Ultrafast dynamics of nanostructures and nano-objects (NanoFemto)

Our research team is mainly interested in studying wide band-gap semiconductor nanostructures by femtosecond laser spectroscopy. Different aspects of the electron relaxation dynamics are accessible in experiments using ultra-short laser light pulses:

- The electron-spin dynamics may be tested taking advantage of the particular structure of electron states, which posses a well-defined total angular momentum or “pseudo-spin”. The selection rules of the optical transitions allow to inject carriers with a controlled spin into the samples and to follow their relaxation by using polarized light beams. The study of the spin evolution of charged carriers in semiconductors is motivated by the possibility to associate (in the same device) the electron spin for stocking of information and its charge for transportation of this information. The spin evolution of the charged carriers in a semiconductor is not only determined by the life time of a spin state but also by the coherent superposition of the different spin states and the time during which such a superposition may be maintained. We measure [1] the coherence time and the lifetime of spin states of electrons, holes, or of excitons in semiconductor nanostructures, such as quantum wells or quantum points of different compounds (GaAs, CdTe, CuCl, GaN). We develop for these studies experimental techniques of femtosecond spectroscopy as pump-probe and four-wave mixing, which are specific for the determination of the spin evolution.

- The geometry and the reduced dimensionality of the semiconductor nanostructures modify significantly the electron states and the processes, which govern their relaxation dynamics. Our earlier studies have allowed us to evidence the important role that plays the coupling between carriers and phonons in quantum wells containing quantum dots of CdZnTe. Actually, we examine the intra-band relaxation of electrons by optical-phonon emission on an ultra-short time scale (<100fs) .

- Today electronics is almost totally based on Silicon, but its optical properties are quite mediocre. To build silicon nanostructures in form of porous networks or of nanocrystals allows obtaining emission proprieties in the visible, which are particularly interesting for applications in optoelectronics. We are interested in optical amplification processes in silicon nanocrystals and measure in particular their gain. The final aim is to obtain an efficient material for the fabrication of laser sources, integrated into the electronic device .

- Our spectroscopic equipment for low temperature research allows us to characterize the optical properties of various materials that are developed at the IPCMS. In collaboration with the DCMI we are interested in bi-functional lamellar compounds, in which the emission properties of the organic material are associated to the magnetic properties of films of nickel or cobalt. We also study the photoluminescence of nanocrystals of titanium oxide (TiO2) because of their photo-catalytic properties. We have in particular shown that a decrease of the light emission intensity is correlated with temperature and the reactivity of the particles.

Team Members :

Assistant professor, Ultrafast Optics and Nanophotonics (DON)Mathieu.Gallart@ipcms.unistra.fr
Phone: +33(0)3 88 10 71 93Office: 3008
Senior Researcher, Ultrafast Optics and Nanophotonics (DON)Pierre.Gilliot@ipcms.unistra.fr
Phone: +33(0)3 88 10 71 49Office: 3008
PhD student in co-supervision, Ultrafast Optics and Nanophotonics (DON)adrien.girault@ipcms.unistra.fr
Phone: +33(0)3 88 10 71 48Office: 3003
PhD student, Ultrafast Optics and Nanophotonics (DON)maryna.hrytsaienko@ipcms.unistra.fr
Phone: +33(0)3 88 10 71 93Office: 3007
PhD student, Ultrafast Optics and Nanophotonics (DON)daniel.siebadji@ipcms.unistra.fr
Phone: +33(0)3 88 10 71 48Office: 3003
Engineer, Ultrafast Optics and Nanophotonics (DON)Marc.Ziegler@ipcms.unistra.fr
Phone: +33(0)3 88 10 71 93Office: 3007
Insérer ici une photo de l’équiê

Publications :

[1]
K. Zidek, I. Pelant, F. Trojanek, P. Maly, P. Gilliot, B. Hönerlage, J. Oberle, L. Siller, R. Little, B.R. Horrocks, Ultrafast stimulated emission due to quasidirect transitions in silicon nanocrystals, Physical Review B. 84 (2011) 085321 /p. 1–9. https://doi.org/10.1103/PhysRevB.84.085321.
[1]
K. Židek, F. Trojánek, P. Malý, I. Pelant, P. Gilliot, B. Hönerlage, Ultrafast photoluminescence dynamics of blue-emitting silicon nanostructures, in: Physica Status Solidi C: Current Topics in Solid State Physics, 2011: pp. 979–984. https://doi.org/10.1002/pssc.201000394.
[1]
B. Yuma, S. Berciaud, J. Besbas, J. Shaver, S. Santos, S. Ghosh, R.B. Weisman, L. Cognet, M. Gallart, M. Ziegler, B. Hönerlage, B. Lounis, P. Gilliot, Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes, Physical Review B. 87 (2013) 205412. https://doi.org/10.1103/PhysRevB.87.205412.
[1]
K. Trofymchuk, A. Reisch, P. Didier, F. Fras, P. Gilliot, Y. Mely, A.S. Klymchenko, Giant light-harvesting nanoantenna for single-molecule detection in ambient light, Nature Photonics. 11 (2017) 657+. https://doi.org/10.1038/s41566-017-0001-7.
[1]
L. Schlur, S. Bégin-Colin, P. Gilliot, M. Gallart, G. Carre, S. Zafeiratos, N. Keller, V. Keller, P. Andre, J.-M. Greneche, B. Hezard, M.-H. Desmonts, G. Pourroy, Effect of ball-milling and Fe-/Al-doping on the structural aspect and visible light photocatalytic activity of TiO2 towards Escherichia coli bacteria abatement, Materials Science & Engineering C-Materials for Biological Applications. 38 (2014) 11–19. https://doi.org/10.1016/j.msec.2014.01.026.
[1]
F. Schleicher, U. Halisdemir, D. Lacour, M. Gallart, S. Boukari, G. Schmerber, V. Davesne, P. Panissod, D. Halley, H. Majjad, Y. Henry, B. Leconte, A. Boulard, D. Spor, N. Beyer, C. Kieber, E. Sternitzky, O. Crégut, M. Ziegler, F. Montaigne, E. Beaurepaire, P. Gilliot, M. Hehn, M. Bowen, Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO, Nature Communications. 5 (2014) 4547 /p.1–9. https://doi.org/10.1038/ncomms5547.
[1]
F. Schleicher, U. Halisdemir, E. Urbain, D. Lacour, M. Gallart, S. Boukari, F. Montaigne, E. Beaurepaire, P Gilliot, M. Hehn, M. Bowen, MgO magnetic tunnel junctions of enduring F-type upon annealing, Journal of Physics D: Applied Physics. 48 (2015) 435004. https://doi.org/10.1088/0022-3727/48/43/435004.
[1]
S.M. Santos, B. Yuma, S. Berciaud, J. Shaver, M. Gallart, P. Gilliot, L. Cognet, B. Lounis, All-Optical Trion Generation in Single-Walled Carbon Nanotubes, Physical Review Letters. 107 (2011) 187401 /p. 1–5. https://doi.org/10.1103/PhysRevLett.107.187401.
[1]
D. Persuy, M. Ziegler, O. Crégut, K. Kheng, M. Gallart, B. Hönerlage, P. Gilliot, Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes, Physical Review B. 92 (2015) 115312. https://doi.org/10.1103/PhysRevB.92.115312.
[1]
L. Ondic, K. Kusova, M. Ziegler, L. Fekete, V. Gaertnerova, V. Chab, V. Holy, O. Cibulka, K. Herynkova, M. Gallart, P. Gilliot, B. Hönerlage, I. Pelant, A complex study of the fast blue luminescence of oxidized silicon nanocrystals: the role of the core, Nanoscale. 6 (2014) 3837–3845. https://doi.org/10.1039/c3nr06454a.
[1]
L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, I. Pelant, Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction, Applied Physics Letters. 102 (2013) 251111. https://doi.org/10.1063/1.4812477.
[1]
R. Moubah, S. Colis, M. Gallart, G. Schmerber, P. Gilliot, A. Dinia, Thickness-dependent optical band gap in one-dimensional Ca3Co2O6 nanometric films, Journal of Luminescence. 132 (2012) 457–460. https://doi.org/10.1016/j.jlumin.2011.09.032.
[1]
B.M. Monroy, O. Crégut, M. Gallart, B. Hönerlage, P. Gilliot, Optical gain observation on silicon nanocrystals embedded in silicon nitride under femtosecond pumping, Applied Physics Letters. 98 (2011) 261108 /p. 1–3. https://doi.org/10.1063/1.3607276.
[1]
D. Metten, F. Federspiel, M. Romeo, S. Berciaud, Probing built-in strain in freestanding graphene monolayers by Raman spectroscopy, Physica Status Solidi B-Basic Solid State Physics. 250 (2013) 2681–2686. https://doi.org/10.1002/pssb.201300220.
[1]
K. Kusova, L. Ondic, E. Klimesova, K. Herynkova, I. Pelant, S. Danis, J. Valenta, M. Gallart, M. Ziegler, B. Hönerlage, P. Gilliot, Luminescence of free-standing versus matrix-embedded oxide-passivated silicon nanocrystals: The role of matrix-induced strain, Applied Physics Letters. 101 (2012) 143101 /p.1–5. https://doi.org/10.1063/1.4756696.
[1]
M. Hrytsaienko, M. Gallart, M. Ziegler, O. Crégut, S. Tamariz, R. Butte, N. Grandjean, B. Hoenerlage, P. Gilliot, Dark-level trapping, lateral confinement, and built-in electric field contributions to the carrier dynamics in c-plane GaN/AlN quantum dots emitting in the UV range, Journal of Applied Physics. 129 (2021) 054301. https://doi.org/10.1063/5.0038733.
[1]
B. Honerlage, I. Pelant, B. Honerlage, I. Pelant, Symmetry and Symmetry-Breaking in Semiconductors Fine Structure of Exciton States, 2018. 10.1007/978-3-319-94235-3.
[1]
U. Halisdemir, F. Schleicher, D.J. Kim, B. Taudul, D. Lacour, W.S. Choi, M. Gallart, S. Boukari, G. Schmerber, V. Davesne, P. Panissod, D. Halley, H. Majjad, Y. Henry, B. Leconte, A. Boulard, D. Spor, N. Beyer, C. Kieber, E. Sternitzky, O. Crégut, M. Ziegler, F. Montaigne, J. Arabski, E. Beaurepaire, W. Jo, M. Alouani, P. Gilliot, M. Hehn, M. Bowen, Oxygen-vacancy driven tunnelling spintronics across MgO, in: Drouhin, HJ and Wegrowe, JE and Razeghi, M (Ed.), SPINTRONICS IX, SPIE-INT SOC OPTICAL ENGINEERING, 2016. https://doi.org/10.1117/12.2239017.
[1]
M. Gallart, M. Ziegler, O. Crégut, E. Feltin, J.-F. Carlin, R. Butte, N. Grandjean, B. Hönerlage, P. Gilliot, Determining the nature of excitonic dephasing in high-quality GaN/AlGaN quantum wells through time-resolved and spectrally resolved four-wave mixing spectroscopy, Physical Review B. 96 (2017) 041303(R). https://doi.org/10.1103/PhysRevB.96.041303.
[1]
M. Gallart, T. Cottineau, B. Hönerlage, V. Keller, N. Keller, P. Gilliot, Temperature dependent photoluminescence of anatase and rutile TiO2 single crystals: Polaron and self-trapped exciton formation, Journal of Applied Physics. 124 (2018) 133104. https://doi.org/10.1063/1.5043144.
[1]
M. Gallart, M. Ziegler, B. Hönerlage, P. Gilliot, E. Feltin, J.-F. Carlin, R. Butte, N. Grandjean, Phase and spin relaxation dynamics in high-quality single GaN/AlGaN quantum well, in: Bigot, JY and Hubner, W and Rasing, T and Chantrell, R (Ed.), Ultrafast Magnetism I, SPRINGER INT PUBLISHING AG, Strasbourg, France, 2015: pp. 14–15. https://doi.org/10.1007/978-3-319-07743-7_5.
[1]
F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, S. Berciaud, Distance Dependence of the Energy Transfer Rate from a Single Semiconductor Nanostructure to Graphene, Nano Letters. 15 (2015) 1252–1258. https://doi.org/10.1021/nl5044192.
[1]
P. Farger, C. Leuvrey, M. Gallart, P. Gilliot, G. Rogez, J. Rocha, D. Ananias, P. Rabu, E. Delahaye, Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry, Beilstein Journal of Nanotechnology. 9 (2018) 2775–2787. https://doi.org/10.3762/bjnano.9.259.
[1]
P. Farger, C. Leuvrey, M. Gallart, P. Gilliot, G. Rogez, P. Rabu, E. Delahaye, Elaboration of Luminescent and Magnetic Hybrid Networks Based on Lanthanide Ions and Imidazolium Dicarboxylate Salts: Influence of the Synthesis Conditions, Magnetochemistry. 3 (2017) 1. https://doi.org/10.3390/magnetochemistry3010001.
[1]
P. Farger, R. Guillot, F. Leroux, N. Parizel, M. Gallart, P. Gilliot, G. Rogez, E. Delahaye, P. Rabu, Imidazolium Dicarboxylate Based Metal-Organic Frameworks Obtained by Solvo-Ionothermal Reaction, European Journal of Inorganic Chemistry. (2015) 5342–5350. https://doi.org/10.1002/ejic.201500825.
[1]
Q. Evrard, Z. Chaker, M. Roger, C.M. Sevrain, E. Delahaye, M. Gallart, P. Gilliot, C. Leuvrey, J.-M. Rueff, P. Rabu, C. Massobrio, M. Boero, A. Pautrat, P.-A. Jaffrès, G. Ori, G. Rogez, Layered Simple Hydroxides Functionalized by Fluorene-Phosphonic Acids: Synthesis, Interface Theoretical Insights, and Magnetoelectric Effect, Advanced Functional Materials. 27 (2017) 1703576. https://doi.org/10.1002/adfm.201703576.
[1]
N. Benamara, M. Diop, C. Leuvrey, M. Lenertz, P. Gilliot, M. Gallart, H. Bolvin, F. Setifi, G. Rogez, P. Rabu, E. Delahaye, Octahedral Hexachloro Environment of Dy3+ with Slow Magnetic Relaxation and Luminescent Properties, European Journal of Inorganic Chemistry. (2021) 2099–2107. https://doi.org/10.1002/ejic.202100143.
[1]
L. Beaur, T. Bretagnon, T. Guillet, C. Brimont, M. Gallart, B. Gil, P. Gilliot, C. Morhain, Phonon-assisted exciton formation in ZnO/(Zn, Mg)O single quantum wells grown on C-plane oriented substrates, Journal of Luminescence. 136 (2013) 355–357. https://doi.org/10.1016/j.jlumin.2012.11.010.
[1]
M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, P. Bazylewski, G.S. Chang, M. Ziegler, P. Gilliot, A. Slaoui, A. Dinia, Photon management properties of rare-earth (Nd,Yb,Sm)-doped CeO2 films prepared by pulsed laser deposition, Physical Chemistry Chemical Physics. 18 (2016) 2527–2534. https://doi.org/10.1039/C5CP04961J.
[1]
M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, A. Dinia, Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction, Journal of Materials Chemistry C. 3 (2015) 7014–7021. https://doi.org/10.1039/c5tc00075k.
[1]
M. Balestrieri, S. Colis, M. Gallart, G. Ferblantier, D. Muller, P. Gilliot, P. Bazylewski, G.S. Chang, A. Slaoui, A. Dinia, Efficient energy transfer from ZnO to Nd3+ ions in Nd-doped ZnO films deposited by magnetron reactive sputtering, Journal of Materials Chemistry C. 2 (2014) 9182–9188. https://doi.org/10.1039/c4tc00980k.
[1]
M. Balestrieri, M. Gallart, M. Ziegler, P. Bazylewski, G. Ferblantier, G. Schmerber, G.S. Chang, P. Gilliot, D. Muller, A. Slaoui, S. Colis, A. Dinia, Luminescent Properties and Energy Transfer in Pr3+ Doped and Pr3+-Yb3+ Co-doped ZnO Thin Films, Journal of Physical Chemistry C. 118 (2014) 13775–13780. https://doi.org/10.1021/jp502311z.
[1]
B. Azeredo, A. Carton, C. Leuvrey, C. Kiefer, D. Ihawakrim, S. Zafairatos, M. Gallart, P. Gilliot, B.P. Pichon, Synergistic photo optical and magnetic properties of a hybrid nanocomposite consisting of a zinc oxide nanorod array decorated with iron oxide nanoparticles, Journal of Materials Chemistry C. 6 (2018) 10502–10512. https://doi.org/10.1039/c8tc02680g.

Semiconductor quantum dots : relaxation dynamics

Titanium Dioxyde Nanocrystals

Optical pumping and photonic applications of Si-based nanostructures

Spin Dynamics in Semiconductors