Postdoctoral fellow, Inorganic Materials Chemistry (DCMI)
Phone: +33(0)3 88 10 71 27Office: 2006

Research background

2023 – 2024: Postdoc project “The synthesis of the nanopartciles combining different types of metal oxides for the production of hydrogen via the electrocatalysis of water” – IPCMS-DCMI, University of Strasbourg

2019 – 2022: PhD in Chemistry “Spectroelectrochemical study of the cytochrome bd oxidase, bacterial respiratory enzyme, and related systems reactivity with small molecules” – UMR 7140 Chimie de la Matière Complexe, University of Strasbourg

2017: M2 Internship “Cloud point extraction of fludioxonil, fenarimol and metalaxyl by phases of non-ionic surfactant followed by GC detection” – Taras Shevchenko National University of Kyiv, Ukraine

Academic background

2022: PhD in Chemistry – University of Strasbourg

2017: Master’s degree with honours in Chemistry, speciality Analytical Chemistry – Taras Shevchenko National University of Kyiv, Ukraine

2015: Bachelor’s degree with honours in Chemistry – Taras Shevchenko National University of Kyiv, Ukraine

Current researches

Water splitting for hydrogen production promoted by new efficient electrocatalysts based on core-shell nanoparticles combining earth abundant transition metal oxides


[1]    I. Makarchuk et al., ‘Mutating the environment of heme b595 of E. coli cytochrome bd-I oxidase shifts its redox potential by 200 mV without inactivating the enzyme’, Bioelectrochemistry, vol. 151, p. 108379, Jun. 2023, doi: 10.1016/j.bioelechem.2023.108379.

[2]    I. Makarchuk et al., ‘pH-dependent kinetics of NO release from E. coli bd-I and bd-II oxidase reveals involvement of Asp/Glu58B’, Biochimica et Biophysica Acta (BBA) – Bioenergetics, vol. 1864, no. 2, p. 148952, Apr. 2023, doi: 10.1016/j.bbabio.2022.148952.

[3] I. Makarchuk, V. Klovak, V. Levchyk, and V. Doroschuk, ‘Cloud point extraction coupled with ultrasonic-assisted back-extraction for the determination of metalaxyl, fludioxonil and fenarimol in fruits by gas chromatography with flame ionization detection’, Chem. Pap., vol. 76, no. 12, pp. 7575–7584, Dec. 2022, doi: 10.1007/s11696-022-02431-6.

[4]    F. Melin et al., ‘Design of an electrochemical assay for identification of cytochrome bd oxidases inhibitors’, Biochimica et Biophysica Acta (BBA) – Bioenergetics, vol. 1863, p. 148677, Sep. 2022, doi: 10.1016/j.bbabio.2022.148677.

[5]    I. Makarchuk et al., ‘Spectroelectrochemical study of NO binding of cytochrome bd-I and bd-II oxidases from E. coli’, Biochimica et Biophysica Acta (BBA) – Bioenergetics, vol. 1863, p. 148690, Sep. 2022, doi: 10.1016/j.bbabio.2022.148690.

[6]    I. Makarchuk et al., ‘Electrocatalytic and Spectroscopic Studies on Cytochrome bd Oxidase, a Highly Diverse Bacterial Defense Factor’, Biochimica et Biophysica Acta (BBA) – Bioenergetics, vol. 1863, p. 148669, Sep. 2022, doi: 10.1016/j.bbabio.2022.148669.

[7]    J. Kägi, I. Makarchuk, D. Wohlwend, F. Melin, T. Friedrich, and P. Hellwig, ‘E. coli cytochrome bd-I requires Asp58 in the CydB subunit for catalytic activity’, FEBS Letters, vol. 596, no. 18, pp. 2418–2424, 2022, doi: 10.1002/1873-3468.14482.

[8]    I. Makarchuk, A. F. Santos Seica, F. Melin, and P. Hellwig, ‘Probing the reaction of membrane proteins via infrared spectroscopies, plasmonics, and electrochemistry’, Current Opinion in Electrochemistry, vol. 30, p. 100770, Dec. 2021, doi: 10.1016/j.coelec.2021.100770.

[9]    A. Grauel et al., ‘Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D’, Nat Commun, vol. 12, no. 1, Art. no. 1, Nov. 2021, doi: 10.1038/s41467-021-26835-2.

[10]    I. Makarchuk et al., ‘The Inhibition Study of Cytochrome bd Oxidase Using the Enzyme-Based Electrochemical Sensor’, Chemistry Proceedings, vol. 5, no. 1, Art. no. 1, 2021, doi: 10.3390/CSAC2021-10555.

[11]  A. Nikolaev et al., ‘Stabilization of the Highly Hydrophobic Membrane Protein, Cytochrome bd Oxidase, on Metallic Surfaces for Direct Electrochemical Studies’, Molecules, vol. 25, no. 14, Art. no. 14, Jan. 2020, doi: 10.3390/molecules25143240.