\( \displaystyle \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6} \)
\(\underbrace{\overbrace{a+b+c}^6 \cdot \overbrace{d+e+f}^9} _{\text{cela marche}} = 42 \)
\( f(x) = x^2 \qquad f’(x)
= 2x \qquad f’’(x) = 2\\[5pt]
\hat{XY} \quad \widehat{XY}
\quad \bar{x_0} \quad \bar{x}_0\)
\(
\begin{equation*}
\begin{matrix}
1 & 2 \\
3&4 \end{matrix} \qquad \begin{bmatrix}
p_{11} & p_{12} & \ldots
& p_{1n} \\
p_{21} & p_{22} & \ldots
& p_{2n} \\
\vdots & \vdots & \ddots
& \vdots \\
p_{m1} & p_{m2} & \ldots
& p_{mn}
\end{bmatrix}
\end{equation*}
\)
\( \int_{a}^{b} x^2 \,dx \)
\( \iint_V \mu(u,v) \,du\,dv \)
\( \oint_V f(s) \,ds \)
\(10^{5^{2^{3^{4^{2^{6^{9^{7}}}}}}}} \)
\(i\hbar\frac{\partial}{\partial t}|\Psi(t)=H|\Psi(t)> \)
\(f'(E) =\frac{2}{\pi} \int_{0}^{\infty} \frac{xf^{\prime\prime}(x)}{E^2-x^2} \,dx\)
\(I(\lambda) \propto |F_{hkl}|^2=|\sum_{j} x_i f(\lambda)e^{2i\pi(hx_j+ky_j+lz_j)}|^2 \)
\(f=f_0+f^{\prime}(\lambda)+if^{\prime\prime}(\lambda)\)
\(f_0(Q)=c+\sum_{i=1}^{4}a_i e^{(-b_i Q^2)}\)
Ceci est un essai | Pour réaliser deux colonnes |
first row |
second row |
Player | Gloobles | Za’taak | |
---|---|---|---|
TR-7 | 7 | 4,569 | AAA |
Khiresh Odo | 7 | 7,223 | BND |
• Autre / Réseaux | |
---|---|
FitREXS : simulation et affinement de clichés DANES |