Bohdan KUNDYS
Chargé de Recherche, Magnétisme des objets nanostructurés (DMONS)Bohdan.Kundys@ipcms.unistra.frTél: +33(0)3 88 10 68 94Bureau: 1012
Principal Investigator at the French National Centre for Scientific Research (CNRS)
Research background
Solid state physics
Magnetoelasticity
Multiferroics
Photoelectrics
Photonics
Nanodvices
Current researches
Non-thermal photonic transistor effect with photoferroelectrics
Academic background
Here you can write about your academic background.
Publications
1839302
Kundys
surface-science-reports
50
creator
asc
year
6906
https://www.ipcms.fr/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-2b4efd4b6772c7ee8d763edcbf269310%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%222CJBRT7C%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ahmed%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EN.%20Ahmed%2C%20R.%20Deffley%2C%20B.%20Kundys%2C%20N.A.%20Morley%2C%203D%20printing%20of%20magnetostrictive%20property%20in%2017%5C%2F4%20ph%20stainless%20steel%2C%20Journal%20of%20Magnetism%20and%20Magnetic%20Materials%20585%20%282023%29%20171115.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2023.171115%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2023.171115%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%223D%20printing%20of%20magnetostrictive%20property%20in%2017%5C%2F4%20ph%20stainless%20steel%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Ahmed%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Deffley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%20A.%22%2C%22lastName%22%3A%22Morley%22%7D%5D%2C%22abstractNote%22%3A%22Additive%20manufacturing%20%28AM%29%20of%20metallic%20alloys%20significantly%20advances%20diverse%20areas%20of%20science%5C%2Fengineering%20with%20a%20prosperous%20future%20trend.%20Although%20this%20technology%20is%20also%20very%20attractive%20for%20smart%20materials%20development%2C%20the%20creation%20of%20a%20pre-programmed%20%5C%224th%20dimension%5C%22%20property%20to%20appear%20in%20response%20to%20external%20stimuli%20represents%20an%20important%20challenge.%20Here%20we%20report%20on%203D%20printing%20of%20stainless%20steel%20based%20magnetic%20alloy%20and%20detail%20the%20ways%20to%20optimize%20the%20magnetisation%20and%20magnetostriction%20to%20be%20used%20for%20actuation%20and%20sensing.%20By%20controlling%20the%20printing%20parameters%20and%20sintering%20process%2C%20we%20are%20able%20to%20tune%20the%20magnetic%20and%20magnetoelastic%20properties%20of%20the%2017%5C%2F4%20ph%20stainless%20steel%2C%20demonstrating%20material%20fabrication%20multi-function%20with%20a%20cost%20effective%20advantage.%20The%20stainless%20steel%2017%5C%2F4%20ph%20samples%20in%20the%20as-printed%20%28AP%29%20and%20sintered%20steel%20%28SS%29%20stages%20are%20compared.%20In%20the%20developed%20SS%20sample%2C%20a%20remarkable%20increase%20of%2018%25%20in%20saturation%20magnetisation%20yet%20with%2012.6%20%25%20lower%20coercivity%20was%20achieved.%20Moreover%2C%20the%2054%25%20higher%20magnetostriction%20was%20developed%20for%20the%20SS%20sample%20compared%20to%20the%20AP%20sample.%20Plus%2C%20the%20difference%20in%20anisotropy%20energy%20K1%20was%20also%20lower%20for%20the%20SS%20sample.%20The%20structural%20and%20magnetic%20properties%20control%20are%20reported%20at%20each%20stage%20of%20the%20printing%20process%2C%20demonstrating%20development%20and%20optimization%20prospects%20of%203D%20printable%20metallic%20sensors%20and%20actuators.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.jmmm.2023.171115%22%2C%22ISSN%22%3A%220304-8853%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1016%5C%2Fj.jmmm.2023.171115%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A15%3A53Z%22%7D%7D%2C%7B%22key%22%3A%22CQ8PGCNA%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dayen%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EJ.-F.%20Dayen%2C%20N.%20Konstantinov%2C%20M.%20Palluel%2C%20N.%20Daro%2C%20B.%20Kundys%2C%20M.%20Soliman%2C%20G.%20Chastanet%2C%20B.%20Doudin%2C%20Room%20temperature%20optoelectronic%20devices%20operating%20with%20spin%20crossover%20nanoparticles%2C%20Materials%20Horizons%208%20%282021%29%202310%26%23x2013%3B2315.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd1mh00703c%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd1mh00703c%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Room%20temperature%20optoelectronic%20devices%20operating%20with%20spin%20crossover%20nanoparticles%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%22%2C%22lastName%22%3A%22Konstantinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marlene%22%2C%22lastName%22%3A%22Palluel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathalie%22%2C%22lastName%22%3A%22Daro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohamed%22%2C%22lastName%22%3A%22Soliman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Chastanet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%5D%2C%22abstractNote%22%3A%22Molecular%20systems%20can%20exhibit%20multi-stimuli%20switching%20of%20their%20properties%2C%20with%20spin%20crossover%20materials%20having%20unique%20magnetic%20transition%20triggered%20by%20temperature%20and%20light%2C%20among%20others.%20Light-induced%20room%20temperature%20operation%20is%20however%20elusive%2C%20as%20optical%20changes%20between%20metastable%20spin%20states%20require%20cryogenic%20temperatures.%20Furthermore%2C%20electrical%20detection%20is%20hampered%20by%20the%20intrinsic%20low%20conductivity%20properties%20of%20these%20materials.%20We%20show%20here%20how%20a%20graphene%20underlayer%20reveals%20the%20light-induced%20heating%20that%20triggers%20a%20spin%20transition%2C%20paving%20the%20way%20for%20using%20these%20molecules%20for%20room%20temperature%20optoelectronic%20applications.%22%2C%22date%22%3A%222021%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1039%5C%2Fd1mh00703c%22%2C%22ISSN%22%3A%222051-6347%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1039%5C%2Fd1mh00703c%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-18T12%3A03%3A48Z%22%7D%7D%2C%7B%22key%22%3A%228I8PI3RL%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dunne%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EP.%20Dunne%2C%20C.%20Fowley%2C%20G.%20Hlawacek%2C%20J.%20Kurian%2C%20G.%20Atcheson%2C%20S.%20Colis%2C%20N.%20Teichert%2C%20B.%20Kundys%2C%20M.%20Venkatesan%2C%20J.%20Lindner%2C%20A.M.%20Deac%2C%20T.M.%20Hermans%2C%20J.M.D.%20Coey%2C%20B.%20Doudin%2C%20Helium%20Ion%20Microscopy%20for%20Reduced%20Spin%20Orbit%20Torque%20Switching%20Currents%2C%20Nano%20Letters%2020%20%282020%29%207036%26%23x2013%3B7042.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.0c02060%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.0c02060%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Helium%20Ion%20Microscopy%20for%20Reduced%20Spin%20Orbit%20Torque%20Switching%20Currents%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Dunne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ciaran%22%2C%22lastName%22%3A%22Fowley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregor%22%2C%22lastName%22%3A%22Hlawacek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jinu%22%2C%22lastName%22%3A%22Kurian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gwenael%22%2C%22lastName%22%3A%22Atcheson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silviu%22%2C%22lastName%22%3A%22Colis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niclas%22%2C%22lastName%22%3A%22Teichert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Munuswamy%22%2C%22lastName%22%3A%22Venkatesan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jurgen%22%2C%22lastName%22%3A%22Lindner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alina%20Maria%22%2C%22lastName%22%3A%22Deac%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20M.%22%2C%22lastName%22%3A%22Hermans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%20D.%22%2C%22lastName%22%3A%22Coey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%5D%2C%22abstractNote%22%3A%22Spin%20orbit%20torque%20driven%20switching%20is%20a%20favorable%20way%20to%20manipulate%20nanoscale%20magnetic%20objects%20for%20both%20memory%20and%20wireless%20communication%20devices.%20The%20critical%20current%20required%20to%20switch%20from%20one%20magnetic%20state%20to%20another%20depends%20on%20the%20geometry%20and%20the%20intrinsic%20properties%20of%20the%20materials%20used%2C%20which%20are%20difficult%20to%20control%20locally.%20Here%2C%20we%20demonstrate%20how%20focused%20helium%20ion%20beam%20irradiation%20can%20modulate%20the%20local%20magnetic%20anisotropy%20of%20a%20Co%20thin%20film%20at%20the%20microscopic%20scale.%20Real-time%20in%20situ%20characterization%20using%20the%20anomalous%20Hall%20effect%20showed%20up%20to%20an%20order%20of%20magnitude%20reduction%20of%20the%20magnetic%20anisotropy%20under%20irradiation%2C%20with%20multilevel%20switching%20demonstrated.%20The%20result%20is%20that%20spin-switching%20current%20densities%2C%20down%20to%20800%20kA%20cm%28-2%29%2C%20can%20be%20achieved%20on%20predetermined%20areas%20of%20the%20film%2C%20without%20the%20need%20for%20lithography.%20The%20ability%20to%20vary%20critical%20currents%20spatially%20has%20implications%20not%20only%20for%20storage%20elements%20but%20also%20neuromorphic%20and%20probabilistic%20computing.%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.0c02060%22%2C%22ISSN%22%3A%221530-6984%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1021%5C%2Facs.nanolett.0c02060%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22CF4ZI7HM%22%2C%22N8397DCZ%22%2C%22SB8Q592R%22%5D%2C%22dateModified%22%3A%222021-05-11T08%3A54%3A21Z%22%7D%7D%2C%7B%22key%22%3A%2233VCIPCN%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Feig%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Feig%2C%20M.%20Bobnar%2C%20I.%20Veremchuk%2C%20C.%20Hennig%2C%20U.%20Burkhardt%2C%20R.%20Starke%2C%20B.%20Kundys%2C%20A.%20Leithe-Jasper%2C%20R.%20Gumeniuk%2C%20Two-gap%20superconductivity%20in%20Ag1-xMo6S8%20Chevrel%20phase%2C%20Journal%20of%20Physics-Condensed%20Matter%2029%20%282017%29%20495603.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faa97fd%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faa97fd%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Two-gap%20superconductivity%20in%20Ag1-xMo6S8%20Chevrel%20phase%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Feig%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matej%22%2C%22lastName%22%3A%22Bobnar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igor%22%2C%22lastName%22%3A%22Veremchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%22%2C%22lastName%22%3A%22Hennig%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ulrich%22%2C%22lastName%22%3A%22Burkhardt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ronald%22%2C%22lastName%22%3A%22Starke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Leithe-Jasper%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%5D%2C%22abstractNote%22%3A%22The%20superconducting%20properties%20of%20Ag1-xMo6S8%20%5Bx%20%3D%200.08%281%29%5D%20Chevrel%20phase%20%5BT-c%20%3D%207.9%285%29%20K%5D%20are%20studied%20on%20a%20sample%20compacted%20by%20spark%20plasma%20sintering.%20Both%20lower%20%28B-c1%20%3D%2012%281%29%20mT%29%20and%20the%20upper%20%5BB-c2%280%29%20approximate%20to%207.4%289%29%20T%5D%20critical%20magnetic%20fields%20are%20obtained%20from%20magnetization%20and%20electrical%20resistivity%20measurements%20for%20the%20first%20time.%20The%20analysis%20of%20the%20low-temperature%20electronic%20specific%20heat%20indicates%20Ag1-xMo6S8%20to%20be%20a%20two%20band%20superconductor%20with%20the%20energy%20gaps%20Delta%281%29%20%3D%201.6%20meV%20%2895%25%29%20and%20Delta%282%29%20%3D%200.7%20meV%20%285%25%29.%20Theoretical%20DFT%20calculations%20reveal%20a%20much%20stronger%20electron-phonon%20coupling%20in%20the%20studied%20Chevrel%20phase%20compared%20to%20earlier%20reports.%20Similar%20to%20MgB2%2C%20the%20Fermi%20surface%20of%20studied%20Chevrel%20phase%20is%20formed%20by%20two%20hole-like%20and%20one%20electron-like%20bands.%22%2C%22date%22%3A%222017%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-648X%5C%2Faa97fd%22%2C%22ISSN%22%3A%220953-8984%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faa97fd%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222018-05-30T12%3A06%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22S3EX8S8L%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gumeniuk%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ER.%20Gumeniuk%2C%20V.%20Levytskyi%2C%20B.%20Kundys%2C%20A.%20Leithe-Jasper%2C%20Yb3Rh4Sn13%3A%20Two-gap%20superconductor%20with%20a%20complex%20Fermi%20surface%2C%20Physical%20Review%20B%20108%20%282023%29%20214515.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.214515%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.214515%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Yb3Rh4Sn13%3A%20Two-gap%20superconductor%20with%20a%20complex%20Fermi%20surface%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volodymyr%22%2C%22lastName%22%3A%22Levytskyi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Leithe-Jasper%22%7D%5D%2C%22abstractNote%22%3A%22Structural%20and%20physical%20properties%20of%20the%20Yb3Rh4Sn13%20Remeika%20phase%20are%20investigated%20on%20large%20single%20crys-tals%20grown%20from%20Sn-flux.%20It%20crystallizes%20with%20disordered%20Y3Co4Ge13%20structure%20type%20%5Bspace%20group%20Pm3%20over%20bar%20n%2C%20a%20%3D%209.6709%282%29%20angstrom%5D%2C%20where%20the%2024k%20crystallographic%20site%20occupied%20by%20Sn%20atoms%20is%20split.%20Yb3Rh4Sn13%20is%20a%20superconductor%20%28SC%29%20with%20the%20critical%20temperature%20Tc%20%3D%207.63%285%29%20K%2C%20lower%20%5BBc1%20%3D%2014.5%285%29%20mT%5D%20and%20upper%20%5BBc2%280%29%20%3D%202.89%285%29%20T%5D%20critical%20fields%2C%20as%20well%20as%20a%20clear%20peak%20effect%20with%20B%2A%280%29%20%3D%201.96%289%29%20T%20observed%20in%20the%20M%28H%29%20loops.%20Bc2%28Tc%29%20can%20be%20described%20by%20the%20sum%20of%20two%20Werthamer-Helfand-Hohenberg%20equations.%20A%20gamma%28B%29%20proportional%20to%20B0.75%20dependency%20is%20found.%20The%20electronic%20specific%20heat%20below%20Tc%20follows%20an%20exponential%20function%20including%2087%25%20of%20a%20strongly%20coupled%20%5B%5Cu28031%5C%2FkBTc%20%3D%203.52%281%29%5D%20and%2013%25%20of%20a%20conventional%20s-wave-like%20%5B%5Cu28032%5C%2FkBTc%20%3D%201.32%281%29%5D%20gap.%20The%20observations%20are%20in%20line%20with%20Yb3Rh4Sn13%20being%20a%20two-gap%20SC.%20The%20Remeika%20phase%20reveals%20a%20complex%20electronic%20band%20structure%20studied%20by%20Hall%20coefficient%20%28RH%29%20measurements%20and%20calculations%20performed%20within%20the%20density%20functional%20theory.%20A%20%5C%22rattling%5C%22%20effect%20in%20Yb3Rh4Sn13%20is%20discussed%20based%20on%20structural%20refinements%20and%20phononic%20contributions%20to%20its%20specific%20heat%20capacity.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.108.214515%22%2C%22ISSN%22%3A%222469-9950%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.108.214515%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A16%3A18Z%22%7D%7D%2C%7B%22key%22%3A%22KHMC34MW%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22He%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EY.%20He%2C%20Y.%20Han%2C%20P.%20Stamenov%2C%20B.%20Kundys%2C%20J.M.D.%20Coey%2C%20C.%20Jiang%2C%20H.%20Xu%2C%20Investigating%20non-Joulian%20magnetostriction%2C%20Nature%20556%20%282018%29%20E5%26%23x2013%3BE7.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fnature25780%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fnature25780%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Investigating%20non-Joulian%20magnetostriction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yangkun%22%2C%22lastName%22%3A%22He%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yongjun%22%2C%22lastName%22%3A%22Han%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Stamenov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%20D.%22%2C%22lastName%22%3A%22Coey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chengbao%22%2C%22lastName%22%3A%22Jiang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Huibin%22%2C%22lastName%22%3A%22Xu%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1038%5C%2Fnature25780%22%2C%22ISSN%22%3A%220028-0836%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1038%5C%2Fnature25780%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222018-06-05T09%3A15%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22A8MWMSE3%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Iurchuk%20et%20al.%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Iurchuk%2C%20B.%20Doudin%2C%20J.%20Bran%2C%20B.%20Kundys%2C%20Electrical%20writing%20of%20magnetic%20and%20resistive%20multistates%20in%20CoFe%20films%20deposited%20onto%20Pb%5BZrxTi1-x%5DO-3%2C%20in%3A%20Labarta%2C%20A%20%28Ed.%29%2C%2020TH%20INTERNATIONAL%20CONFERENCE%20ON%20MAGNETISM%2C%20ICM%202015%2C%20ELSEVIER%20SCIENCE%20BV%2C%20SARA%20BURGERHARTSTRAAT%2025%2C%20PO%20BOX%20211%2C%201000%20AE%20AMSTERDAM%2C%20NETHERLANDS%2C%202015%3A%20pp.%20956%26%23x2013%3B966.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.phpro.2015.12.131%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.phpro.2015.12.131%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22conferencePaper%22%2C%22title%22%3A%22Electrical%20writing%20of%20magnetic%20and%20resistive%20multistates%20in%20CoFe%20films%20deposited%20onto%20Pb%5BZrxTi1-x%5DO-3%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Iurchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Bran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22name%22%3A%22Labarta%2C%20A%22%7D%5D%2C%22abstractNote%22%3A%22Electric%20control%20of%20magnetic%20properties%20is%20an%20important%20challenge%20for%20modern%20magnetism%20and%20spintronic%20development.%20In%20particular%2C%20an%20ability%20to%20write%20magnetic%20state%20electrically%20would%20be%20highly%20beneficial.%20Among%20other%20methods%2C%20the%20use%20of%20electric%20field%20induced%20deformation%20of%20piezoelectric%20elements%20is%20a%20promising%20low-energy%20approach%20for%20magnetization%20control.%20We%20investigate%20the%20system%20of%20piezoelectric%20substrate%20Pb%5BZrxTi1-x%5DO-3%20with%20CoFe%20overlayers%2C%20extending%20the%20known%20reversible%20bistable%20electro-magnetic%20coupling%20to%20surface%20and%20multistate%20operations%2C%20adding%20the%20initial%20state%20reset%20possibility.%20Increasing%20the%20CoFe%20thickness%20improves%20the%20magnetoresistive%20sensitivity%2C%20but%20at%20the%20expenses%20of%20decreasing%20the%20strain-mediated%20coupling%2C%20with%20optimum%20magnetic%20thin%20film%20thickness%20of%20the%20order%20of%20100%20nm.%20The%20simplest%20resistance%20strain%20gauge%20structure%20is%20realized%20and%20discussed%20as%20a%20multistate%20memory%20cell%20demonstrating%20both%20resistive%20memory%20%28RRAM%29%20and%20magnetoresistive%20memory%20%28MRAM%29%20functionalities%20in%20a%20single%20structure.%22%2C%22date%22%3A%222015%22%2C%22proceedingsTitle%22%3A%2220TH%20INTERNATIONAL%20CONFERENCE%20ON%20MAGNETISM%2C%20ICM%202015%22%2C%22conferenceName%22%3A%2220th%20International%20Conference%20on%20Magnetism%2C%20Span%20Soc%20Magnetism%2C%20Barcelona%2C%20SPAIN%2C%20JUL%2005-10%2C%202015%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.phpro.2015.12.131%22%2C%22ISBN%22%3A%22%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1016%5C%2Fj.phpro.2015.12.131%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A15%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22K5K9PFFA%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Iurchuk%20et%20al.%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Iurchuk%2C%20H.%20Majjad%2C%20F.%20Chevrier%2C%20D.%20Kundys%2C%20B.%20Leconte%2C%20B.%20Doudin%2C%20B.%20Kundys%2C%20Multi-state%20and%20non-volatile%20control%20of%20graphene%20conductivity%20with%20surface%20electric%20fields%2C%20Applied%20Physics%20Letters%20107%20%282015%29%20182901.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4934738%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4934738%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Multi-state%20and%20non-volatile%20control%20of%20graphene%20conductivity%20with%20surface%20electric%20fields%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Iurchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Chevrier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Leconte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Planar%20electrodes%20patterned%20on%20a%20ferroelectric%20substrate%20are%20shown%20to%20provide%20lateral%20control%20of%20the%20conductive%20state%20of%20a%20two-terminal%20graphene%20stripe.%20A%20multi-level%20and%20on-demand%20memory%20control%20of%20the%20graphene%20resistance%20state%20is%20demonstrated%20under%20low%20sub-coercive%20electric%20fields%2C%20with%20a%20susceptibility%20exceeding%20by%20more%20than%20two%20orders%20of%20magnitude%20those%20reported%20in%20a%20vertical%20gating%20geometry.%20Our%20example%20of%20reversible%20and%20low-power%20lateral%20control%20over%2011%20memory%20states%20in%20the%20graphene%20conductivity%20illustrates%20the%20possibility%20of%20multimemory%20and%20multifunctional%20applications%2C%20as%20top%20and%20bottom%20inputs%20remain%20accessible.%20%28C%29%202015%20AIP%20Publishing%20LLC.%22%2C%22date%22%3A%222015%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4934738%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4934738%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A28%3A21Z%22%7D%7D%2C%7B%22key%22%3A%223KMPZWXV%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Iurchuk%20et%20al.%22%2C%22parsedDate%22%3A%222014%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Iurchuk%2C%20B.%20Doudin%2C%20B.%20Kundys%2C%20Multistate%20nonvolatile%20straintronics%20controlled%20by%20a%20lateral%20electric%20field%2C%20Journal%20of%20Physics-Condensed%20Matter%2026%20%282014%29%20292202%20%5C%2Fp.1%26%23x2013%3B4.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F0953-8984%5C%2F26%5C%2F29%5C%2F292202%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F0953-8984%5C%2F26%5C%2F29%5C%2F292202%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Multistate%20nonvolatile%20straintronics%20controlled%20by%20a%20lateral%20electric%20field%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Iurchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20a%20multifunctional%20and%20multistate%20permanent%20memory%20device%20based%20on%20lateral%20electric%20field%20control%20of%20a%20strained%20surface.%20Sub-coercive%20electrical%20writing%20of%20a%20remnant%20strain%20of%20a%20PZT%20substrate%20imprints%20stable%20and%20rewritable%20resistance%20changes%20on%20a%20CoFe%20overlayer.%20A%20proof-of-principle%20device%2C%20with%20the%20simplest%20resistance%20strain%20gage%20design%2C%20is%20shown%20as%20a%20memory%20cell%20exhibiting%2017-memory%20states%20of%20high%20reproducibility%20and%20reliability%20for%20nonvolatile%20operations.%20Magnetoresistance%20of%20the%20film%20also%20depends%20on%20the%20cell%20state%2C%20and%20indicates%20a%20rewritable%20change%20of%20magnetic%20properties%20persisting%20in%20the%20remnant%20strain%20of%20the%20substrate.%20This%20makes%20it%20possible%20to%20combine%20strain%2C%20magnetic%20and%20resistive%20functionalities%20in%20a%20single%20memory%20element%2C%20and%20suggests%20that%20sub-coercive%20stress%20studies%20are%20of%20interest%20for%20straintronics%20applications.%22%2C%22date%22%3A%222014%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1088%5C%2F0953-8984%5C%2F26%5C%2F29%5C%2F292202%22%2C%22ISSN%22%3A%220953-8984%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1088%5C%2F0953-8984%5C%2F26%5C%2F29%5C%2F292202%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A39%3A41Z%22%7D%7D%2C%7B%22key%22%3A%228F8B7QS6%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Iurchuk%20et%20al.%22%2C%22parsedDate%22%3A%222016%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Iurchuk%2C%20D.%20Schick%2C%20J.%20Bran%2C%20D.%20Colson%2C%20A.%20Forget%2C%20D.%20Halley%2C%20A.%20Koc%2C%20M.%20Reinhardt%2C%20C.%20Kwamen%2C%20N.A.%20Morley%2C%20M.%20Bargheer%2C%20M.%20Viret%2C%20R.%20Gumeniuk%2C%20G.%20Schmerber%2C%20B.%20Doudin%2C%20B.%20Kundys%2C%20Optical%20Writing%20of%20Magnetic%20Properties%20by%20Remanent%20Photostriction%2C%20Physical%20Review%20Letters%20117%20%282016%29%20107403.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.117.107403%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.117.107403%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optical%20Writing%20of%20Magnetic%20Properties%20by%20Remanent%20Photostriction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Iurchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Schick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Bran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Colson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Forget%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Halley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Koc%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Reinhardt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Kwamen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%20A.%22%2C%22lastName%22%3A%22Morley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bargheer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Viret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guy%22%2C%22lastName%22%3A%22Schmerber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20an%20optically%20induced%20remanent%20photostriction%20in%20BiFeO3%2C%20resulting%20from%20the%20photovoltaic%20effect%2C%20which%20is%20used%20to%20modify%20the%20ferromagnetism%20of%20Ni%20film%20in%20a%20hybrid%20BiFeO3%5C%2FNi%20structure.%20The%2075%25%20change%20in%20coercivity%20in%20the%20Ni%20film%20is%20achieved%20via%20optical%20and%20nonvolatile%20control.%20This%20photoferromagnetic%20effect%20can%20be%20reversed%20by%20static%20or%20ac%20electric%20depolarization%20of%20BiFeO3.%20Hence%2C%20the%20strain%20dependent%20changes%20in%20magnetic%20properties%20are%20written%20optically%2C%20and%20erased%20electrically.%20Light-mediated%20straintronics%20is%20therefore%20a%20possible%20approach%20for%20low-power%20multistate%20control%20of%20magnetic%20elements%20relevant%20for%20memory%20and%20spintronic%20applications.%22%2C%22date%22%3A%222016%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevLett.117.107403%22%2C%22ISSN%22%3A%220031-9007%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevLett.117.107403%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%22ZN5EITAC%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A47%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22A8XI83QU%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Iurchuk%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Iurchuk%2C%20J.%20Bran%2C%20M.%20Acosta%2C%20B.%20Kundys%2C%20A%20strain-controlled%20magnetostrictive%20pseudo%20spin%20valve%2C%20Applied%20Physics%20Letters%20122%20%282023%29%20072404.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0120426%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0120426%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20strain-controlled%20magnetostrictive%20pseudo%20spin%20valve%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vadym%22%2C%22lastName%22%3A%22Iurchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julien%22%2C%22lastName%22%3A%22Bran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Acosta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Electric-field%20control%20of%20magnetism%20via%20an%20inverse%20magnetostrictive%20effect%20is%20an%20alternative%20path%20toward%20improving%20energy-efficient%20storage%20and%20sensing%20devices%20based%20on%20a%20giant%20magnetoresistance%20effect.%20In%20this%20Letter%2C%20we%20report%20on%20lateral%20electric-field%20driven%20strain-mediated%20modulation%20of%20magnetotransport%20properties%20in%20a%20Co%5C%2FCu%5C%2FPy%20pseudo%20spin%20valve%20grown%20on%20a%20ferroelectric%200.7Pb%5BMg1%5C%2F3Nb2%5C%2F3%29%5DO-3-0.3PbTiO%283%29%20substrate.%20We%20show%20a%20decrease%20in%20the%20giant%20magnetoresistance%20ratio%20of%20the%20pseudo%20spin%20valve%20with%20the%20increase%20in%20the%20electric%20field%2C%20which%20is%20attributed%20to%20the%20deviation%20of%20the%20Co%20layer%20magnetization%20from%20the%20initial%20direction%20due%20to%20strain-induced%20magnetoelastic%20anisotropy%20contribution.%20Additionally%2C%20we%20demonstrate%20that%20strain-induced%20magnetic%20anisotropy%20effectively%20shifts%20the%20switching%20field%20of%20the%20magnetostrictive%20Co%20layer%2C%20while%20keeping%20the%20switching%20field%20of%20the%20nearly%20zero-magnetostrictive%20Py%20layer%20unaffected%20due%20to%20its%20negligible%20magnetostriction.%20We%20argue%20that%20magnetostrictively%20optimized%20magnetic%20films%20in%20properly%20engineered%20multilayered%20structures%20can%20offer%20a%20path%20to%20enhancing%20the%20selective%20magnetic%20switching%20in%20spintronic%20devices.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0120426%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F5.0120426%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22EAI2UDK5%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A16%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22QMPZENQV%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kapustianyk%20et%20al.%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Kapustianyk%2C%20V.%20Rudyk%2C%20P.%20Yonak%2C%20B.%20Kundys%2C%20Magnetic%20and%20dielectric%20properties%20of%20%5BN%28C2H5%29%284%29%5D%282%29CoClBr3%20solid%20solution%3A%20A%20new%20potential%20multiferroic%2C%20Physica%20Status%20Solidi%20B-Basic%20Solid%20State%20Physics%20252%20%282015%29%201778%26%23x2013%3B1782.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fpssb.201451712%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fpssb.201451712%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetic%20and%20dielectric%20properties%20of%20%5BN%28C2H5%29%284%29%5D%282%29CoClBr3%20solid%20solution%3A%20A%20new%20potential%20multiferroic%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volodymyr%22%2C%22lastName%22%3A%22Kapustianyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Rudyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavlo%22%2C%22lastName%22%3A%22Yonak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Thermodynamically%20induced%20structural%20transformation%20to%20a%20polar%20phase%20in%20the%20tetraethylammonium%20tetrahalogenocobaltate%20solid%20solution%20of%20%5BN%28C2H5%29%284%29%5D%282%29CoClBr3%20%28TEACCB-3%29%20is%20found%20to%20be%20accompanied%20with%20a%20large%20dielectric%20permittivity%20peak%20near%20258%20K.%20It%20was%20also%20found%20that%20the%20sample%20undergoes%20a%20ferrimagnetic%20ordering%20on%20further%20cooling%20below%208K.%20Our%20results%20demonstrate%20that%20crystalline%20ferroics%20with%20an%20alkylammonium%20cation%20can%20develop%20strong%20magnetic%20interactions%20reaching%202.3%20mu%28B%29%20fu%28-1%29%20at%2014%20T%20that%20can%20potentially%20coexist%20with%20electric%20polarization%20at%20the%20same%20temperature%20region.%20%28C%29%202015%20WILEY-VCH%20Verlag%20GmbH%20%26%20Co.%20KGaA%2C%20Weinheim%22%2C%22date%22%3A%222015%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1002%5C%2Fpssb.201451712%22%2C%22ISSN%22%3A%220370-1972%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1002%5C%2Fpssb.201451712%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A48%3A09Z%22%7D%7D%2C%7B%22key%22%3A%22MJAF6XPP%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kapustianyk%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Kapustianyk%2C%20Yu.%20Eliyashevskyy%2C%20Z.%20Czapla%2C%20V.%20Rudyk%2C%20R.%20Serkiz%2C%20N.%20Ostapenko%2C%20I.%20Hirnyk%2C%20J.-F.%20Dayen%2C%20M.%20Bobnar%2C%20R.%20Gumeniuk%2C%20B.%20Kundys%2C%20Tuning%20a%20sign%20of%20magnetoelectric%20coupling%20in%20paramagnetic%20NH2%28CH3%29%282%29Al1-xCrx%28SO4%29%282%29%20x%206H%282%29O%20crystals%20by%20metal%20ion%20substitution%2C%20Scientific%20Reports%207%20%282017%29%2014109.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-017-14388-8%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-017-14388-8%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tuning%20a%20sign%20of%20magnetoelectric%20coupling%20in%20paramagnetic%20NH2%28CH3%29%282%29Al1-xCrx%28SO4%29%282%29%20x%206H%282%29O%20crystals%20by%20metal%20ion%20substitution%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Kapustianyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yu.%22%2C%22lastName%22%3A%22Eliyashevskyy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z.%22%2C%22lastName%22%3A%22Czapla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Rudyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Serkiz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Ostapenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Hirnyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Fran%5Cu00e7ois%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bobnar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Hybrid%20organometallic%20systems%20offer%20a%20wide%20range%20of%20functionalities%2C%20including%20magnetoelectric%20%28ME%29%20interactions.%20However%2C%20the%20ability%20to%20design%20on-demand%20ME%20coupling%20remains%20challenging%20despite%20a%20variety%20of%20host-guest%20configurations%20and%20ME%20phases%20coexistence%20possibilities.%20Here%2C%20we%20report%20the%20effect%20of%20metal-ion%20substitution%20on%20the%20magnetic%20and%20electric%20properties%20in%20the%20paramagnetic%20ferroelectric%20NH2%28CH3%29%282%29Al1-xCrx%28SO4%29%282%29%20x%206H%282%29O.%20Doing%20so%20we%20are%20able%20to%20induce%20and%20even%20tune%20a%20sign%20of%20the%20ME%20interactions%2C%20in%20the%20paramagnetic%20ferroelectric%20%28FE%29%20state.%20Both%20studied%20samples%20with%20x%20%3D%200.065%20and%20x%20%3D%200.2%20become%20paramagnetic%2C%20contrary%20to%20the%20initial%20diamagnetic%20compound.%20Due%20to%20the%20isomorphous%20substitution%20with%20Cr%20the%20ferroelectric%20phase%20transition%20temperature%20%28T-c%29%20increases%20nonlinearly%2C%20with%20the%20shift%20being%20larger%20for%20the%206.5%25%20of%20Cr.%20A%20magnetic%20field%20applied%20along%20the%20polar%20c%20axis%20increases%20ferroelectricity%20for%20the%20x%20%3D%200.065%20sample%20and%20shifts%20Tc%20to%20higher%20values%2C%20while%20inverse%20effects%20are%20observed%20for%20x%20%3D%200.2.%20The%20ME%20coupling%20coefficient%20alpha%28ME%29%20%3D%201.7%20ns%5C%2Fm%20found%20for%20a%20crystal%20with%20Cr%20content%20of%20x%20%3D%200.2%20is%20among%20the%20highest%20reported%20up%20to%20now.%20The%20observed%20sign%20change%20of%20aME%20with%20a%20small%20change%20in%20Cr%20content%20paves%20the%20way%20for%20ME%20coupling%20engineering.%22%2C%22date%22%3A%222017%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-017-14388-8%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1038%5C%2Fs41598-017-14388-8%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222018-05-30T12%3A14%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22F37EBXAU%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kengni-Zanguim%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EB.%20Kengni-Zanguim%2C%20L.%20Joly%2C%20F.%20Scheurer%2C%20P.%20Ohresser%2C%20J.-F.%20Dayen%2C%20C.%20Ulhaq-Bouillet%2C%20J.%20Uzan%2C%20B.%20Kundys%2C%20H.%20Majjad%2C%20D.%20Halley%2C%20Magnetic%20phase%20and%20magneto-resistive%20effects%20in%20vanadium%20oxide%20epitaxial%20nanoclusters%2C%20Applied%20Physics%20Letters%20116%20%282020%29%20042404.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5131829%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5131829%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetic%20phase%20and%20magneto-resistive%20effects%20in%20vanadium%20oxide%20epitaxial%20nanoclusters%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brice%22%2C%22lastName%22%3A%22Kengni-Zanguim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Loic%22%2C%22lastName%22%3A%22Joly%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabrice%22%2C%22lastName%22%3A%22Scheurer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philippe%22%2C%22lastName%22%3A%22Ohresser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Corinne%22%2C%22lastName%22%3A%22Ulhaq-Bouillet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%22%2C%22lastName%22%3A%22Uzan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hicham%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Halley%22%7D%5D%2C%22abstractNote%22%3A%22The%20metal-insulator%20transition%20and%20the%20original%20magnetic%20phase%20that%20appear%20in%20vanadium%20oxide%20nanoclusters%20epitaxially%20embedded%20in%20an%20MgO%20matrix%20are%20studied%20via%20electron%20transport%2C%20magneto-resistance%2C%20and%20X-ray%20circular%20dichroism%20measurements.%20The%20metal-insulator%20transition%20temperature%20is%20observed%20to%20be%20in%20the%20range%20of%201.5-27%20K.%20We%20observe%2C%20from%200.3%20K%20to%20at%20least%20125%20K%2C%20a%20superparamagnetic%20behavior%2C%20whereas%20vanadium%20oxide%2C%20in%20its%20bulk%20phase%2C%20is%20reported%20to%20be%20anti-ferromagnetic%20%28AF%29%20at%20low%20temperatures.%20This%20striking%20feature%20is%20consistent%20with%20either%20ferromagnetic%20spin%20pairing%20or%20spin%20canting%20in%20the%20AF%20spin%20order%20along%20the%201D%20vanadium%20ion%20chains%20of%20the%20Magneli%20phase%20or%20for%20the%20VO2%28A%29-like%20phase.%20Finally%2C%20the%20observed%20magneto-resistive%20effect%2C%20which%20reached%20up%20to%208%25%20at%20low%20temperatures%2C%20indicates%20ferromagnetic%20behavior%20for%20some%20of%20the%20nanoparticles.%20This%20enables%20their%20integration%20in%20spintronic%20devices%20that%20could%20be%20combined%20with%20metal-insulator%20switching%20and%20magneto-resistive%20effects.%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5131829%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.5131829%22%2C%22collections%22%3A%5B%229USMFXMV%22%2C%22DEB5KWFS%22%2C%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%22WJDNKBGA%22%2C%22ZN5EITAC%22%5D%2C%22dateModified%22%3A%222021-02-10T16%3A15%3A54Z%22%7D%7D%2C%7B%22key%22%3A%229X64PE8Z%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Konstantinov%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EN.%20Konstantinov%2C%20A.%20Tauzin%2C%20U.N.%20Noumbe%2C%20D.%20Dragoe%2C%20B.%20Kundys%2C%20H.%20Majjad%2C%20A.%20Brosseau%2C%20M.%20Lenertz%2C%20A.%20Singh%2C%20S.%20Berciaud%2C%20M.-L.%20Boillot%2C%20B.%20Doudin%2C%20T.%20Mallah%2C%20J.-F.%20Dayen%2C%20Electrical%20read-out%20of%20light-induced%20spin%20transition%20in%20thin%20film%20spin%20crossover%5C%2Fgraphene%20heterostructures%2C%20Journal%20of%20Materials%20Chemistry%20C%209%20%282021%29%202712%26%23x2013%3B2720.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd0tc05202g%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd0tc05202g%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electrical%20read-out%20of%20light-induced%20spin%20transition%20in%20thin%20film%20spin%20crossover%5C%2Fgraphene%20heterostructures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikita%22%2C%22lastName%22%3A%22Konstantinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arthur%22%2C%22lastName%22%3A%22Tauzin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ulrich%20Nguetchuissi%22%2C%22lastName%22%3A%22Noumbe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diana%22%2C%22lastName%22%3A%22Dragoe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hicham%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arnaud%22%2C%22lastName%22%3A%22Brosseau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marc%22%2C%22lastName%22%3A%22Lenertz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aditya%22%2C%22lastName%22%3A%22Singh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephane%22%2C%22lastName%22%3A%22Berciaud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marie-Laure%22%2C%22lastName%22%3A%22Boillot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Talal%22%2C%22lastName%22%3A%22Mallah%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%5D%2C%22abstractNote%22%3A%22Magneto-opto-electronic%20properties%20are%20shown%20for%20a%20hybrid%20device%20constructed%20from%20a%20spin%20crossover%20%28SCO%29%20thin%20film%20of%20a%20Fe%5BHB%283%2C5-%28Me%29%282%29Pz%29%283%29%5D%282%29%20molecular%20material%20evaporated%20over%20a%20graphene%20sensing%20layer.%20The%20principle%20of%20electrical%20detection%20of%20the%20light-induced%20spin%20transition%20in%20SCO%5C%2Fgraphene%20heterostructures%20is%20demonstrated.%20The%20switchable%20spin%20state%20of%20the%20molecular%20film%20is%20translated%20into%20a%20change%20of%20conductance%20of%20the%20graphene%20channel.%20The%20low%20temperature%20write%5C%2Ferase%20process%20of%20the%20conductive%20remnant%20states%20is%20implemented%20using%20two%20distinct%20excitation%20wavelengths%2C%20in%20the%20red%20%28light-induced%20spin%20state%20trapping%2C%20LIESST%29%20region%20for%20stabilizing%20the%20metastable%20paramagnetic%20state%2C%20and%20in%20the%20near%20infrared%20%28reverse-LIESST%29%20region%20for%20retrieving%20the%20stable%20diamagnetic%20state.%20The%20bistability%20of%20the%20system%20is%20confirmed%20over%20a%20significant%20temperature%20window%20through%20light-induced%20thermal%20hysteresis%20%28LITH%29.%20This%20opens%20new%20avenues%20to%20study%20the%20light-induced%20spin%20transition%20mechanisms%20exploring%20the%20coupling%20mechanisms%20between%20SCO%20systems%20and%202D%20materials%2C%20providing%20electrical%20readings%20of%20the%20molecules%5C%2F2D%20substrate%20interfaces.%20These%20results%20demonstrate%20how%20the%20electronic%20states%20of%20insulating%20molecular%20switches%20can%20be%20stored%2C%20read%20and%20manipulated%20by%20multiple%20stimuli%2C%20while%20transducing%20them%20into%20low%20impedance%20signals%2C%20thanks%20to%20two-dimensional%20detectors%2C%20revealing%20the%20full%20potential%20of%20mixed-dimensional%20heterostructures%20for%20molecular%20electronics%20and%20spintronics.%22%2C%22date%22%3A%222021%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1039%5C%2Fd0tc05202g%22%2C%22ISSN%22%3A%222050-7526%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1039%5C%2Fd0tc05202g%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%226IWM732K%22%2C%22CF4ZI7HM%22%2C%22N8397DCZ%22%2C%22J4NL8E8U%22%2C%225T5YGD4D%22%2C%22GA3EX26X%22%5D%2C%22dateModified%22%3A%222024-09-18T12%3A03%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22UCHS96WD%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kundys%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EB.%20Kundys%2C%20Photostrictive%20materials%2C%20Applied%20Physics%20Reviews%202%20%282015%29.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4905505%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4905505%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Photostrictive%20materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Light-matter%20interactions%20that%20lead%20to%20nonthermal%20changes%20in%20size%20of%20the%20sample%20constitute%20a%20photostrictive%20effect%20in%20many%20compounds.%20The%20photostriction%20phenomenon%20was%20observed%20in%20four%20main%20groups%20of%20materials%2C%20ferroelectrics%2C%20polar%2C%20and%20non-polar%20semiconductors%2C%20as%20well%20as%20in%20organic-based%20materials%20that%20are%20reviewed%20here.%20The%20key%20mechanisms%20of%20photostriction%20and%20its%20dependence%20on%20several%20parameters%20and%20perturbations%20are%20assessed.%20The%20major%20literature%20of%20the%20photostriction%20is%20surveyed%2C%20and%20the%20review%20ends%20with%20a%20summary%20of%20the%20proposed%20technical%20applications.%20%28C%29%202015%20AIP%20Publishing%20LLC.%22%2C%22date%22%3A%222015%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4905505%22%2C%22ISSN%22%3A%221931-9401%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4905505%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A29%3A02Z%22%7D%7D%2C%7B%22key%22%3A%22BZ8TJRAI%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kundys%20et%20al.%22%2C%22parsedDate%22%3A%222014%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EB.%20Kundys%2C%20V.%20Iurchuk%2C%20C.%20M%26%23xE9%3Bny%2C%20H.%20Majjad%2C%20B.%20Doudin%2C%20Sub-coercive%20and%20multi-level%20ferroelastic%20remnant%20states%20with%20resistive%20readout%2C%20Applied%20Physics%20Letters%20104%20%282014%29%20232905.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4883375%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4883375%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Sub-coercive%20and%20multi-level%20ferroelastic%20remnant%20states%20with%20resistive%20readout%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Iurchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22M%5Cu00e9ny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Doudin%22%7D%5D%2C%22abstractNote%22%3A%22Ferroelectric%20devices%20use%20their%20electric%20polarization%20ferroic%20order%20as%20the%20switching%20and%20storage%20physical%20quantity%20for%20memory%20applications.%20However%2C%20additional%20built-in%20physical%20quantities%20and%20memory%20paradigms%20are%20requested%20for%20applications.%20We%20propose%20here%20to%20take%20advantage%20of%20the%20multiferroic%20properties%20of%20ferroelectrics%2C%20using%20ferroelasticity%20to%20create%20a%20remnant%20strain%2C%20persisting%20after%20stressing%20the%20material%20by%20converse%20piezoelectricity%20means.%20While%20large%20electric%20fields%20are%20needed%20to%20switch%20the%20polarization%2C%20here%20writing%20occurs%20at%20subcoercive%20much%20lower%20field%20values%2C%20which%20can%20efficiently%20imprint%20multiple%20remnant%20strain%20states.%20A%20proof-of-principle%20cell%2C%20with%20the%20simplest%20and%20non-optimized%20resistance%20strain%20detection%20design%2C%20is%20shown%20here%20to%20exhibit%2013-memory%20states%20of%20high%20reproducibility%20and%20reliability.%20The%20related%20advantages%20in%20lower%20power%20consumption%20and%20limited%20device%20fatigue%20make%20our%20approach%20relevant%20for%20applications.%20%28C%29%202014%20AIP%20Publishing%20LLC.%22%2C%22date%22%3A%222014%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4883375%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4883375%22%2C%22collections%22%3A%5B%22QK933HES%22%2C%22UVN4N32C%22%2C%22ZN5EITAC%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A28%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22XVG8CISM%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kundys%20et%20al.%22%2C%22parsedDate%22%3A%222012%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EB.%20Kundys%2C%20C.%20M%26%23xE9%3Bny%2C%20M.R.J.%20Gibbs%2C%20V.%20Da%20Costa%2C%20M.%20Viret%2C%20M.%20Acosta%2C%20D.%20Colson%2C%20B.%20Doudin%2C%20Light%20controlled%20magnetoresistance%20and%20magnetic%20field%20controlled%20photoresistance%20in%20CoFe%20film%20deposited%20on%20BiFeO3%2C%20Applied%20Physics%20Letters%20100%20%282012%29%20262411%20%5C%2Fp.1%26%23x2013%3B4.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4731201%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4731201%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Light%20controlled%20magnetoresistance%20and%20magnetic%20field%20controlled%20photoresistance%20in%20CoFe%20film%20deposited%20on%20BiFeO3%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22M%5Cu00e9ny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%20J.%22%2C%22lastName%22%3A%22Gibbs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Da%20Costa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Viret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Acosta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Colson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20a%20magnetoresistive-photoresistive%20device%20based%20on%20the%20interaction%20of%20a%20piezomagnetic%20CoFe%20thin%20film%20with%20a%20photostrictive%20BiFeO3%20%28BFO%29%20substrate%20that%20undergoes%20light-induced%20strain.%20The%20magnitude%20of%20the%20resistance%20and%20magnetoresistance%20in%20the%20CoFe%20film%20can%20be%20controlled%20by%20the%20wavelength%20of%20the%20incident%20light%20on%20the%20BiFeO3.%20Moreover%2C%20a%20light-induced%20decrease%20in%20anisotropic%20magnetoresistance%20is%20detected%20due%20to%20an%20additional%20magnetoelastic%20contribution%20to%20magnetic%20anisotropy%20of%20the%20CoFe%20film.%20This%20effect%20may%20find%20applications%20in%20photo-sensing%20systems%2C%20wavelength%20detectors%20and%20can%20possibly%20open%20a%20research%20development%20in%20light-controlled%20magnetic%20switching%20properties%20for%20next%20generation%20magnetoresistive%20memory%20devices.%20%28C%29%202012%20American%20Institute%20of%20Physics.%20http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4731201%5D%22%2C%22date%22%3A%222012%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4731201%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4731201%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22ZN5EITAC%22%2C%22EAI2UDK5%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A28%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22WWAZSJX2%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kundys%20et%20al.%22%2C%22parsedDate%22%3A%222012%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EB.%20Kundys%2C%20M.%20Viret%2C%20C.%20M%26%23xE9%3Bny%2C%20V.%20Da%20Costa%2C%20D.%20Colson%2C%20B.%20Doudin%2C%20Wavelength%20dependence%20of%20photoinduced%20deformation%20in%20BiFeO3%2C%20Physical%20Review%20B%2085%20%282012%29%20092301%20%5C%2Fp.1%26%23x2013%3B4.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.85.092301%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.85.092301%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Wavelength%20dependence%20of%20photoinduced%20deformation%20in%20BiFeO3%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Viret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22M%5Cu00e9ny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Da%20Costa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Colson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%5D%2C%22abstractNote%22%3A%22Optomechanical%20effects%20in%20polar%20solids%20result%20from%20the%20combination%20of%20two%20main%20processes%2C%20electric%20field-induced%20strain%20and%20photon-induced%20voltages.%20Whereas%20the%20former%20depends%20on%20the%20electrostrictive%20ability%20of%20the%20sample%20to%20convert%20electric%20energy%20into%20mechanical%20energy%2C%20the%20latter%20is%20caused%20by%20the%20capacity%20of%20photons%20with%20appropriate%20energy%20to%20generate%20charges%20and%2C%20therefore%2C%20can%20depend%20on%20wavelength.%20We%20report%20here%20on%20mechanical%20deformation%20of%20BiFeO3%20and%20its%20response%20time%20to%20discrete%20wavelengths%20of%20incident%20light%20ranging%20from%20365%20to%20940%20nm.%20The%20mechanical%20response%20of%20BiFeO3%20is%20found%20to%20have%20two%20maxima%20in%20near-UV%20and%20green%20spectral%20wavelength%20regions.%22%2C%22date%22%3A%222012%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.85.092301%22%2C%22ISSN%22%3A%221098-0121%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.85.092301%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22ZN5EITAC%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A46%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22WHBM925V%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kundys%20et%20al.%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EB.%20Kundys%2C%20F.%20Roulland%2C%20C.%20Lef%26%23xE8%3Bvre%2C%20C.%20M%26%23xE9%3Bny%2C%20A.%20Thomasson%2C%20N.%20Viart%2C%20Room%20temperature%20polarization%20in%20the%20ferrimagnetic%20Ga2-xFexO3%20ceramics%2C%20Journal%20of%20the%20European%20Ceramic%20Society%2035%20%282015%29%202277%26%23x2013%3B2281.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jeurceramsoc.2015.02.029%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jeurceramsoc.2015.02.029%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Room%20temperature%20polarization%20in%20the%20ferrimagnetic%20Ga2-xFexO3%20ceramics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Roulland%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Lef%5Cu00e8vre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22M%5Cu00e9ny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Thomasson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Viart%22%7D%5D%2C%22abstractNote%22%3A%22The%20effect%20of%20the%20Fe%5C%2FGa%20ratio%20on%20the%20magnetic%20and%20electric%20properties%20of%20the%20multiferroic%20Ga2-xFexO3%20compound%20has%20been%20studied%20in%20order%20to%20determine%20the%20composition%20range%20exhibiting%20magnetic%20and%20electric%20orders%20coexistence%20and%20their%20critical%20temperatures.%20A%20magnetoelectric%20phase%20diagram%2C%20showing%20the%20evolution%20of%20both%20the%20Neel%20magnetic%20ordering%20temperature%20T-N%20and%20the%20electric%20ordering%20temperature%20T-c%2C%20versus%20the%20iron%20content%20has%20been%20established%20for%200.9%20%3C%3D%20x%20%3C%3D%201.4.%20While%20the%20ferrimagnetic%20Neel%20temperature%20increases%20with%20the%20iron%20content%2C%20the%20electric%20ordering%20temperature%20shows%20an%20opposite%20trend.%20The%20electric%20polarization%20has%20been%20found%20to%20exist%20far%20above%20room%20temperature%20for%20the%20x%20%3D%201.1%20composition%20which%20shows%20the%20highest%20observed%20electric%20ordering%20temperature%20of%20T-c%20approximate%20to%20580%20K.%20The%20x%20%3D%201.3%20and%201.4%20compounds%20are%20ferrimagnetic-electric%20relaxors%20with%20both%20properties%20coexisting%20at%20room%20temperature.%20%28C%29%202015%20Elsevier%20Ltd.%20All%20rights%20reserved.%22%2C%22date%22%3A%222015%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.jeurceramsoc.2015.02.029%22%2C%22ISSN%22%3A%220955-2219%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1016%5C%2Fj.jeurceramsoc.2015.02.029%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22ZN5EITAC%22%2C%22CF4ZI7HM%22%2C%22N8397DCZ%22%2C%22SB8Q592R%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A40%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22C6G2AA5E%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kundys%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ED.%20Kundys%2C%20A.%20Cascales%2C%20A.S.%20Makhort%2C%20H.%20Majjad%2C%20F.%20Chevrier%2C%20B.%20Doudin%2C%20A.%20Fedrizzi%2C%20B.%20Kundys%2C%20Optically%20Rewritable%20Memory%20in%20a%20Graphene-Ferroelectric-Photovoltaic%20Heterostructure%2C%20Physical%20Review%20Applied%2013%20%282020%29%20064034.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.064034%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.064034%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optically%20Rewritable%20Memory%20in%20a%20Graphene-Ferroelectric-Photovoltaic%20Heterostructure%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Cascales%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20S.%22%2C%22lastName%22%3A%22Makhort%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hicham%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabien%22%2C%22lastName%22%3A%22Chevrier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Fedrizzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Achieving%20optical%20operation%20of%20logic%20elements%2C%20especially%20those%20that%20involve%20two-dimensional%20%282D%29%20layers%2C%20could%20kick-start%20the%20long-awaited%20era%20of%20optical%20computing.%20However%2C%20efficient%20optical%20modulation%20of%20the%20electronic%20properties%20of%202D%20materials%2C%20including%20the%20rewritable%20memory%20effect%2C%20is%20currently%20lacking.%20Here%20we%20report%20all-optical%20control%20of%20the%20conductivity%20of%20graphene%20with%20write-erase%20operation%20yet%20under%20ultralow%20optical%20fluence.%20The%20competition%20between%20light-induced%20charge%20generation%20in%20a%20ferroelectric-photovoltaic%20substrate%20and%20relaxation%20processes%20provides%20the%20selective%20photocarrier-trapping%20control%20affecting%20the%20doping%20of%20the%202D%20overlayer.%20These%20findings%20open%20the%20way%20to%20photonic%20control%20of%202D%20devices%20for%20all-optical%20modulators%2C%20a%20variety%20of%20all-optical%20logic%20circuits%2C%20memories%2C%20and%20field-effect%20transistors.%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.13.064034%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.064034%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222020-07-02T08%3A58%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22BZ7LBST3%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kundys%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ED.%20Kundys%2C%20F.%20Graffitti%2C%20R.A.%20McCracken%2C%20A.%20Fedrizzi%2C%20B.%20Kundys%2C%20Numerical%20Study%20of%20Reconfigurable%20Mid-IR%20Single%20Photon%20Sources%20Based%20on%20Functional%20Ferroelectrics%2C%20Advanced%20Quantum%20Technologies%203%20%282020%29%201900092.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fqute.201900092%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fqute.201900092%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Numerical%20Study%20of%20Reconfigurable%20Mid-IR%20Single%20Photon%20Sources%20Based%20on%20Functional%20Ferroelectrics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmytro%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesco%22%2C%22lastName%22%3A%22Graffitti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Richard%20A.%22%2C%22lastName%22%3A%22McCracken%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Fedrizzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20The%20future%20of%20quantum%20photonic%20technology%20depends%20on%20the%20realization%20of%20efficient%20sources%20of%20single%20photons%2C%20the%20ideal%20carriers%20of%20quantum%20information.%20Parametric%20downconversion%20%28PDC%29%20is%20a%20promising%20route%20to%20create%20highly%20coherent%2C%20spectrally%20pure%20single%20photons%20for%20quantum%20photonics%20using%20versatile%20group%20velocity%20matching%20%28GVM%29%20and%20tailored%20nonlinearities.%20However%2C%20the%20functionality%20to%20actively%20control%20the%20poling%20period%20of%20nonlinear%20crystals%20used%20in%20PDC%20is%20currently%20missing%2C%20yet%20would%20enable%20to%20dynamically%20modify%20the%20wavelength%20of%20single%20photons%20produced%20in%20the%20PDC%20process.%20Herein%2C%20a%20detailed%20GVM%20study%20is%20presented%20for%20functional%20PMN-0.38PT%20material%20which%20can%20be%20dynamically%20repolled%20at%20ambient%20conditions%20with%20fields%20as%20low%20as%200.4%20kV%20mm%5Cu22121.%20The%20study%20reveals%20phase-matching%20conditions%20for%20spectrally%20pure%20single%20photon%20creation%20at%205%5Cu20136%20%5Cu00b5m.%20Further%2C%20a%20practical%20approach%20is%20proposed%20for%20on-flight%20wavelength%20switching%20of%20the%20created%20single%20photons.%20The%20reported%20reconfigurable%20functionality%20benefits%20a%20wide%20range%20of%20emerging%20quantum-enhanced%20applications%20in%20the%20mid-IR%20spectral%20region%20where%20the%20choice%20of%20single%20photon%20sources%20is%20currently%20limited.%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1002%5C%2Fqute.201900092%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fqute.201900092%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222022-02-08T08%3A33%3A35Z%22%7D%7D%2C%7B%22key%22%3A%225HNBDCAP%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Levytskyi%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Levytskyi%2C%20W.%20Carrillo-Cabrera%2C%20L.%20Akselrud%2C%20B.%20Kundys%2C%20A.%20Leithe-Jasper%2C%20R.%20Gumeniuk%2C%20Superconductivity%20of%20structurally%20disordered%20Y5Ir6Sn18%2C%20Dalton%20Transactions%2051%20%282022%29%2010036%26%23x2013%3B10046.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd2dt01353c%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd2dt01353c%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Superconductivity%20of%20structurally%20disordered%20Y5Ir6Sn18%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volodymyr%22%2C%22lastName%22%3A%22Levytskyi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wilder%22%2C%22lastName%22%3A%22Carrillo-Cabrera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lev%22%2C%22lastName%22%3A%22Akselrud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Leithe-Jasper%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%5D%2C%22abstractNote%22%3A%22The%20structural%20and%20physical%20properties%20of%20Y5Ir6Sn18%20grown%20from%20Sn-flux%20as%20large%20single%20crystals%20are%20studied.%20Y5Ir6Sn18%20crystallizes%20with%20a%20unique%20structure%20%5Bspace%20group%20Fm3m%2C%20a%20%3D%2013.7706%281%29%20angstrom%5D%2C%20which%20is%20characterized%20by%20a%20strong%20disorder.%20A%20transmission%20electron%20microscopy%20%28TEM%29%20study%20indicated%20that%20the%20structural%20model%20of%20Y5Ir6Sn18%20obtained%20from%20X-ray%20diffraction%20methods%20is%20an%20average%20description%20of%20a%20complex%20intergrowth%20of%20domains%20with%20different%20structural%20arrangements.%20The%20studied%20stannide%20is%20a%20type-II%20superconductor%20with%20a%20critical%20temperature%20T-c%20%3D%202.1%20K%2C%20a%20rather%20weak%20electron-phonon%20coupling%20and%20conventional%20s-wave%20BCS-like%20mechanisms.%20Performed%20theoretical%20electronic%20band%20structure%20calculations%20indicated%20the%20inconsistency%20of%20an%20idealized%20structural%20model%20earlier%20reported%20for%20Y5Ir6Sn18.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1039%5C%2Fd2dt01353c%22%2C%22ISSN%22%3A%221477-9226%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1039%5C%2Fd2dt01353c%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A16%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22SAR4V2VQ%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Maity%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EK.%20Maity%2C%20J.-F.%20Dayen%2C%20B.%20Doudin%2C%20R.%20Gumeniuk%2C%20B.%20Kundys%2C%20Single%20Wavelength%20Operating%20Neuromorphic%20Device%20Based%20on%20a%20Graphene-Ferroelectric%20Transistor.%2C%20ACS%20Applied%20Materials%20%26amp%3B%20Interfaces%2015%20%282023%29%2055948%26%23x2013%3B55956.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c10010%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c10010%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Single%20Wavelength%20Operating%20Neuromorphic%20Device%20Based%20on%20a%20Graphene-Ferroelectric%20Transistor.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Krishna%22%2C%22lastName%22%3A%22Maity%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22As%20global%20data%20generation%20continues%20to%20rise%2C%20there%20is%20an%20increasing%20demand%20for%20revolutionary%20in-memory%20computing%20methodologies%20and%20efficient%20machine%20learning%20solutions.%20Despite%20recent%20progress%20in%20electrical%20and%20electro-optical%20simulations%20of%20machine%20learning%20devices%2C%20the%20all-optical%20nonthermal%20function%20remains%20challenging%2C%20with%20single%20wavelength%20operation%20still%20elusive.%20Here%20we%20report%20on%20an%20optical%20and%20monochromatic%20way%20of%20neuromorphic%20signal%20processing%20for%20brain-inspired%20functions%2C%20eliminating%20the%20need%20for%20electrical%20pulses.%20Multilevel%20synaptic%20potentiation-depression%20cycles%20are%20successfully%20achieved%20optically%20by%20leveraging%20photovoltaic%20charge%20generation%20and%20polarization%20within%20the%20photoferroelectric%20substrate%20interfaced%20with%20the%20graphene%20sensor.%20Furthermore%2C%20the%20demonstrated%20low-power%20prototype%20device%20is%20able%20to%20reproduce%20exact%20signal%20profile%20of%20brain%20tissues%20yet%20with%20more%20than%202%20orders%20of%20magnitude%20faster%20response.%20The%20reported%20properties%20should%20trigger%20all-optical%20and%20low%20power%20artificial%20neuromorphic%20development%20based%20on%20photoferroelectric%20structures.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1021%5C%2Facsami.3c10010%22%2C%22ISSN%22%3A%221944-8252%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1021%5C%2Facsami.3c10010%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A17%3A04Z%22%7D%7D%2C%7B%22key%22%3A%22PPLPUDP4%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Maity%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EK.%20Maity%2C%20J.-F.%20Dayen%2C%20M.%20Palluel%2C%20N.%20Daro%2C%20G.%20Chastanet%2C%20B.%20Kundys%2C%20B.%20Doudin%2C%20Elucidating%20the%20effect%20of%20spin%20crossover%20materials%20on%20graphene%20sensing%20devices%2C%20Applied%20Physics%20Letters%20123%20%282023%29%20163503.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0163784%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0163784%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Elucidating%20the%20effect%20of%20spin%20crossover%20materials%20on%20graphene%20sensing%20devices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Krishna%22%2C%22lastName%22%3A%22Maity%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marlene%22%2C%22lastName%22%3A%22Palluel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathalie%22%2C%22lastName%22%3A%22Daro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Chastanet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%5D%2C%22abstractNote%22%3A%22Graphene%20films%20are%20used%20to%20detect%20the%20presence%20and%20transition%20of%20spin%20crossover%20nanoparticle%20aggregates.%20Experiments%20performed%20far%20from%20the%20graphene%20neutrality%20point%2C%20combining%20impedance%20spectroscopy%20and%20Hall%20measurements%2C%20provide%20better%20insight%20into%20the%20mechanism%20for%20the%20change%20of%20impedance%20of%20the%20graphene%20layer%20in%20proximity%20with%20different%20states%20of%20the%20molecular%20structure.%20We%20observe%20that%20the%20change%20of%20spin%20state%20shifts%20the%20graphene%20Fermi%20level%20and%20its%20intrinsic%20resistance%2C%20with%20resulting%20positive%20insight%20into%20using%20this%20type%20of%20hybrid%20device%20for%20fast%20molecular%20electronics%20purposes.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0163784%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F5.0163784%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A17%3A16Z%22%7D%7D%2C%7B%22key%22%3A%22GLBAN77R%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Maity%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EK.%20Maity%2C%20J.-F.%20Dayen%2C%20B.%20Doudin%2C%20R.%20Gumeniuk%2C%20B.%20Kundys%2C%20Graphene%20Magnetoresistance%20Control%20by%20Photoferroelectric%20Substrate.%2C%20ACS%20Nano%2018%20%282024%29%204726%26%23x2013%3B4732.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.3c07277%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.3c07277%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Graphene%20Magnetoresistance%20Control%20by%20Photoferroelectric%20Substrate.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Krishna%22%2C%22lastName%22%3A%22Maity%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Ultralow%20dimensionality%20of%202D%20layers%20magnifies%20their%20sensitivity%20to%20adjacent%20charges%20enabling%20even%20postprocessing%20electric%20control%20of%20multifunctional%20structures.%20However%2C%20functionalizing%202D%20layers%20remains%20an%20important%20challenge%20for%20on-demand%20device-property%20exploitation.%20Here%20we%20report%20that%20an%20electrical%20and%20even%20fully%20optical%20way%20to%20control%20and%20write%20modifications%20to%20the%20magnetoresistive%20response%20of%20CVD-deposited%20graphene%20is%20achievable%20through%20the%20electrostatics%20of%20the%20photoferroelectric%20substrate.%20For%20electrical%20control%2C%20the%20ferroelectric%20polarization%20switch%20modifies%20graphene%20magnetoresistance%20by%2067%25%20due%20to%20a%20Fermi%20level%20shift%20with%20related%20modification%20in%20charge%20mobility.%20A%20similar%20function%20is%20also%20attained%20entirely%20by%20bandgap%20light%20due%20to%20the%20substrate%20photovoltaic%20effect.%20Moreover%2C%20an%20all-optical%20way%20to%20imprint%20and%20recover%20graphene%20magnetoresistance%20by%20light%20is%20reported%20as%20well%20as%20magnetic%20control%20of%20graphene%20transconductance.%20These%20findings%20extend%20photoferroelectric%20control%20in%202D%20structures%20to%20magnetic%20dimensions%20and%20advance%20wireless%20operation%20for%20sensors%20and%20field-effect%20transistors.%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.3c07277%22%2C%22ISSN%22%3A%221936-086X%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1021%5C%2Facsnano.3c07277%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A17%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22BX622CC2%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Makhort%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.S.%20Makhort%2C%20F.%20Chevrier%2C%20D.%20Kundys%2C%20B.%20Doudin%2C%20B.%20Kundys%2C%20Photovoltaic%20effect%20and%20photopolarization%20in%20Pb%5B%28Mg1%5C%2F3Nb2%5C%2F3%29%280.68%29Ti-0.32%5DO-3%20crystal%2C%20Physical%20Review%20Materials%202%20%282018%29%20012401%28R%29.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.2.012401%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.2.012401%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Photovoltaic%20effect%20and%20photopolarization%20in%20Pb%5B%28Mg1%5C%2F3Nb2%5C%2F3%29%280.68%29Ti-0.32%5DO-3%20crystal%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20S.%22%2C%22lastName%22%3A%22Makhort%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Chevrier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Ferroelectric%20materials%20are%20an%20alternative%20to%20semiconductor-based%20photovoltaics%20and%20offer%20the%20advantage%20of%20above%20bandgap%20photovoltage%20generation.%20However%2C%20there%20are%20few%20known%20compounds%2C%20and%20photovoltaic%20efficiencies%20remain%20low.%20Here%2C%20we%20report%20the%20discovery%20of%20a%20photovoltaic%20effect%20in%20undoped%20lead%20magnesium%20niobate-lead%20titanate%20crystal%20and%20a%20significant%20improvement%20in%20the%20photovoltaic%20response%20under%20suitable%20electric%20fields%20and%20temperatures.%20The%20photovoltaic%20effect%20is%20maximum%20near%20the%20electric-field-driven%20ferroelectric%20dipole%20reorientation%2C%20and%20increases%20threefold%20near%20the%20Curie%20temperature%20%28T-c%29.%20Moreover%2C%20at%20ferroelectric%20saturation%2C%20the%20photovoltaic%20response%20exhibits%20clear%20remanent%20and%20transient%20effects.%20The%20transient-remanent%20combinations%20together%20with%20electric%20and%20thermal%20tuning%20possibilities%20indicate%20photoferroelectric%20crystals%20as%20emerging%20elements%20for%20photovoltaics%20and%20optoelectronics%2C%20relevant%20to%20all-optical%20information%20storage%20and%20beyond.%22%2C%22date%22%3A%222018%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevMaterials.2.012401%22%2C%22ISSN%22%3A%222475-9953%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevMaterials.2.012401%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222018-05-31T14%3A58%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22H8TGBE69%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Makhort%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.S.%20Makhort%2C%20G.%20Schmerber%2C%20B.%20Kundys%2C%20Larger%20photovoltaic%20effect%20and%20hysteretic%20photocarrier%20dynamics%20in%20Pb%5B%28Mg1%5C%2F3Nb2%5C%2F3%29%280.70%29Ti-0.30%5DO-3%20crystal%2C%20Materials%20Research%20Express%206%20%282019%29%20066313.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2053-1591%5C%2Fab0758%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2053-1591%5C%2Fab0758%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Larger%20photovoltaic%20effect%20and%20hysteretic%20photocarrier%20dynamics%20in%20Pb%5B%28Mg1%5C%2F3Nb2%5C%2F3%29%280.70%29Ti-0.30%5DO-3%20crystal%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20S.%22%2C%22lastName%22%3A%22Makhort%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guy%22%2C%22lastName%22%3A%22Schmerber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Following%20the%20recent%20discovery%20of%20a%20bulk%20photovoltaic%20effect%20in%20the%20Pb%5B%28Mg1%5C%2F3Nb2%5C%2F3%29%280.68%29Ti-0.32%5DO-3%20crystal%2C%20we%20report%20here%20more%20than%20one%20order%20of%20magnitude%20improvement%20of%20photovoltaicity%20as%20well%20as%20its%20poling%20dependence%20in%20the%20related%20composition%20of%20lead%20magnesium%20niobate-lead%20titanate%20noted%20Pb%5B%28Mg1%5C%2F3Nb2%5C%2F3%29%280.7%29Ti-0.30%5DO-3.%20Photocurrent%20measurements%20versus%20light%20intensity%20reveal%20a%20remarkable%20hysteresis%20in%20photocarrier%20dynamics%20clearly%20demonstrating%20charge%20generation%2C%20trapping%20and%20release%20processes.%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1088%5C%2F2053-1591%5C%2Fab0758%22%2C%22ISSN%22%3A%222053-1591%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1088%5C%2F2053-1591%5C%2Fab0758%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22ZN5EITAC%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222019-06-07T15%3A19%3A06Z%22%7D%7D%2C%7B%22key%22%3A%22ZZTXDXG4%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Makhort%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.%20Makhort%2C%20R.%20Gumeniuk%2C%20J.-F.%20Dayen%2C%20P.%20Dunne%2C%20U.%20Burkhardt%2C%20M.%20Viret%2C%20B.%20Doudin%2C%20B.%20Kundys%2C%20Photovoltaic-Ferroelectric%20Materials%20for%20the%20Realization%20of%20All-Optical%20Devices%2C%20Advanced%20Optical%20Materials%2010%20%282022%29%202102353.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadom.202102353%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadom.202102353%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Photovoltaic-Ferroelectric%20Materials%20for%20the%20Realization%20of%20All-Optical%20Devices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatolii%22%2C%22lastName%22%3A%22Makhort%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Gumeniuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Dunne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ulrich%22%2C%22lastName%22%3A%22Burkhardt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Viret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Following%20how%20the%20electrical%20transistor%20revolutionized%20the%20field%20of%20electronics%2C%20the%20realization%20of%20an%20optical%20transistor%20in%20which%20the%20flow%20of%20light%20is%20controlled%20optically%20should%20open%20the%20long-sought%20era%20of%20optical%20computing%20and%20new%20data%20processing%20possibilities.%20However%2C%20such%20function%20requires%20photons%20to%20influence%20each%20other%2C%20an%20effect%20which%20is%20unnatural%20in%20free%20space.%20Here%20it%20is%20shown%20that%20a%20ferroelectric%20and%20photovoltaic%20crystal%20gated%20optically%20at%20the%20onset%20of%20its%20bandgap%20energy%20can%20act%20as%20an%20optical%20transistor.%20The%20light-induced%20charge%20generation%20and%20distribution%20processes%20alter%20the%20internal%20electric%20field%20and%20therefore%20impact%20the%20optical%20transmission%20with%20a%20memory%20effect%20and%20pronounced%20nonlinearity.%20The%20latter%20results%20in%20an%20optical%20computing%20possibility%2C%20which%20does%20not%20need%20to%20operate%20coherently.%20These%20findings%20advance%20efficient%20room%20temperature%20optical%20transistors%2C%20memristors%2C%20modulators%20and%20all-optical%20logic%20circuits.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1002%5C%2Fadom.202102353%22%2C%22ISSN%22%3A%222195-1071%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1002%5C%2Fadom.202102353%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A17%3A21Z%22%7D%7D%2C%7B%22key%22%3A%228NAE2T67%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Quattropani%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.%20Quattropani%2C%20A.S.%20Makhort%2C%20M.V.%20Rastei%2C%20G.%20Versini%2C%20G.%20Schmerber%2C%20S.%20Barre%2C%20A.%20Dinia%2C%20A.%20Slaoui%2C%20J.-L.%20Rehspringer%2C%20T.%20Fix%2C%20S.%20Colis%2C%20B.%20Kundys%2C%20Tuning%20photovoltaic%20response%20in%20Bi2FeCrO6%20films%20by%20ferroelectric%20poling%2C%20Nanoscale%2010%20%282018%29%2013761%26%23x2013%3B13766.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fc8nr03137a%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fc8nr03137a%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tuning%20photovoltaic%20response%20in%20Bi2FeCrO6%20films%20by%20ferroelectric%20poling%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Quattropani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatolii%20S.%22%2C%22lastName%22%3A%22Makhort%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mircea%20V.%22%2C%22lastName%22%3A%22Rastei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gilles%22%2C%22lastName%22%3A%22Versini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guy%22%2C%22lastName%22%3A%22Schmerber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Barre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aziz%22%2C%22lastName%22%3A%22Dinia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Abdelilah%22%2C%22lastName%22%3A%22Slaoui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Luc%22%2C%22lastName%22%3A%22Rehspringer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Fix%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silviu%22%2C%22lastName%22%3A%22Colis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Ferroelectric%20materials%20are%20interesting%20candidates%20for%20future%20photovoltaic%20applications%20due%20to%20their%20potential%20to%20overcome%20the%20fundamental%20limits%20of%20conventional%20single%20bandgap%20semiconductor-based%20solar%20cells.%20Although%20a%20more%20efficient%20charge%20separation%20and%20above%20bandgap%20photovoltages%20are%20advantageous%20in%20these%20materials%2C%20tailoring%20their%20photovoltaic%20response%20using%20ferroelectric%20functionalities%20remains%20puzzling.%20Here%20we%20address%20this%20issue%20by%20reporting%20a%20clear%20hysteretic%20character%20of%20the%20photovoltaic%20effect%20as%20a%20function%20of%20electric%20field%20and%20its%20dependence%20on%20the%20poling%20history.%20Furthermore%2C%20we%20obtain%20insight%20into%20light%20induced%20nonequilibrium%20charge%20carrier%20dynamics%20in%20Bi2FeCrO6%20films%20involving%20not%20only%20charge%20generation%2C%20but%20also%20recombination%20processes.%20At%20the%20ferroelectric%20remanence%2C%20light%20is%20able%20to%20electrically%20depolarize%20the%20films%20with%20remanent%20and%20transient%20effects%20as%20evidenced%20by%20electrical%20and%20piezoresponse%20force%20microscopy%20%28PFM%29%20measurements.%20The%20hysteretic%20nature%20of%20the%20photovoltaic%20response%20and%20its%20nonlinear%20character%20at%20larger%20light%20intensities%20can%20be%20used%20to%20optimize%20the%20photovoltaic%20performance%20of%20future%20ferroelectric-based%20solar%20cells.%22%2C%22date%22%3A%222018%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1039%5C%2Fc8nr03137a%22%2C%22ISSN%22%3A%222040-3364%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1039%5C%2Fc8nr03137a%22%2C%22collections%22%3A%5B%222DH6J37C%22%2C%22CHW2VGSR%22%2C%22UVN4N32C%22%2C%22VRM2E3H6%22%2C%22ZN5EITAC%22%2C%22CF4ZI7HM%22%2C%22N8397DCZ%22%2C%22SB8Q592R%22%2C%22TBP4QFHK%22%2C%22UBUT97QT%22%2C%22IEGKATUQ%22%5D%2C%22dateModified%22%3A%222021-04-30T14%3A30%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22WPSDZPY9%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Semak%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ES.%20Semak%2C%20V.%20Kapustianyk%2C%20Y.%20Eliyashevskyy%2C%20O.%20Bovgyra%2C%20M.%20Kovalenko%2C%20U.%20Mostovoi%2C%20B.%20Doudin%2C%20B.%20Kundys%2C%20On%20the%20photovoltaic%20effect%20asymmetry%20in%20ferroelectrics.%2C%20Journal%20of%20Physics.%20Condensed%20Matter%26%23x202F%3B%3A%20An%20Institute%20of%20Physics%20Journal%2035%20%282023%29%20094001.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faca579%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faca579%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22On%20the%20photovoltaic%20effect%20asymmetry%20in%20ferroelectrics.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Semak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%22%2C%22lastName%22%3A%22Kapustianyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yu%22%2C%22lastName%22%3A%22Eliyashevskyy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O%22%2C%22lastName%22%3A%22Bovgyra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Kovalenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22U%22%2C%22lastName%22%3A%22Mostovoi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%5D%2C%22abstractNote%22%3A%22Despite%20symmetrical%20polarization%2C%20the%20magnitude%20of%20a%20light-induced%20voltage%20is%20known%20to%20be%20asymmetric%20with%20respect%20to%20poling%20sign%20in%20many%20photovoltaic%20%28PV%29%20ferroelectrics%20%28FEs%29.%20This%20asymmetry%20remains%20unclear%20and%20is%20often%20attributed%20to%20extrinsic%20effects.%20We%20show%20here%20for%20the%20first%20time%20that%20such%20an%20asymmetry%20can%20be%20intrinsic%2C%20steaming%20from%20the%20superposition%20of%20asymmetries%20of%20internal%20FE%20bias%20and%20electro-piezo-strictive%20deformation.%20This%20hypothesis%20is%20confirmed%20by%20the%20observed%20decrease%20of%20PV%20asymmetry%20for%20smaller%20FE%20bias.%20Moreover%2C%20the%20both%20PV%20effect%20and%20remanent%20polarization%20are%20found%20to%20increase%20under%20vacuum-induced%20expansion%20and%20to%20decrease%20for%20gas-induced%20compression%2C%20with%20tens%20percents%20tunability.%20The%20change%20in%20cations%20positions%20under%20pressure%20is%20analysed%20through%20the%20first-principle%20density%20functional%20theory%20calculations.%20The%20reported%20properties%20provide%20key%20insight%20for%20FE-based%20solar%20elements%20optimization.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-648X%5C%2Faca579%22%2C%22ISSN%22%3A%221361-648X%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faca579%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-11T07%3A17%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22ZNB9VYQY%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Soliman%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Soliman%2C%20K.%20Maity%2C%20A.%20Gloppe%2C%20A.%20Mahmoudi%2C%20A.%20Ouerghi%2C%20B.%20Doudin%2C%20B.%20Kundys%2C%20J.-F.%20Dayen%2C%20Photoferroelectric%20All-van-der-Waals%20Heterostructure%20for%20Multimode%20Neuromorphic%20Ferroelectric%20Transistors.%2C%20ACS%20Applied%20Materials%20%26amp%3B%20Interfaces%2015%20%282023%29%2015732%26%23x2013%3B15744.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c00092%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c00092%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Photoferroelectric%20All-van-der-Waals%20Heterostructure%20for%20Multimode%20Neuromorphic%20Ferroelectric%20Transistors.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohamed%22%2C%22lastName%22%3A%22Soliman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Krishna%22%2C%22lastName%22%3A%22Maity%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arnaud%22%2C%22lastName%22%3A%22Gloppe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aymen%22%2C%22lastName%22%3A%22Mahmoudi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Abdelkarim%22%2C%22lastName%22%3A%22Ouerghi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Dayen%22%7D%5D%2C%22abstractNote%22%3A%22Interface-driven%20effects%20in%20ferroelectric%20van%20der%20Waals%20%28vdW%29%20heterostructures%20provide%20fresh%20opportunities%20in%20the%20search%20for%20alternative%20device%20architectures%20toward%20overcoming%20the%20von%20Neumann%20bottleneck.%20However%2C%20their%20implementation%20is%20still%20in%20its%20infancy%2C%20mostly%20by%20electrical%20control.%20It%20is%20of%20utmost%20interest%20to%20develop%20strategies%20for%20additional%20optical%20and%20multistate%20control%20in%20the%20quest%20for%20novel%20neuromorphic%20architectures.%20Here%2C%20we%20demonstrate%20the%20electrical%20and%20optical%20control%20of%20the%20ferroelectric%20polarization%20states%20of%20ferroelectric%20field%20effect%20transistors%20%28FeFET%29.%20The%20FeFETs%2C%20fully%20made%20of%20ReS2%5C%2FhBN%5C%2FCuInP2S6%20vdW%20materials%2C%20achieve%20an%20on%5C%2Foff%20ratio%20exceeding%20107%2C%20a%20hysteresis%20memory%20window%20up%20to%207%20V%20wide%2C%20and%20multiple%20remanent%20states%20with%20a%20lifetime%20exceeding%20103%20s.%20Moreover%2C%20the%20ferroelectric%20polarization%20of%20the%20CuInP2S6%20%28CIPS%29%20layer%20can%20be%20controlled%20by%20photoexciting%20the%20vdW%20heterostructure.%20We%20perform%20wavelength-dependent%20studies%2C%20which%20allow%20for%20identifying%20two%20mechanisms%20at%20play%20in%20the%20optical%20control%20of%20the%20polarization%3A%20band-to-band%20photocarrier%20generation%20into%20the%202D%20semiconductor%20ReS2%20and%20photovoltaic%20voltage%20into%20the%202D%20ferroelectric%20CIPS.%20Finally%2C%20heterosynaptic%20plasticity%20is%20demonstrated%20by%20operating%20our%20FeFET%20in%20three%20different%20synaptic%20modes%3A%20electrically%20stimulated%2C%20optically%20stimulated%2C%20and%20optically%20assisted%20synapse.%20Key%20synaptic%20functionalities%20are%20emulated%20including%20electrical%20long-term%20plasticity%2C%20optoelectrical%20plasticity%2C%20optical%20potentiation%2C%20and%20spike%20rate-dependent%20plasticity.%20The%20simulated%20artificial%20neural%20networks%20demonstrate%20an%20excellent%20accuracy%20level%20of%2091%25%20close%20to%20ideal-model%20synapses.%20These%20results%20provide%20a%20fresh%20background%20for%20future%20research%20on%20photoferroelectric%20vdW%20systems%20and%20put%20ferroelectric%20vdW%20heterostructures%20on%20the%20roadmap%20for%20the%20next%20neuromorphic%20computing%20architectures.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1021%5C%2Facsami.3c00092%22%2C%22ISSN%22%3A%221944-8252%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1021%5C%2Facsami.3c00092%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%2C%22J4NL8E8U%22%2C%225T5YGD4D%22%5D%2C%22dateModified%22%3A%222024-09-18T12%3A02%3A33Z%22%7D%7D%2C%7B%22key%22%3A%222SW4KAC9%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EX.%20Zhang%2C%20S.%20Mu%2C%20G.%20Chastanet%2C%20N.%20Daro%2C%20T.%20Palamarciuc%2C%20P.%20Rosa%2C%20J.-F.%20Letard%2C%20J.%20Liu%2C%20G.E.%20Sterbinsky%2C%20D.A.%20Arena%2C%20C.%20Etrillard%2C%20B.%20Kundys%2C%20B.%20Doudin%2C%20P.A.%20Dowben%2C%20Complexities%20in%20the%20Molecular%20Spin%20Crossover%20Transition%2C%20Journal%20of%20Physical%20Chemistry%20C%20119%20%282015%29%2016293%26%23x2013%3B16302.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.jpcc.5b02220%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.jpcc.5b02220%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Complexities%20in%20the%20Molecular%20Spin%20Crossover%20Transition%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xin%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sai%22%2C%22lastName%22%3A%22Mu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Chastanet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathalie%22%2C%22lastName%22%3A%22Daro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tatiana%22%2C%22lastName%22%3A%22Palamarciuc%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Rosa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Francois%22%2C%22lastName%22%3A%22Letard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22George%20E.%22%2C%22lastName%22%3A%22Sterbinsky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dario%20A.%22%2C%22lastName%22%3A%22Arena%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Celine%22%2C%22lastName%22%3A%22Etrillard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bohdan%22%2C%22lastName%22%3A%22Kundys%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernard%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20A.%22%2C%22lastName%22%3A%22Dowben%22%7D%5D%2C%22abstractNote%22%3A%22Variable-temperature%20studies%20of%20the%20electronic%20structures%20of%20four%20different%20Fe%28II%29%20spin%20crossover%20molecules%2C%20%5BFe%28H2B%28pz%29%282%29%29%282%29%28bipy%29%5D%20%28pz%20%3D%20pyrazol-1-yl%2C%20bipy%20%3D%202%2C2%27-bipyridine%29%2C%20%5BFe%28H2B%28pz%29%282%29%29%282%29%28phen%29%5D%2C%20%5BFe%28phen%29%282%29%28NCS%29%282%29%5D%20%28phen%20%3D%209%2C10-phenantroline%29%2C%20and%20%5BFe%28PM-AzA%29%282%29%28NCS%29%282%29%5D%20%28PM-AzA%20%3D%204-phenyldiazenyl-N-%28pyridin-2-ylmethylene%29aniline%29%20by%20X-ray%20absorption%20spectroscopy%20%28XAS%29%2C%20combined%20with%20electrical%20properties%20studies%20of%20the%20%5BFe%28PM-AzA%29%282%29%28NCS%29%282%29%5D%20single%20crystal%20are%20presented.%20We%20show%20that%20both%20the%20XAS%20signature%20of%20the%20spin%20state%20of%20powdered%20samples%20and%20the%20dielectric%20permittivity%20of%20the%20%5BFe%28PM-AzA%29%282%29%28NCS%29%282%29%5D%20single%20crystal%20change%20at%20significantly%20lower%20temperatures%20than%20the%20magnetometry%2C%20structure%2C%20and%20resistivity%20indicators%20of%20a%20spin%20crossover%20transition.%20The%20changes%20in%20electronic%20structure%20are%20in%20agreement%20with%20the%20expectations%20from%20density%20functional%20theory%20%28DFT%29%20results%20for%20the%20different%20molecular%20electronic%20structures%20associated%20with%20the%20high-spin%20and%20low-spin%20states.%20These%20findings%20suggest%20that%20the%20electronic%20structure%20phase%20ordering%20process%20does%20not%20simply%20follow%20the%20spin%20transition.%22%2C%22date%22%3A%222015%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.jpcc.5b02220%22%2C%22ISSN%22%3A%221932-7447%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1021%5C%2Facs.jpcc.5b02220%22%2C%22collections%22%3A%5B%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A32%3A46Z%22%7D%7D%5D%7D
[1]
N. Ahmed, R. Deffley, B. Kundys, N.A. Morley, 3D printing of magnetostrictive property in 17/4 ph stainless steel, Journal of Magnetism and Magnetic Materials 585 (2023) 171115. https://doi.org/10.1016/j.jmmm.2023.171115.
[1]
J.-F. Dayen, N. Konstantinov, M. Palluel, N. Daro, B. Kundys, M. Soliman, G. Chastanet, B. Doudin, Room temperature optoelectronic devices operating with spin crossover nanoparticles, Materials Horizons 8 (2021) 2310–2315. https://doi.org/10.1039/d1mh00703c.
[1]
P. Dunne, C. Fowley, G. Hlawacek, J. Kurian, G. Atcheson, S. Colis, N. Teichert, B. Kundys, M. Venkatesan, J. Lindner, A.M. Deac, T.M. Hermans, J.M.D. Coey, B. Doudin, Helium Ion Microscopy for Reduced Spin Orbit Torque Switching Currents, Nano Letters 20 (2020) 7036–7042. https://doi.org/10.1021/acs.nanolett.0c02060.
[1]
M. Feig, M. Bobnar, I. Veremchuk, C. Hennig, U. Burkhardt, R. Starke, B. Kundys, A. Leithe-Jasper, R. Gumeniuk, Two-gap superconductivity in Ag1-xMo6S8 Chevrel phase, Journal of Physics-Condensed Matter 29 (2017) 495603. https://doi.org/10.1088/1361-648X/aa97fd.
[1]
R. Gumeniuk, V. Levytskyi, B. Kundys, A. Leithe-Jasper, Yb3Rh4Sn13: Two-gap superconductor with a complex Fermi surface, Physical Review B 108 (2023) 214515. https://doi.org/10.1103/PhysRevB.108.214515.
[1]
Y. He, Y. Han, P. Stamenov, B. Kundys, J.M.D. Coey, C. Jiang, H. Xu, Investigating non-Joulian magnetostriction, Nature 556 (2018) E5–E7. https://doi.org/10.1038/nature25780.
[1]
V. Iurchuk, B. Doudin, J. Bran, B. Kundys, Electrical writing of magnetic and resistive multistates in CoFe films deposited onto Pb[ZrxTi1-x]O-3, in: Labarta, A (Ed.), 20TH INTERNATIONAL CONFERENCE ON MAGNETISM, ICM 2015, ELSEVIER SCIENCE BV, SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, 2015: pp. 956–966. https://doi.org/10.1016/j.phpro.2015.12.131.
[1]
V. Iurchuk, H. Majjad, F. Chevrier, D. Kundys, B. Leconte, B. Doudin, B. Kundys, Multi-state and non-volatile control of graphene conductivity with surface electric fields, Applied Physics Letters 107 (2015) 182901. https://doi.org/10.1063/1.4934738.
[1]
V. Iurchuk, B. Doudin, B. Kundys, Multistate nonvolatile straintronics controlled by a lateral electric field, Journal of Physics-Condensed Matter 26 (2014) 292202 /p.1–4. https://doi.org/10.1088/0953-8984/26/29/292202.
[1]
V. Iurchuk, D. Schick, J. Bran, D. Colson, A. Forget, D. Halley, A. Koc, M. Reinhardt, C. Kwamen, N.A. Morley, M. Bargheer, M. Viret, R. Gumeniuk, G. Schmerber, B. Doudin, B. Kundys, Optical Writing of Magnetic Properties by Remanent Photostriction, Physical Review Letters 117 (2016) 107403. https://doi.org/10.1103/PhysRevLett.117.107403.
[1]
V. Iurchuk, J. Bran, M. Acosta, B. Kundys, A strain-controlled magnetostrictive pseudo spin valve, Applied Physics Letters 122 (2023) 072404. https://doi.org/10.1063/5.0120426.
[1]
V. Kapustianyk, V. Rudyk, P. Yonak, B. Kundys, Magnetic and dielectric properties of [N(C2H5)(4)](2)CoClBr3 solid solution: A new potential multiferroic, Physica Status Solidi B-Basic Solid State Physics 252 (2015) 1778–1782. https://doi.org/10.1002/pssb.201451712.
[1]
V. Kapustianyk, Yu. Eliyashevskyy, Z. Czapla, V. Rudyk, R. Serkiz, N. Ostapenko, I. Hirnyk, J.-F. Dayen, M. Bobnar, R. Gumeniuk, B. Kundys, Tuning a sign of magnetoelectric coupling in paramagnetic NH2(CH3)(2)Al1-xCrx(SO4)(2) x 6H(2)O crystals by metal ion substitution, Scientific Reports 7 (2017) 14109. https://doi.org/10.1038/s41598-017-14388-8.
[1]
B. Kengni-Zanguim, L. Joly, F. Scheurer, P. Ohresser, J.-F. Dayen, C. Ulhaq-Bouillet, J. Uzan, B. Kundys, H. Majjad, D. Halley, Magnetic phase and magneto-resistive effects in vanadium oxide epitaxial nanoclusters, Applied Physics Letters 116 (2020) 042404. https://doi.org/10.1063/1.5131829.
[1]
N. Konstantinov, A. Tauzin, U.N. Noumbe, D. Dragoe, B. Kundys, H. Majjad, A. Brosseau, M. Lenertz, A. Singh, S. Berciaud, M.-L. Boillot, B. Doudin, T. Mallah, J.-F. Dayen, Electrical read-out of light-induced spin transition in thin film spin crossover/graphene heterostructures, Journal of Materials Chemistry C 9 (2021) 2712–2720. https://doi.org/10.1039/d0tc05202g.
[1]
B. Kundys, Photostrictive materials, Applied Physics Reviews 2 (2015). https://doi.org/10.1063/1.4905505.
[1]
B. Kundys, V. Iurchuk, C. Mény, H. Majjad, B. Doudin, Sub-coercive and multi-level ferroelastic remnant states with resistive readout, Applied Physics Letters 104 (2014) 232905. https://doi.org/10.1063/1.4883375.
[1]
B. Kundys, C. Mény, M.R.J. Gibbs, V. Da Costa, M. Viret, M. Acosta, D. Colson, B. Doudin, Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3, Applied Physics Letters 100 (2012) 262411 /p.1–4. https://doi.org/10.1063/1.4731201.
[1]
B. Kundys, M. Viret, C. Mény, V. Da Costa, D. Colson, B. Doudin, Wavelength dependence of photoinduced deformation in BiFeO3, Physical Review B 85 (2012) 092301 /p.1–4. https://doi.org/10.1103/PhysRevB.85.092301.
[1]
B. Kundys, F. Roulland, C. Lefèvre, C. Mény, A. Thomasson, N. Viart, Room temperature polarization in the ferrimagnetic Ga2-xFexO3 ceramics, Journal of the European Ceramic Society 35 (2015) 2277–2281. https://doi.org/10.1016/j.jeurceramsoc.2015.02.029.
[1]
D. Kundys, A. Cascales, A.S. Makhort, H. Majjad, F. Chevrier, B. Doudin, A. Fedrizzi, B. Kundys, Optically Rewritable Memory in a Graphene-Ferroelectric-Photovoltaic Heterostructure, Physical Review Applied 13 (2020) 064034. https://doi.org/10.1103/PhysRevApplied.13.064034.
[1]
D. Kundys, F. Graffitti, R.A. McCracken, A. Fedrizzi, B. Kundys, Numerical Study of Reconfigurable Mid-IR Single Photon Sources Based on Functional Ferroelectrics, Advanced Quantum Technologies 3 (2020) 1900092. https://doi.org/10.1002/qute.201900092.
[1]
V. Levytskyi, W. Carrillo-Cabrera, L. Akselrud, B. Kundys, A. Leithe-Jasper, R. Gumeniuk, Superconductivity of structurally disordered Y5Ir6Sn18, Dalton Transactions 51 (2022) 10036–10046. https://doi.org/10.1039/d2dt01353c.
[1]
K. Maity, J.-F. Dayen, B. Doudin, R. Gumeniuk, B. Kundys, Single Wavelength Operating Neuromorphic Device Based on a Graphene-Ferroelectric Transistor., ACS Applied Materials & Interfaces 15 (2023) 55948–55956. https://doi.org/10.1021/acsami.3c10010.
[1]
K. Maity, J.-F. Dayen, M. Palluel, N. Daro, G. Chastanet, B. Kundys, B. Doudin, Elucidating the effect of spin crossover materials on graphene sensing devices, Applied Physics Letters 123 (2023) 163503. https://doi.org/10.1063/5.0163784.
[1]
K. Maity, J.-F. Dayen, B. Doudin, R. Gumeniuk, B. Kundys, Graphene Magnetoresistance Control by Photoferroelectric Substrate., ACS Nano 18 (2024) 4726–4732. https://doi.org/10.1021/acsnano.3c07277.
[1]
A.S. Makhort, F. Chevrier, D. Kundys, B. Doudin, B. Kundys, Photovoltaic effect and photopolarization in Pb[(Mg1/3Nb2/3)(0.68)Ti-0.32]O-3 crystal, Physical Review Materials 2 (2018) 012401(R). https://doi.org/10.1103/PhysRevMaterials.2.012401.
[1]
A.S. Makhort, G. Schmerber, B. Kundys, Larger photovoltaic effect and hysteretic photocarrier dynamics in Pb[(Mg1/3Nb2/3)(0.70)Ti-0.30]O-3 crystal, Materials Research Express 6 (2019) 066313. https://doi.org/10.1088/2053-1591/ab0758.
[1]
A. Makhort, R. Gumeniuk, J.-F. Dayen, P. Dunne, U. Burkhardt, M. Viret, B. Doudin, B. Kundys, Photovoltaic-Ferroelectric Materials for the Realization of All-Optical Devices, Advanced Optical Materials 10 (2022) 2102353. https://doi.org/10.1002/adom.202102353.
[1]
A. Quattropani, A.S. Makhort, M.V. Rastei, G. Versini, G. Schmerber, S. Barre, A. Dinia, A. Slaoui, J.-L. Rehspringer, T. Fix, S. Colis, B. Kundys, Tuning photovoltaic response in Bi2FeCrO6 films by ferroelectric poling, Nanoscale 10 (2018) 13761–13766. https://doi.org/10.1039/c8nr03137a.
[1]
S. Semak, V. Kapustianyk, Y. Eliyashevskyy, O. Bovgyra, M. Kovalenko, U. Mostovoi, B. Doudin, B. Kundys, On the photovoltaic effect asymmetry in ferroelectrics., Journal of Physics. Condensed Matter : An Institute of Physics Journal 35 (2023) 094001. https://doi.org/10.1088/1361-648X/aca579.
[1]
M. Soliman, K. Maity, A. Gloppe, A. Mahmoudi, A. Ouerghi, B. Doudin, B. Kundys, J.-F. Dayen, Photoferroelectric All-van-der-Waals Heterostructure for Multimode Neuromorphic Ferroelectric Transistors., ACS Applied Materials & Interfaces 15 (2023) 15732–15744. https://doi.org/10.1021/acsami.3c00092.
[1]
X. Zhang, S. Mu, G. Chastanet, N. Daro, T. Palamarciuc, P. Rosa, J.-F. Letard, J. Liu, G.E. Sterbinsky, D.A. Arena, C. Etrillard, B. Kundys, B. Doudin, P.A. Dowben, Complexities in the Molecular Spin Crossover Transition, Journal of Physical Chemistry C 119 (2015) 16293–16302. https://doi.org/10.1021/acs.jpcc.5b02220.