

mkdir MyDirectory/data

elif [-f MyDirectory]; then

mv MyDirectory MyFile

mkdir -p MyDirectory/data

elif [-h MyDirectory]; then

mv MyDirectory MyLink

mkdir -p MyDirectory/data

else

mkdir -p MyDirectory/data

fi

15

Chapter 2. The BASH "Bourne-Again" SHell 16

Ex 4:

#!/bin/bash

A="Car"

B="Truck"

if [$A != $B]; then

C=‘echo $A | sed 's;C;B;1'‘

echo $C

else

echo $A" "$B | awk '{printf $NF}'

fi

16

17 2.4. Scripting instructions

for - the loops

General syntax of the "for" command

#!/bin/bash

Option 1

LIST="1 2 3 4 ... 1000"

for VAR in $LIST

do

We do something

done

Option 2

let NUM1=1

let NUM2=1000

for VAR in $(seq $NUM1 $NUM2)

do

We do something

done

Option 3 - integer loops

let NUM=1000

Double parenthesis and limit variable, NUM, written with no "$" symbol

for ((VAR=1 ; VAR <= NUM ; VAR++))

do

We do something

done

17

Chapter 2. The BASH "Bourne-Again" SHell 18

Examples

Ex 1:

#!/bin/bash

LIST= ‘ls -l | grep '^-' | awk '{printf $NF" "}'‘

for LI in $LIST

do

NLIGN=‘cat $LI | wc -l‘

echo "File= "$LI", Number of ligne(s)= "$NLIGN

done

Ex 2:

#!/bin/bash

for LI in $(seq 1 100)

do

for MI in $(seq 1 100)

do

mkdir -p $li/$MI

echo "The path: "$LI"/"$MI" has been created"

done

done

18

19 2.4. Scripting instructions

while - conditional loops

General syntax of the "while" command

#!/bin/bash

while [TEST]

do

we do something

done

Examples

Ex 1:

#!/bin/bash

let A=50

while [$A -ge 1]

do

echo "A= "$A

let "A-=1"

done

Ex 2:

#!/bin/bash

STATUS=‘ps auwx | grep 'MyCmd'‘

while [-n $STATUS]

do

sleep 60

STATUS=‘ps auwx | grep 'MyCmd'‘

done

19

Chapter 2. The BASH "Bourne-Again" SHell 20

until - conditional loops

General syntax of the "until" command

#!/bin/bash

until [TEST]

do

we do something

done

Examples

Ex 1:

#!/bin/bash

let A=50

until [$A -lt 1]

do

echo "A= "$A

let "A-=1"

done

Ex 2:

#!/bin/bash

STATUS=‘ps auwx | grep 'MyCmd'‘

until [-z $STATUS]

do

sleep 60

STATUS=‘ps auwx | grep 'MyCmd'‘

done

20

21 2.4. Scripting instructions

case - testing and branching

General syntax of the "case" command

#!/bin/bash

case "$variable" in

"$condition1")

we do something

;;

"$condition2")

we do something

;;

esac

Examples

Ex 1:

#!/bin/bash

case "$1" in

"")

echo "Usage: SCRIPT <filename>"

exit

;;

*)

FILENAME=$1

;;

esac

21

Chapter 2. The BASH "Bourne-Again" SHell 22

Ex 2:

#!/bin/bash

ARG=$1

case "$ARG" in

"Hello")

echo "You too, thank you"

;;

"Bye Bye")

echo "See you next time"

exit

;;

*)

echo "What do you want ?"

;;

esac

22

23 2.4. Scripting instructions

function - advanced scripting

General syntax of the "function" command

Like any other programming languages, Bash has functions, though in a somewhat limited
implementation. A function is a subroutine, a code block that implements a set of operations, a
"black box" that performs a specified task. Furthermore as it is possible to pass option(s) and/or
argument(s) on the command line calling the main script, it is possible to pass option(s) and/or
argument(s) to the function.
Wherever there is repetitive code, such as a repeating task with only slight variations in proce-
dure, it is worth using a function.

#!/bin/bash

function my_function {

we do something

}

my_function

or

#!/bin/bash

function my_function {

FuncVar=$1

we do something

}

MyVar=‘ls -l | wc -l‘

my_function $MyVar

23

Chapter 2. The BASH "Bourne-Again" SHell 24

Examples

Ex 1:

#!/bin/bash

function calc_length {

TestFile=$1

VAR=$2

echo "File "$TestFile" is "$VAR" line(s) long"

}

LISTEF=‘ls -l | grep '^-' | awk '{printf $NF" "}'‘

for FILE in $LISTEF

do

FLENGTH=‘cat $FILE | wc -l‘

calc_length $FILE $FLENGTH

done

Ex 2:

#!/bin/bash

function calc_length {

TestFile=$1

VAR=‘cat $TestFile | wc -l‘

echo "File "$TestFile" is "$VAR" line(s) long"

}

LISTEF=‘ls -l | grep '^-' | awk '{printf $NF" "}'‘

for FILE in $LISTEF

do

calc_length $FILE

done

24

25 2.5. Examples

2.5 Examples

Example 1 - psclean

• psclean "clean (kill -9) all processes with [ARG] in name"

- usage: psclean [ARG]
- ex: user@localhost ~]$ psclean cpmd

#!/bin/bash

job=$1

listps=‘ps auwx | grep '$job' | awk '{printf $2" "}'‘

for idps in $listps

do

kill -9 $idps

done

One more time the other way around to be sure

listps=‘ps auwx | tac | grep '$job' | awk '{printf $2" "}'‘

for idps in $listps

do

kill -9 $idps

done

Example 2 - archdata

• archdata "archive (tar.bz2 format) and then delete archived files"

- usage: archdata [ARG]
- ex: user@localhost ~]$ archdata my_results

#!/bin/bash

toarch=$1

mv $toarch $toarch-saved

tar -jcf --remove-files $toarch-saved.tar.bz2 $toarch-saved

25

Chapter 2. The BASH "Bourne-Again" SHell 26

Example 3 - checkjobs

• checkjobs "check multiple running calculations on remote server"

- usage: checkjobs [ARG1] [ARG2] [ARG3]

- ex: user@localhost ~]$ checkjobs MyServer MyJOB MyXYZfile

#!/bin/bash

function checkjob {

We check if the calculation directory already exists

if [! -d $HOME/jobs/check/$1/$2]; then

mkdir $HOME/jobs/check/$1/$2

fi

cd $HOME/jobs/check/$1/$2

We check if some calculation(s) have already been completed

if yes we save the previous XYZ coordinate files

if [-f $3.xyz]; then

val=‘ls -l *.xyz | |wc -l‘

let num=$val

mv $3.xyz saved-$num.xyz

fi

We prepare the R.I.N.G.S. code calculation

if [! -d rings]; then

mkdir -p rings/data/

cp $HOME/jobs/check/input rings/

cp $HOME/jobs/check/options rings/

fi

We copy the data from the remote server, this required a SSH

connexion managed using RSA (or DSA) encryption keys (no passwords)

scp $1:files/glasses-files/my_running_jobs/$2/$1.xyz .

cp $1.xyz rings/data/

cd rings

We run the analysis, see http://rings-code.sourceforge.net

rings input

We append the results to the survey files

cat gr/gr-xrays.dat >> $HOME/jobs/survey/$2-gr.dat

echo " " >> $HOME/jobs/survey/$2-gr.dat

cat sq/sq-xrays.dat >> $HOME/jobs/survey/$2-sq.dat

echo " " >> $HOME/jobs/survey/$2-sq.dat

}

26

27 2.5. Examples

SERV=$1

JOB=$2

XYZ=$3

First we append the experimental data to the survey files,

The -gr.dat and -sq.dat files will contain respectively the calculated

quantities at different time step during the calculation

cat $HOME/jobs/check/grexp-$XYZ.dat >> $HOME/jobs/survey/$XYZ-gr.dat

echo " " >> $HOME/jobs/survey/$2-gr.dat

cat $HOME/jobs/check/sqexp-$XYZ.dat >> $HOME/jobs/survey/$XYZ-sq.dat

echo " " >> $HOME/jobs/survey/$2-sq.dat

1000 time steps each separated by 1800 s

for tps $(seq 1 1000)

do

We call the function to check on the jobs

checkjob $SERV $JOB $XYZ

sleep 1800

done

27

Chapter 2. The BASH "Bourne-Again" SHell 28

Example 4 - runcalc

• runcalc "run calculation using configurations stored in CPMD trajectory file"

- usage: runcalc

- ex: user@localhost ~]$ runcalc

#!/bin/bash

We want to run a CPMD dos calculation on 100 configurations

These configurations are selected from a CPMD trajectory file

that contains the history of the atomic positions saved during the MD

for li in $(seq 1 100)

do

mkdir $li

We have a standard PBS script to run CPMD calculation, we need to correct the PATH

where the PBS program will look for the data, to do that in the appropriate location

we inserted the 'MYDIRECTORY' keyword, now we substitute this keyword by

the correct location and we put the new PBS script in that location

sed 's/MYDIRECTORY/\/scratch\/$USERNAME\/'$li'/1' cpmd.pbs > $li/cpmd.pbs

Now we create the CPMD input file, for that we already prepared

the generic part of the input which are the same for all calculation

cat top.in > $li/ge2se3.in

Only atomic positions change, we will split the complete the CPMD trajectory file

to keep 100 configurations each separated by the same MD time, we do have 120 atoms

let num=$li

let num=$num*120

tac full-conf.trj | tail --lines=$num | tac | tail --lines=120 > tmp.trj

Now we insert the atomic coordinates of the 48 Ge atoms

tac tmp.trj|tail --lines=48|tac|awk '{printf $2" "$3" "$4"\n"}' >> $li/ge2se3.in

cat mid.in >> $li/ge2se3.in

Afterwards we insert the atomic coordinates of the 72 Se atoms

tail --lines=72 tmp.trj | awk '{printf $2" "$3" "$4"\n"}' >> $li/ge2se3.in

echo "&END" >> $li/ge2se3.in

cd $li

Finally we run the calculation

qsub cpmd.pbs

cd ..

done

28

29 2.5. Examples

Example 5 - submit.pbs

• qsub "Script for CPMD calculations on HPC"

- usage: qsub submit.pbs

- ex: user@localhost ~]$ qsub submit.pbs

#!/bin/bash

First we specify the PBS options, using the '#PBS' command

#PBS -l nodes=4:ppn=4

#PBS -l walltime=01:00:00

#PBS -N CPMD

#PBS -M leroux@ipcms.u-strasbg.fr

#PBS -o errout.o

#PBS -e errout.e

We want to use the intel tools

module load compilers/intel10

module load mpi/openmpi.i10

module load libs/mkl

Path for the directory storing pseudo-potential files:

export PPLIB=$HOME/pseudo

WORKDIR=$PWD

Threads Open-MP

export OMP_NUM_THREADS=1

export MKL_NUM_THREADS=1

mpirun $HOME/appz/bin/cpmd.x $WORKDIR/ge2se3.in $PPLIB > $WORKDIR/ge2se3.out

29

Command glossary

3.1 Standard commands

• man "call for help - manual pages"

- usage: man [ARG]

- ex: user@localhost ~]$ man ls

• ls "list content"

- usage: ls [OPTION] ... [ARG]
- ex: user@localhost ~]$ ls

- options: -l (detailed list), -t (time sort), -a (show hidden files), -h (human readable)

• pwd "print working directory"

- usage: pwd

- ex: user@localhost ~]$ pwd

• cd "change directory"

- usage: cd [ARG]

- ex: user@localhost ~]$ cd MyDirectory

• touch "change time stamp"

- usage: touch [ARG]

- ex: user@localhost ~]$ touch MyFile

• mv "move"

- usage: mv [ARG1] [ARG2]

- ex: user@localhost ~]$ mv MyFile MyNewFile

• cp "copy"

- usage: cp [ARG1] [ARG2]

- ex: user@localhost ~]$ cp MyFile MyNewFile

• mkdir "create directory"

- usage: mkdir [OPTION] ... [ARG]
- ex: user@localhost ~]$ mkdir MyNewDirectory

- options: -p (with parents)

• rmdir "remove empty directory"

- usage: rmdir [OPTION] ... [ARG]
- ex: user@localhost ~]$ rmdir MyOldDirectory

- options: -p (with parents), -r (recursive), -f (force)

31

Chapter 3. Command glossary 32

• rm "remove"

- usage: rm [OPTION] ... [ARG]...
- ex: user@localhost ~]$ rm MyFile

• df "display information on file system"

- usage: df [OPTION] ...
- ex: user@localhost ~]$ df -h

- options: -h (human readable)

• du "disk usage"

- usage: du [OPTION] ... [ARG] ...
- ex: user@localhost ~]$ du -sh MyFile

- options: -s (total size), -h (human readable)

• cat "display in standard output"

- usage: cat [ARG]

- ex: user@localhost ~]$ cat MyFile

• tac "opposite of cat"

- usage: tac [ARG]

- ex: user@localhost ~]$ tac MyFile

• more "display in standard output screen by screen"

- usage: more [ARG]

- ex: user@localhost ~]$ more MyFile

• less "advanced more, allows to navigate and search"

- usage: less [ARG]

- ex: user@localhost ~]$ less MyFile

• clear "clean the terminal"

- usage: clear

- ex: user@localhost ~]$ clear

• echo "display something"

- usage: echo [ARG]

- ex: user@localhost ~]$ echo

• cut "cut, extract columns"

- usage: cut [OPTION] ... [ARG]
- ex: user@localhost ~]$ cut -c5-10 MyFile

- options: -c (character numbers: -cA-B,C-D,E-F...)

• tail "show me the tail"

- usage: tail [OPTION] ... [ARG]
- ex: user@localhost ~]$ tail -f MyFile

- options: -f (last ten lines with update), -lines=n (last n lines)

• wc "words and lines count"

- usage: wc [OPTION] ... [ARG]
- ex: user@localhost ~]$ wc -l MyFile

- options: -l (number of lines)

• ln "create a link"

- usage: ln [OPTION] ... [ARG1] [ARG2]

- ex: user@localhost ~]$ ln -s MyFile MyLink

- options: -s (create symbolic link)

32

33 3.1. Standard commands

• chmod "change permissions"

- usage: chmod [OPTION] ... [ARG]
- ex: user@localhost ~]$ chmod 755 MyFile

- options: xyz with x, y and z between 0 and 7, -R (recursive)

• chown "change owner"

- usage: chown [OPTION] ... [ARG1] [ARG2]

- ex: user@localhost ~]$ chown newuser.newgroup MyFile

- options: -R (recursive)

• ps "process information"

- usage: ps [OPTION] ...
- ex: user@localhost ~]$ ps -auwx

- options: -ax (all processes), -u (user oriented format), -w (wide output)

• top "system usage"

- usage: top [OPTION] ...
- ex: user@localhost ~]$ top

• kill "terminate process"

- usage: kill [OPTION] ... [ARG] ...
- ex: user@localhost ~]$ kill -9 PID

- options: -9 (send kill signal)

• su "switch user"

- usage: su [OPTION] ... [ARG]
- ex: user@localhost ~]$ su - user

- options: - (use shell login)

• sudo "run command as root"

- usage: sudo [OPTION] ... [CMD] [OTION] ... [ARG]
- ex: user@localhost ~]$ sudo ls -l MyDirectory

• env "know you environment"

- usage: env

- ex: user@localhost ~]$ env

• diff "difference(s) between two files"

- usage: diff [OPTION] ... [ARG]
- ex: user@localhost ~]$ diff File-1.dat File-2.dat

- options: -color=always (to color the output)

• sleep "wait some time please"

- usage: sleep [TIME]

- ex: user@localhost ~]$ sleep 3600

• which "check $PATH to know which binary is used"

- usage: which [ARG]

- ex: user@localhost ~]$ which cpmd

• whereis "find out the location of binary file(s), library file(s) and manual page(s)"

- usage: whereis [ARG]

- ex: user@localhost ~]$ whereis gimp

33

Chapter 3. Command glossary 34

• tar "create archive"

- usage: tar [OPTION] ... [ARG1] [ARG2] ...
- ex: user@localhost ~]$ tar -jcf MyFile.tar.bz2 MyFile

- options: -c (create archive), -x (extract archive), -f (filename), -j (bzip2), -z (gzip), -t (list file in
archive)

• find "look for a file"

- usage: find [PLACE] [OPTION] ... [ARG]
- ex: user@localhost ~]$ find /home -name "MyFile"

- options: -name (name is)

• passwd "change the password"

- usage: passwd [OPTION] ... [USERNAME]
- ex: user@localhost ~]$ passwd

3.2 Redirection commands

• & "send job to the background"

- usage: [CMD] [OPTION] ... [ARG] &

- ex: user@localhost ~]$ gedit &

• Ctrl + z , then bg "send foreground job to the background"

- usage: Ctrl + z in terminal, followed by: user@localhost:~$ bg

- ex: user@localhost ~]$ bg

• > "redirect standard output in file (erase existing)"

- usage: [CMD] [OPTION] ... [ARG] > MyFile

- ex: user@localhost ~]$ ls -l > MyFile

• >> "redirect standard output and append at the end of file"

- usage: [CMD] [OPTION] ... [ARG] >> MyFile

- ex: user@localhost ~]$ ls -l >> MyFile

• >& (or &>) "redirect standard output and standard error in file (erase existing)"

- usage: [CMD] [OPTION] ... [ARG] >& MyFile

- ex: user@localhost ~]$ ls -l >& MyFile

• &>> "redirect standard output and standard error and append at the end of file"

- usage: [CMD] [OPTION] ... [ARG] &>> MyFile

- ex: user@localhost ~]$ ls -l &>> MyFile

• | (called pipe or pipeline) "redirect in an other command"

- usage: [CMD] [OPTION] ... [ARG] | [CMD] [OPTION] ... [ARG]

- ex: user@localhost:~$ ls -l | more

- ex: user@localhost:~$ ls -l | grep MyMotif

- ex: user@localhost:~$ ls -l | awk '{printf $NF" "}'

• tee "read from standard output and redirect to standard output and file (erase existing)"

Special invocation from a pipe |

- usage: [CMD] [OPTION] ... [ARG] | tee [OPTION] ... [ARG]

- ex: user@localhost:~$ ls -l | tee MyFile

- ex: user@localhost:~$ cpmd file.inp | tee file.out

34

35 3.3. Bash commands

3.3 Bash commands

• alias "create command alias"

- usage: alias NEW_CMD='[CMD] [OPTION]... [ARG]'
- ex: user@localhost ~]$ alias ll='ls -lth'

• ENVIRONMENT_VARIABLE= "create environment variable"

- usage: ENVIRONMENT_VARIABLE=[VALUE]

- ex: user@localhost ~]$ MYVAR=100

• export ENVIRONMENT_VARIABLE= "create inheritable environment variable"

- usage: export ENVIRONMENT_VARIABLE=[VALUE]

- ex: user@localhost ~]$ export MYVAR=100

3.4 Filter commands

• grep "print lines matching a pattern"

- usage: grep [OPTION] ... [REGULAR EXPRESSION] [ARG]

- ex: user@localhost ~]$ grep "TOTAL ENERGY =" cpmd.out

- options: -n (print line number), -A NUM (print NUM lines after pattern), -B NUM (print NUM lines before
pattern), -v (invert correspondence = non-matching lines)

• sed "stream editor for filtering and transforming text"

- usage: sed [OPTION] ... [REGULAR EXPRESSION] [ARG]

- ex: user@localhost ~]$ sed 's/MYPATH/$HOME/g'

• awk "pattern scanning and processing language"

- usage: awk [OPTION] ... [REGULAR EXPRESSION] [ARG]

- ex: user@localhost ~]$ awk '{printf $NF\n}' MyFile

35

Bibliography

[1] http://www.gnu.org/software/bash/. (Cité page 1.)

[2] http://tldp.org/LDP/abs/html/. (Cité pages 1 et 10.)

http://www.gnu.org/software/bash/
http://tldp.org/LDP/abs/html/

This document has been prepared using the Linux operating system and free softwares:
The text editor "gVim"
And the document preparation system "LATEX 2ε".

http://www.vim.org/
http://www.latex-project.org/

	Contents
	Linux system
	User management
	File permissions
	Environment variables
	Introduction
	Working principles of environment variables

	The BASH "Bourne-Again" SHell
	What is a shell ?
	The BASH command interpreter
	Bash scripting
	Scripting instructions
	let - numerical variables
	if - the conditional tests
	for - the loops
	while - conditional loops
	until - conditional loops
	case - testing and branching
	function - advanced scripting

	Examples

	Command glossary
	Standard commands
	Redirection commands
	Bash commands
	Filter commands

