Modélisation à l’échelle atomique

Atomic-scale modeling in the area of material science is intended to provide a fundamental understanding of the mechanisms underlying structural organization in condensed matter systems, with a particular focus to structural, electronic, dynamical and (whatever applicable) magnetic properties. For a given system, the keyword “atomic’ underscores the possibility of describing the behavior of the atomic degrees of freedom kept together by bonding forces and their evolution. This can take place either in the search of optimal structural arrangements, corresponding to local minima on the potential energy surface, or as a function of temperature on a time-oriented trajectory exploring a meaningful portion of the phase space of a given system. As a revealing example of material science institute at the forefront of international research, the IPCMS of Strasbourg has nurtured and favored the creation and the development of an atomic scale modeling team, currently lead by Carlo Massobrio and Mauro Boero, both research directors of CNRS. This team has established solid links with a number of sub-branches of the material science community (as such nanoscience, nanochemistry, surface science, solid state chemistry, disordered matter, biochemistry) both on the international and national scene and within IPCMS. The activities of the team aim at two main goals. The first is to complement experimental observations requiring accurate information on the structural topology and the related physico-chemical quantities. The second is to achieve a predictive power on the microscopic mechanisms at the origin of macroscopic measurable properties. This can be obtained by explicitly following the mechanisms (diffusion paths, chemical reactions, phase transformation patterns) that characterize a material under the action of external stimuli (such as temperature and pressure to mention the most accessible ones).

The team works within the framework of density functional theory (DFT) by exploiting the idea of first-principles molecular dynamics (FPMD). In short, the method consists in the self-consistent solution of the equations of motions for the atomic degrees of freedom and the associated electronic orbitals, to which a fictitious dynamical character has been assigned. The DFT-FPMD method is widely employed in computational material science and applied by the ASM team of IPCMS-ASM since the arrival of C. Massobrio at the IPCMS institute (1996). Ever since that time, more than 100 papers containing  DFT-FPMD methodological  advances and/or application have been issued by the team, thereby conferring to these research line the role of top priority within the present and future projects of IPCMS.

Membres de l’équipe :

Doctorant, Chimie des Matériaux Inorganiques (DCMI)irene.amiehe@ipcms.unistra.fr
Tél: +33(0)3 88 10 71 43Bureau: 2004
Directeur de Recherche, Chimie des Matériaux Inorganiques (DCMI)Mauro.Boero@ipcms.unistra.fr
Tél: +33(0)3 88 10 71 42Bureau: 2026
Voir la page personnelle
Doctorant, Chimie des Matériaux Inorganiques (DCMI)mohammed.guerboub@ipcms.unistra.fr
Tél: +33(0)3 88 10 71 34Bureau: 2014
Doctorante, Chimie des Matériaux Inorganiques (DCMI)kana.ishisone@ipcms.unistra.fr
Tél: +33(0)3 88 10 70 40Bureau: 2110
Voir la page personnelle
Doctorant, Chimie des Matériaux Inorganiques (DCMI)achille.lambrecht@ipcms.unistra.fr
Tél: /Bureau: 110 (bât.33)
Directeur de Recherche, Chimie des Matériaux Inorganiques (DCMI)Carlo.Massobrio@ipcms.unistra.fr
Tél: +33(0)3 88 10 70 40Bureau: 2110
Doctorant, Chimie des Matériaux Inorganiques (DCMI)icare.morrotwoisard@ipcms.unistra.fr
Tél: /Bureau: 2011
Chargé de Recherche, Chimie des Matériaux Inorganiques (DCMI)Guido.Ori@ipcms.unistra.fr
Tél: +33(0)3 88 10 71 43Bureau: 2004
Voir la page personnelle
Doctorant, Chimie des Matériaux Inorganiques (DCMI)stevedave.wansi@ipcms.unistra.fr
Tél: +33(0)3 88 10 71 24Bureau: 2002

Publications récentes :

[1]
M. Boero, K.M. Bui, K. Shiraishi, K. Ishisone, Y. Kangawa, A. Oshiyama, An atomistic insight into reactions and free-energy profiles of NH3 and Ga on GaN surfaces during the epitaxial growth, Applied Surface Science. 599 (2022) 153935. https://doi.org/10.1016/j.apsusc.2022.153935.
[1]
M. Boero, F. Imoto, A. Oshiyama, Atomistic insight into the initial stage of graphene formation on SiC(0001) surfaces, Physical Review Materials. 6 (2022) 093403. https://doi.org/10.1103/PhysRevMaterials.6.093403.
[1]
D. Gentili, G. Ori, Reversible assembly of nanoparticles: theory, strategies and computational simulations., Nanoscale. Early access (2022) 1–48. https://doi.org/10.1039/d2nr02640f.
[1]
K. Ishisone, G. Ori, M. Boero, Structural, dynamical, and electronic properties of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide., Physical Chemistry Chemical Physics : PCCP. 24 (2022) 9597–9607. https://doi.org/10.1039/d2cp00741j.
[1]
A. Lambrecht, C. Massobrio, M. Boero, G. Ori, E. Martin, Atomic structure of amorphous SiN: Combining Car-Parrinello and Born-Oppenheimer first-principles molecular dynamics, Computational Materials Science. 211 (2022) 111555. https://doi.org/10.1016/j.commatsci.2022.111555.
[1]
E. Martin, G. Ori, T.-Q. Duong, M. Boero, C. Massobrio, Thermal conductivity of amorphous SiO2 by first-principles molecular dynamics, Journal of Non-Crystalline Solids. 581 (2022) 121434. https://doi.org/10.1016/j.jnoncrysol.2022.121434.
[1]
E. Martin, I.B. Amiehe Essomba, K. Ishisone, M. Boero, G. Ori, C. Massobrio, Impact of Dispersion Force Schemes on Liquid Systems: Comparing Efficiency and Drawbacks for Well-Targeted Test Cases, Molecules. 27 (2022). https://doi.org/10.3390/molecules27249034.
[1]
C. Massobrio, The Structure of Amorphous Materials using Molecular Dynamics, IOP Publishing, 2022. https://dx.doi.org/10.1088/978-0-7503-2436-6.
[1]
F. Omeis, Z. Boubegtiten-Fezoua, A.F.S. Seica, R. Bernard, M.H. Iqbal, N. Javahiraly, R.M.A. Vergauwe, H. Majjad, F. Boulmedais, D. Moss, P. Hellwig, Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids, Molecules. 27 (2022) 62. https://doi.org/10.3390/molecules27010062.
[1]
F. Payet, C. Bouillet, F. Leroux, C. Leuvrey, P. Rabu, F. Schosseler, C. Taviot-Guého, G. Rogez, Fast and efficient shear-force assisted production of covalently functionalized oxide nanosheets, Journal of Colloid and Interface Science. 607 (2022) 621–632. https://doi.org/10.1016/j.jcis.2021.08.213.
[1]
J.-D. Peltier, B. Heinrich, B. Donnio, O.A. Ibraikulov, T. Heiser, N. Leclerc, J. Rault-Berthelot, C. Poriel, Dispiroacridine-indacenobisthiophene positional isomers: impact of the bridge on the physicochemical properties, Materials Chemistry Frontiers. 6 (2022) 225–236. https://doi.org/10.1039/d1qm01393a.
[1]
F. Roulland, G. Roseau, A.P. Corredor, L. Wendling, G. Krieger, C. Lefèvre, M. Trassin, G. Pourroy, N. Viart, Promoting the magnetic exchanges in PLD deposited strained films of FeV2O4 thin films, Materials Chemistry and Physics. 276 (2022) 125360. https://doi.org/10.1016/j.matchemphys.2021.125360.
[1]
M. Shoji, N. Watanabe, Y. Hori, K. Furuya, M. Umemura, M. Boero, Y. Shigeta, Comprehensive Search of Stable Isomers of Alanine and Alanine Precursors in Prebiotic Syntheses, Astrobiology. 22 (2022) 1129–1142. https://doi.org/10.1089/ast.2022.0011.
[1]
M. Shoji, T. Murakawa, S. Nakanishi, M. Boero, Y. Shigeta, H. Hayashi, T. Okajima, Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase, Chemical Science. 13 (2022) 10923–10938. https://doi.org/10.1039/d2sc01356h.
[1]
Q. Wang, S. Santos, C.A. Urbina-Blanco, W. Zhou, Y. Yang, M. Marinova, S. Heyte, T.-R. Joelle, O. Ersen, W. Baaziz, O. Safonova V., M. Saeys, V.V. Ordomsky, Ru(III) single site solid micellar catalyst for selective aqueous phase hydrogenation of carbonyl groups in biomass-derived compounds, Applied Catalysis B-Environmental. 300 (2022) 120730. https://doi.org/10.1016/j.apcatb.2021.120730.
[1]
A. Bouzid, T.-L. Pham, Z. Chaker, M. Boero, C. Massobrio, Y.-H. Shin, G. Ori, Quantitative assessment of the structure of Ge20Te73I7 chalcohalide glass by first-principles molecular dynamics, Physical Review B. 103 (2021) 094204. https://doi.org/10.1103/PhysRevB.103.094204.
[1]
T.-Q. Duong, A. Bouzid, C. Massobrio, G. Ori, M. Boero, E. Martin, First-principles thermal transport in amorphous Ge2Sb2Te5 at the nanoscale, RSC Advances. 11 (2021) 10747–10752. https://doi.org/10.1039/d0ra10408f.
[1]
S. Le Roux, G. Ori, S. Bellemin-Laponnaz, M. Boero, Tridentate complexes of group 4 bearing bis-aryloxide N-heterocyclic carbene ligand: Structure, spin density and charge states, Chemical Physics Letters. 781 (2021) 138888. https://doi.org/10.1016/j.cplett.2021.138888.
[1]
K. Mishima, M. Shoji, Y. Umena, M. Boero, Y. Shigeta, Estimation of the relative contributions to the electronic energy transfer rates based on Förster theory: The case of C-phycocyanin chromophores, Biophysics and Physicobiology. 18 (2021) 196–214. https://doi.org/10.2142/biophysico.bppb-v18.021.
[1]
F. Pietrucci, M. Boero, W. Andreoni, How natural materials remove heavy metals from water: mechanistic insights from molecular dynamics simulations, Chemical Science. 12 (2021) 2979–2985. https://doi.org/10.1039/d0sc06204a.
[1]
K.M. Bui, M. Boero, K. Shiraishi, A. Oshiyama, A two-dimensional liquid-like phase on Ga-rich GaN (0001) surfaces evidenced by first principles molecular dynamics, in: Japanese Journal of Applied Physics, 2020: p. SGGK04. https://doi.org/10.7567/1347-4065/ab650b.
[1]
J. Du, J.P. Rino, C. Massobrio, A.N. Cormack, Challenges and opportunities of atomistic simulations for glass and amorphous materials, Journal of Non-Crystalline Solids. 547 (2020) 120270. https://doi.org/10.1016/j.jnoncrysol.2020.120270.
[1]
T.-Q. Duong, C. Massobrio, G. Ori, M. Boero, E. Martin, Thermal resistance of an interfacial molecular layer by first-principles molecular dynamics, Journal of Chemical Physics. 153 (2020) 074704. https://doi.org/10.1063/5.0014232.
[1]
T.-Q. Duong, C. Massobrio, M. Boero, G. Ori, E. Martin, Heat transport in disordered network forming materials: Size effects and existence of propagative modes, Computational Materials Science. 177 (2020) 109607. https://doi.org/10.1016/j.commatsci.2020.109607.
[1]
I.B.A. Essomba, C. Massobrio, M. Boero, G. Ori, Assessing the Versatility of Molecular Modelling as a Strategy for Predicting Gas Adsorption Properties of Chalcogels, in: E. Levchenko, Y. Dappe, G. Ori (Eds.), THEORY AND SIMULATION IN PHYSICS FOR MATERIALS APPLICATIONS: CUTTING-EDGE TECHNIQUES IN THEORETICAL AND COMPUTATIONAL MATERIALS SCIENCE / Edited by E.V. Levchenko..., 2020: pp. 23–37. 10.1007/978-3-030-37790-8_2.
[1]
E.V. Levchenko, Y.J. Dappe, G. Ori, Preface, in: E. Levchenko, Y. Dappe, G. Ori (Eds.), THEORY AND SIMULATION IN PHYSICS FOR MATERIALS APPLICATIONS: CUTTING-EDGE TECHNIQUES IN THEORETICAL AND COMPUTATIONAL MATERIALS SCIENCE / Edited by Y.J. Dappe et G. Ori, 2020: p. V–V. 10.1007/978-3-030-37790-8.
[1]
C. Massobrio, A. Bouzid, M. Boero, G. Ori, E. Martin, S. Le Roux, Chalcogenide glasses for innovation in applied science: fundamental issues and new insights, Journal of Physics D-Applied Physics. 53 (2020) 033002. https://doi.org/10.1088/1361-6463/ab48a4.
[1]
C. Massobrio, M. Boero, S. Le Roux, G. Ori, A. Bouzid, E. Martin, Making Computer Materials Real: The Predictive Power of First-Principles Molecular Dynamics, in: E. Levchenko, Y. Dappe, G. Ori (Eds.), THEORY AND SIMULATION IN PHYSICS FOR MATERIALS APPLICATIONS: CUTTING-EDGE TECHNIQUES IN THEORETICAL AND COMPUTATIONAL MATERIALS SCIENCE / SCIENCE / Edited by E.V. Levchenko..., 2020: pp. 3–21. 10.1007/978-3-030-37790-8_1.
[1]
K. Mishima, M. Shoji, Y. Umena, M. Boero, Y. Shigeta, Role of the Propionic Acid Side-Chain of C-Phycocyanin Chromophores in the Excited States for the Photosynthesis Process, Bulletin of the Chemical Society of Japan. 93 (2020) 1509–1519. https://doi.org/10.1246/bcsj.20200187.
[1]
A. Oshiyama, K.M. Bui, M. Boero, Y. Kangawa, K. Shiraishi, Computics Approach toward Clarification of Atomic Reactions during Epitaxial Growth of GaN, in: 2020 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2020), IEEE, 2020: pp. 11–14.
[1]
M. Shoji, Y. Abe, M. Boero, Y. Shigeta, Y. Nishiya, Reaction mechanism of N-cyclopropylglycine oxidation by monomeric sarcosine oxidase, Physical Chemistry Chemical Physics. 22 (2020) 16552–16561. https://doi.org/10.1039/d0cp01679a.
[1]
M. Shoji, T. Murakawa, M. Boero, Y. Shigeta, H. Hayashi, T. Okajima, Unique protonation states of aspartate and topaquinone in the active site of copper amine oxidase, RSC Advances. 10 (2020) 38631–38639. https://doi.org/10.1039/d0ra06365g.
[1]
P.L. Silvestrelli, E. Martin, M. Boero, A. Bouzid, G. Ori, C. Massobrio, Atomic Structure of Glassy GeTe4 as a Playground to Assess the Performances of Density Functional Schemes Accounting for Dispersion Forces, Journal of Physical Chemistry B. 124 (2020) 11273–11279. https://doi.org/10.1021/acs.jpcb.0c08628.

Molecular structures as building blocks for nanoelectronics

Chemistry-Biology Interface

Structural and magnetic properties of layered organic-inorganic materials

Understanding disordered systems at the atomic scale