Matthieu BAILLEUL
Senior Researcher, Magnetic Objects on the NanoScale (DMONS)Matthieu.Bailleul@ipcms.unistra.frPhone: +33(0)3 88 10 70 08Office: 0009
Research background
2003- CNRS Researcher, Institut de Physique et Chimie des Matériaux de Strasbourg
2002-2003 Post-Doc, University of Regensburg (Germany)
Academic background
2011 Habilitation à diriger des recherches
1999-2002 PhD, Ecole Polytechnique/ SPEC – CEA Saclay
Current researches
Magnonics of inhomogeneous textures
Spin-wave Doppler shift
THz magnetic spectroscopy
Broadband electron spin resonance
Experimental techniques
Nanofabrication
Nanomagnetism
Microwave spectroscopy
Publications
1839302
bailleul
surface-science-reports
50
creator
desc
year
6491
https://www.ipcms.fr/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-8b482343cdf0a6d66201ab24c09662f0%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22B5GK5PS6%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Weiss%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EC.%20Weiss%2C%20M.%20Grassi%2C%20Y.%20Roussigne%2C%20A.%20Stashkevich%2C%20T.%20Schefer%2C%20J.%20Robert%2C%20M.%20Bailleul%2C%20M.%20Kostylev%2C%20Excitation%20and%20reception%20of%20magnetostatic%20surface%20spin%20waves%20in%20thin%20conducting%20ferromagnetic%20films%20by%20coplanar%20microwave%20antennas.%20Part%20II%3A%20Experiment%2C%20Journal%20of%20Magnetism%20and%20Magnetic%20Materials%20565%20%282023%29%20170002.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2022.170002%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2022.170002%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Excitation%20and%20reception%20of%20magnetostatic%20surface%20spin%20waves%20in%20thin%20conducting%20ferromagnetic%20films%20by%20coplanar%20microwave%20antennas.%20Part%20II%3A%20Experiment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Weiss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matias%22%2C%22lastName%22%3A%22Grassi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Roussigne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Stashkevich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Schefer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jerome%22%2C%22lastName%22%3A%22Robert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikhail%22%2C%22lastName%22%3A%22Kostylev%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20propagating%20spin-wave%20spectroscopy%20measurements%20carried%20out%20on%20coplanar%20nano-antenna%20devices%20made%20from%20a%20Si%5C%2FSiO2%5C%2FRu%285%20nm%29%5C%2FCo%2820%29%5C%2FPt%285%20nm%29%20film.%20The%20measurements%20were%20analyzed%20in%20detail%20by%20employing%20newly%20developed%20theoretical%20modeling%20and%20de-embedding%20procedures.%20The%20magnetic%20parameters%20of%20the%20film%20were%20determined%20by%20complementary%20Brillouin%20light%20scattering%20and%20ferromagnetic%20resonance%20measurements.%20The%20propagating%20spin%20wave%20signals%20could%20be%20accounted%20for%20quantitatively%20for%20the%20range%20of%20externally%20applied%20magnetic%20fields%20investigated%20in%20this%20study%3A%20130-1500%20Oe.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.jmmm.2022.170002%22%2C%22ISSN%22%3A%220304-8853%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1016%5C%2Fj.jmmm.2022.170002%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222023-05-31T13%3A25%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22IPC6LFQR%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vlaminck%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Vlaminck%2C%20L.%20Temdie%2C%20V.%20Castel%2C%20M.B.%20Jungfleisch%2C%20D.%20Stoeffler%2C%20Y.%20Henry%2C%20M.%20Bailleul%2C%20Spin%20wave%20diffraction%20model%20for%20perpendicularly%20magnetized%20films%2C%20Journal%20of%20Applied%20Physics%20133%20%282023%29%20053903.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0128666%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0128666%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spin%20wave%20diffraction%20model%20for%20perpendicularly%20magnetized%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Vlaminck%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Temdie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Castel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20B.%22%2C%22lastName%22%3A%22Jungfleisch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stoeffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20a%20near-field%20diffraction%20model%20for%20spin%20waves%20in%20perpendicularly%20magnetized%20films%20applicable%20in%20any%20geometries%20of%20excitation%20fields.%20This%20model%20relies%20on%20Kalinikos-Slavin%20formalism%20to%20express%20the%20dynamic%20susceptibility%20tensor%20in%20k-space%20and%20calculate%20the%20diffraction%20patterns%20via%20inverse%202D-Fourier%20transform%20of%20the%20response%20functions.%20We%20show%20an%20excellent%20quantitative%20agreement%20between%20our%20model%20and%20MuMax3%20micro-magnetic%20simulations%20on%20two%20different%20geometries%20of%20antennas.%20Our%20method%20benchmarks%20spin%20wave%20diffraction%20in%20perpendicularly%20magnetized%20films%20and%20is%20readily%20applicable%20for%20future%20designs%20of%20magnon%20beamforming%20and%20interferometric%20devices.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0128666%22%2C%22ISSN%22%3A%220021-8979%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F5.0128666%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%222A2F8AAB%22%5D%2C%22dateModified%22%3A%222023-06-15T14%3A48%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22PV2VEHG9%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Temdie%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.%20Temdie%2C%20V.%20Castel%2C%20V.%20Vlaminck%2C%20M.B.%20Jungfleisch%2C%20R.%20Bernard%2C%20H.%20Majjad%2C%20D.%20Stoeffler%2C%20Y.%20Henry%2C%20M.%20Bailleul%2C%20Probing%20Spin%20Wave%20Diffraction%20Patterns%20of%20Curved%20Antennas%2C%20Physical%20Review%20Applied%2021%20%282024%29%20014032.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.21.014032%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.21.014032%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Probing%20Spin%20Wave%20Diffraction%20Patterns%20of%20Curved%20Antennas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Temdie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Castel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Vlaminck%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20B.%22%2C%22lastName%22%3A%22Jungfleisch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romain%22%2C%22lastName%22%3A%22Bernard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hicham%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stoeffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20the%20dependence%20of%20curvilinear%20-shaped%20coplanar%20waveguides%20on%20the%20near%20-field%20diffraction%20%28NFD%29%20patterns%20of%20spin%20waves%20propagating%20in%20perpendicularly%20magnetized%20thin%20films.%20Implementing%20the%20propagating%20spin%20-wave%20spectroscopy%20techniques%20on%20either%20concentrically%20or%20eccentrically%20shaped%20antennas%2C%20we%20show%20how%20the%20link%20budget%20is%20directly%20affected%20by%20the%20spin%20-wave%20interference%2C%20in%20good%20agreement%20with%20NFD%20simulations.%20This%20work%20demonstrates%20the%20feasibility%20of%20inductively%20probing%20a%20magnon%20interference%20pattern%20with%20a%20resolution%20down%20to%201%20mu%20m2%2C%20and%20provides%20a%20methodology%20for%20shaping%20spin%20-wave%20beams%20from%20an%20antenna%20design.%20This%20methodology%20is%20successfully%20implemented%20in%20the%20case%20study%20of%20a%20spin%20-wave%20Young%27s%20interference%20experiment.%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.21.014032%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevApplied.21.014032%22%2C%22collections%22%3A%5B%22QK933HES%22%2C%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%222A2F8AAB%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222024-06-20T14%3A00%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22S3KQMYKY%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Temdie%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.%20Temdie%2C%20V.%20Castel%2C%20T.%20Reimann%2C%20M.%20Lindner%2C%20C.%20Dubs%2C%20G.%20Pradhan%2C%20J.%20Solano%2C%20R.%20Bernard%2C%20H.%20Majjad%2C%20Y.%20Henry%2C%20M.%20Bailleul%2C%20V.%20Vlaminck%2C%20Chiral%20Excitation%20of%20Exchange%20Spin%20Waves%20Using%20Gold%20Nanowire%20Grating%2C%20Magnetochemistry%209%20%282023%29%20199.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fmagnetochemistry9080199%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fmagnetochemistry9080199%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Chiral%20Excitation%20of%20Exchange%20Spin%20Waves%20Using%20Gold%20Nanowire%20Grating%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Temdie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%22%2C%22lastName%22%3A%22Castel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Reimann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Lindner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%22%2C%22lastName%22%3A%22Dubs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%22%2C%22lastName%22%3A%22Pradhan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%22%2C%22lastName%22%3A%22Solano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%22%2C%22lastName%22%3A%22Bernard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hicham%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Vlaminck%22%7D%5D%2C%22abstractNote%22%3A%22We%20propose%20an%20experimental%20method%20for%20the%20unidirectional%20excitation%20of%20spin%20waves.%20By%20structuring%20Au%20nanowire%20arrays%20within%20a%20coplanar%20waveguide%20onto%20a%20thin%20yttrium%20iron%20garnet%20%28YIG%29%20film%2C%20we%20observe%20a%20chiral%20coupling%20between%20the%20excitation%20field%20geometry%20of%20the%20nanowire%20grating%20and%20several%20well-resolved%20propagating%20magnon%20modes.%20We%20report%20a%20propagating%20spin%20wave%20spectroscopy%20study%20with%20unprecedented%20spectral%20definition%2C%20wavelengths%20down%20to%20130nm%20and%20attenuation%20lengths%20well%20above%20100%20mu%20m%20over%20the%2020GHz%20frequency%20band.%20The%20proposed%20experiment%20paves%20the%20way%20for%20future%20non-reciprocal%20magnonic%20devices.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3390%5C%2Fmagnetochemistry9080199%22%2C%22ISSN%22%3A%222312-7481%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.3390%5C%2Fmagnetochemistry9080199%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222023-11-17T14%3A16%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22CB2MA9B7%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Temdie%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.%20Temdie%2C%20V.%20Castel%2C%20C.%20Dubs%2C%20G.%20Pradhan%2C%20J.%20Solano%2C%20H.%20Majjad%2C%20R.%20Bernard%2C%20Y.%20Henry%2C%20M.%20Bailleul%2C%20V.%20Vlaminck%2C%20High%20wave%20vector%20non-reciprocal%20spin%20wave%20beams%2C%20AIP%20Advances%2013%20%282023%29%20025207.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F9.0000535%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F9.0000535%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22High%20wave%20vector%20non-reciprocal%20spin%20wave%20beams%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Temdie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Castel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Dubs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Pradhan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%22%2C%22lastName%22%3A%22Solano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hicham%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romain%22%2C%22lastName%22%3A%22Bernard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Vlaminck%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20unidirectional%20transmission%20of%20micron-wide%20spin%20waves%20beams%20in%20a%2055%20nm%20thin%20YIG.%20We%20downscaled%20a%20chiral%20coupling%20technique%20implementing%20Ni80Fe20%20nanowires%20arrays%20with%20different%20widths%20and%20lattice%20spacing%20to%20study%20the%20non-reciprocal%20transmission%20of%20exchange%20spin%20waves%20down%20to%20lambda%20asymptotic%20to%2080%20nm.%20A%20full%20spin%20wave%20spectroscopy%20analysis%20of%20these%20high%20wavevector%20coupled-modes%20shows%20some%20difficulties%20to%20characterize%20their%20propagation%20properties%2C%20due%20to%20both%20the%20non-monotonous%20field%20dependence%20of%20the%20coupling%20efficiency%2C%20and%20also%20the%20inhomogeneous%20stray%20field%20from%20the%20nanowires.%20%28c%29%202023%20Author%28s%29.%20All%20article%20content%2C%20except%20where%20otherwise%20noted%2C%20is%20licensed%20under%20a%20Creative%20Commons%20Attribution%20%28CC%20BY%29%20license%20%28http%3A%5C%2F%5C%2Fcreativecommons.org%5C%2Flicenses%5C%2Fby%5C%2F4.0%5C%2F%29.%20https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F9.0000535%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F9.0000535%22%2C%22ISSN%22%3A%222158-3226%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F9.0000535%22%2C%22collections%22%3A%5B%22QK933HES%22%2C%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%22N8397DCZ%22%5D%2C%22dateModified%22%3A%222023-05-31T13%3A25%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22X9YN37DU%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sushruth%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Sushruth%2C%20M.%20Grassi%2C%20K.%20Ait-Oukaci%2C%20D.%20Stoeffler%2C%20Y.%20Henry%2C%20D.%20Lacour%2C%20M.%20Hehn%2C%20U.%20Bhaskar%2C%20M.%20Bailleul%2C%20T.%20Devolder%2C%20J.-P.%20Adam%2C%20Electrical%20spectroscopy%20of%20forward%20volume%20spin%20waves%20in%20perpendicularly%20magnetized%20materials%2C%20Physical%20Review%20Research%202%20%282020%29%20043203.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevResearch.2.043203%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevResearch.2.043203%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electrical%20spectroscopy%20of%20forward%20volume%20spin%20waves%20in%20perpendicularly%20magnetized%20materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Sushruth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Grassi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Ait-Oukaci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stoeffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Lacour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Hehn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22U.%22%2C%22lastName%22%3A%22Bhaskar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Devolder%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-P.%22%2C%22lastName%22%3A%22Adam%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevResearch.2.043203%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevResearch.2.043203%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%222A2F8AAB%22%5D%2C%22dateModified%22%3A%222021-08-17T11%3A50%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22CT67NIJT%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Solano%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EJ.%20Solano%2C%20O.%20Gladii%2C%20P.%20Kuntz%2C%20Y.%20Henry%2C%20D.%20Halley%2C%20M.%20Bailleul%2C%20Spin-wave%20study%20of%20magnetic%20perpendicular%20surface%20anisotropy%20in%20single%20crystalline%20MgO%5C%2FFe%5C%2FMgO%20films%2C%20Physical%20Review%20Materials%206%20%282022%29%20124409.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.6.124409%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.6.124409%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spin-wave%20study%20of%20magnetic%20perpendicular%20surface%20anisotropy%20in%20single%20crystalline%20MgO%5C%2FFe%5C%2FMgO%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%22%2C%22lastName%22%3A%22Solano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Gladii%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Kuntz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Halley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevMaterials.6.124409%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevMaterials.6.124409%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222023-01-05T10%3A20%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22Z8E5KE7Z%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Robert%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EJ.%20Robert%2C%20P.%20Turek%2C%20M.%20Bailleul%2C%20A.K.%20Boudalis%2C%20Broadband%20electron%20paramagnetic%20resonance%20of%20a%20molecular%20spin%20triangle%2C%20Physical%20Chemistry%20Chemical%20Physics%2023%20%282021%29%2020268%26%23x2013%3B20274.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd1cp03295j%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2Fd1cp03295j%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Broadband%20electron%20paramagnetic%20resonance%20of%20a%20molecular%20spin%20triangle%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jerome%22%2C%22lastName%22%3A%22Robert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philippe%22%2C%22lastName%22%3A%22Turek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Athanassios%20K.%22%2C%22lastName%22%3A%22Boudalis%22%7D%5D%2C%22abstractNote%22%3A%22We%20built%20a%20broadband%20Electron%20Paramagnetic%20Resonance%20%28EPR%29%20spectrometer%20capable%20of%20field-%20and%20frequency%20sweep%20experiments%20under%20field-%2C%20microwave%20amplitude-%20and%20microwave%20frequency-modulation%20detection%20modes%20%28HM%2C%20AM%2C%20and%20FM%2C%20respectively%29.%20The%20spectrometer%20is%20based%20on%20a%20coplanar%20waveguide%20%28CPW%29%20architecture%2C%20with%20the%20sample%20being%20deposited%20on%20top%20of%20the%20transmission%20line.%20We%20tested%20the%20functionality%20of%20this%20spectrometer%20by%20measuring%20a%20standard%202%2C2-diphenyl-1-%282%2C4%2C6-trinitrophenyl%29hydrazyl%20%28DPPH%29%20sample%2C%20and%20complex%20%28%28NBu4%29-Bu-n%29%282%29%5BCu-3%28mu%283%29-Cl%29%282%29%28mu-pz%29%283%29Cl-3%5D%20%281%29%2C%20drop-casted%20on%20the%20CPW.%20Complex%201%20had%20been%20previously%20studied%20by%20conventional%20X-band%20EPR%20spectroscopy%20%28Chem.%20-%20Eur.%20J.%2C%202020%2C%2026%2C%2012769-1784%29%2C%20and%20comparison%20with%20the%20past%20studies%20validated%20the%20functionality%20of%20the%20spectrometer%20and%20confirmed%20the%20stability%20of%20the%20sample%20upon%20deposition.%20Moreover%2C%20our%20results%20highlighted%20the%20importance%20of%20surface%20effects%20and%20of%20the%20orientation%20of%20the%20microwave%20magnetic%20component%20B-1%20on%20the%20lineshapes%20of%20the%20recorded%20spectra.%22%2C%22date%22%3A%222021%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1039%5C%2Fd1cp03295j%22%2C%22ISSN%22%3A%221463-9076%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1039%5C%2Fd1cp03295j%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222021-10-15T13%3A05%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22ZZJXRLBS%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pac%5Cu00e9%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Pac%26%23xE9%3B%2C%20O.%20Kovalenko%2C%20J.%20Solano%2C%20M.%20Hehn%2C%20M.%20Bailleul%2C%20M.%20Vomir%2C%20Increasing%20terahertz%20spintronic%20emission%20with%20planar%20antennas%2C%20APL%20Materials%2012%20%282024%29%20051113.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0200413%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0200413%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Increasing%20terahertz%20spintronic%20emission%20with%20planar%20antennas%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthias%22%2C%22lastName%22%3A%22Pac%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oleksandr%22%2C%22lastName%22%3A%22Kovalenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%22%2C%22lastName%22%3A%22Solano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Hehn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mircea%22%2C%22lastName%22%3A%22Vomir%22%7D%5D%2C%22abstractNote%22%3A%22Spintronic%20THz%20emitters%2C%20consisting%20of%20Ta%5C%2FCo%5C%2FPt%20trilayers%20patterned%20into%20lateral-sized%20rectangles%20in%20the%2010%20%5Cu03bcm%20range%2C%20have%20been%20integrated%20in%20planar%20electromagnetic%20antennas%20of%20various%20types%20%28dipole%2C%20bow-tie%2C%20and%20spiral%29.%20The%20antenna%20dimensions%20and%20shapes%20have%20been%20optimized%20with%20the%20help%20of%20electromagnetic%20simulations%20so%20as%20to%20maximize%20antenna%20efficiency%20in%20both%20narrow-band%20and%20broadband%20geometries%20at%5C%2Faround%201%5Cu00a0THz.%20The%20THz%20emission%20has%20been%20studied%20using%20a%20pump%5Cu2013probe%20free%20space%20electro-optic%20sampling%20setup%2C%20both%20for%20single-emitter%20geometry%20and%20for%20arrays%20of%20emitters.%20The%20results%20show%20an%20increase%20in%20the%20detected%20THz%20signal%20for%20all%20antenna%20geometries%2C%20with%20enhancement%20ratios%20in%20the%20range%20of%20three%20to%20fifteen%2C%20depending%20on%20the%20antenna%20type%20and%20frequency%20range%2C%20together%20with%20changes%20in%20the%20emission%20bandwidth%20consistent%20with%20simulated%20characteristics.%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0200413%22%2C%22ISSN%22%3A%222166-532X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0200413%22%2C%22collections%22%3A%5B%22CHW2VGSR%22%2C%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%22JZU5CN8N%22%5D%2C%22dateModified%22%3A%222024-06-20T13%3A52%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22XNT4E52M%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Oukaci%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EK.A.%20Oukaci%2C%20D.%20Stoeffler%2C%20M.%20Hehn%2C%20M.%20Grassi%2C%20B.%20Sarpi%2C%20M.%20Bailleul%2C%20Y.%20Henry%2C%20S.%20Petit%2C%20F.%20Montaigne%2C%20R.%20Belkhou%2C%20D.%20Lacour%2C%20Oscillatory%20buckling%20reversal%20of%20a%20weak%20stripe%20magnetic%20texture%2C%20Materials%20Research%20Letters%2011%20%282023%29%20789%26%23x2013%3B795.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1080%5C%2F21663831.2023.2238010%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1080%5C%2F21663831.2023.2238010%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Oscillatory%20buckling%20reversal%20of%20a%20weak%20stripe%20magnetic%20texture%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20Ait%22%2C%22lastName%22%3A%22Oukaci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stoeffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Hehn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Grassi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Sarpi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Petit%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Montaigne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Belkhou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1080%5C%2F21663831.2023.2238010%22%2C%22ISSN%22%3A%22null%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1080%5C%2F21663831.2023.2238010%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%222A2F8AAB%22%5D%2C%22dateModified%22%3A%222023-08-11T11%3A20%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22JBQB2B88%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Marichez%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Marichez%2C%20A.%20Sato%2C%20P.A.%20Dunne%2C%20J.%20Leira-Iglesias%2C%20G.J.M.%20Formon%2C%20M.K.%20Schicho%2C%20I.%20de%20Feijter%2C%20P.%20H%26%23xE9%3Bbraud%2C%20M.%20Bailleul%2C%20P.%20Besenius%2C%20M.%20Venkatesan%2C%20J.M.D.%20Coey%2C%20E.W.%20Meijer%2C%20T.M.%20Hermans%2C%20Magnetic%20Control%20over%20the%20Fractal%20Dimension%20of%20Supramolecular%20Rod%20Networks%2C%20Journal%20of%20the%20American%20Chemical%20Society%20143%20%282021%29%2011914%26%23x2013%3B11918.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.1c05053%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.1c05053%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetic%20Control%20over%20the%20Fractal%20Dimension%20of%20Supramolecular%20Rod%20Networks%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Marichez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Akihiro%22%2C%22lastName%22%3A%22Sato%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20A.%22%2C%22lastName%22%3A%22Dunne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Leira-Iglesias%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Georges%20J.%20M.%22%2C%22lastName%22%3A%22Formon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michaela%20K.%22%2C%22lastName%22%3A%22Schicho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Isja%22%2C%22lastName%22%3A%22de%20Feijter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascal%22%2C%22lastName%22%3A%22H%5Cu00e9braud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pol%22%2C%22lastName%22%3A%22Besenius%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Munuswamy%22%2C%22lastName%22%3A%22Venkatesan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%20D.%22%2C%22lastName%22%3A%22Coey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%20W.%22%2C%22lastName%22%3A%22Meijer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20M.%22%2C%22lastName%22%3A%22Hermans%22%7D%5D%2C%22abstractNote%22%3A%22Controlling%20supramolecular%20polymerization%20is%20of%20fundamental%20importance%20to%20create%20advanced%20materials%20and%20devices.%20Here%20we%20show%20that%20the%20thermodynamic%20equilibrium%20of%20Gd3%2B-bearing%20supramolecular%20rod%20networks%20is%20shifted%20reversibly%20at%20room%20temperature%20in%20a%20static%20magnetic%20field%20of%20up%20to%202%20T.%20Our%20approach%20opens%20opportunities%20to%20control%20the%20structure%20formation%20of%20other%20supramolecular%20or%20coordination%20polymers%20that%20contain%20paramagnetic%20ions.%22%2C%22date%22%3A%222021%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1021%5C%2Fjacs.1c05053%22%2C%22ISSN%22%3A%220002-7863%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1021%5C%2Fjacs.1c05053%22%2C%22collections%22%3A%5B%22CHW2VGSR%22%2C%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%22TFVWSVG3%22%5D%2C%22dateModified%22%3A%222021-11-17T15%3A03%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22CXV9VNU6%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Loayza%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EN.%20Loayza%2C%20M.B.%20Jungfleisch%2C%20A.%20Hoffmann%2C%20M.%20Bailleul%2C%20V.%20Vlaminck%2C%20Fresnel%20diffraction%20of%20spin%20waves%2C%20Physical%20Review%20B%2098%20%282018%29%20144430.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.144430%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.144430%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Fresnel%20diffraction%20of%20spin%20waves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Loayza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20B.%22%2C%22lastName%22%3A%22Jungfleisch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Hoffmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Vlaminck%22%7D%5D%2C%22abstractNote%22%3A%22The%20propagation%20of%20magnetostatic%20forward%20volume%20waves%20excited%20by%20a%20constricted%20coplanar%20waveguide%20is%20studied%20via%20inductive%20spectroscopy%20techniques.%20A%20series%20of%20devices%20consisting%20of%20pairs%20of%20submicrometer%20size%20antennae%20is%20used%20to%20perform%20a%20discrete%20mapping%20of%20the%20spin%20wave%20amplitude%20in%20the%20plane%20of%20a%2030-nm%20thin%20YIG%20film.%20We%20found%20that%20the%20spin%20wave%20propagation%20remains%20well%20focused%20in%20a%20beam%20shape%20of%20width%20comparable%20to%20the%20constriction%20length%20and%20that%20the%20amplitude%20within%20the%20constriction%20displays%20oscillations%2C%20two%20features%20which%20are%20explained%20in%20terms%20of%20near-field%20Fresnel%20diffraction%20theory.%22%2C%22date%22%3A%222018%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.98.144430%22%2C%22ISSN%22%3A%222469-9950%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.98.144430%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222019-01-15T13%3A39%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22ZXWWBGHX%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Henry%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EY.%20Henry%2C%20D.%20Stoeffler%2C%20J.-%20Kim%20V.%2C%20M.%20Bailleul%2C%20Unidirectional%20spin-wave%20channeling%20along%20magnetic%20domain%20walls%20of%20Bloch%20type%2C%20Physical%20Review%20B%20100%20%282019%29%20024416.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.100.024416%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.100.024416%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Unidirectional%20spin-wave%20channeling%20along%20magnetic%20domain%20walls%20of%20Bloch%20type%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stoeffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J-%2C%20V%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22From%20the%20pioneering%20work%20of%20Winter%20%5BPhys.%20Rev.%20124%2C%20452%20%281961%29%5D%2C%20a%20magnetic%20domain%20wall%20of%20Bloch%20type%20is%20known%20to%20host%20a%20special%20wall-bound%20spin-wave%20mode%2C%20which%20corresponds%20to%20spin%20waves%20being%20channeled%20along%20the%20magnetic%20texture.%20Using%20micromagnetic%20simulations%2C%20we%20investigate%20spin%20waves%20traveling%20inside%20Bloch%20walls%20formed%20in%20thin%20magnetic%20media%20with%20perpendicular-to-plane%20magnetic%20anisotropy%20and%20we%20show%20that%20their%20propagation%20is%20actually%20strongly%20nonreciprocal%2C%20as%20a%20result%20of%20dynamic%20dipolar%20interactions.%20We%20investigate%20spin-wave%20nonreciprocity%20effects%20in%20single%20Bloch%20walls%2C%20which%20allows%20us%20to%20clearly%20pinpoint%20their%20origin%2C%20as%20well%20as%20in%20arrays%20of%20parallel%20walls%20in%20stripe%20domain%20configurations.%20For%20such%20arrays%2C%20a%20complex%20domain-wall-bound%20spin-wave%20band%20structure%20develops%2C%20some%20aspects%20of%20which%20can%20be%20understood%20qualitatively%20from%20the%20single-wall%20picture%20by%20considering%20that%20a%20wall%20array%20consists%20of%20a%20sequence%20of%20up%5C%2Fdown%20and%20down%5C%2Fup%20walls%20with%20opposite%20nonreciprocities.%20Circumstances%20are%20identified%20in%20which%20the%20nonreciprocity%20is%20so%20extreme%20that%20spin-wave%20propagation%20inside%20individual%20walls%20becomes%20unidirectional.%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.100.024416%22%2C%22ISSN%22%3A%222469-9950%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.100.024416%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%222A2F8AAB%22%5D%2C%22dateModified%22%3A%222020-02-03T08%3A27%3A21Z%22%7D%7D%2C%7B%22key%22%3A%229HRTZH68%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haidar%20et%20al.%22%2C%22parsedDate%22%3A%222014%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Haidar%2C%20M.%20Bailleul%2C%20M.%20Kostylev%2C%20Y.%20Lao%2C%20Nonreciprocal%20Oersted%20field%20contribution%20to%20the%20current-induced%20frequency%20shift%20of%20magnetostatic%20surface%20waves%2C%20Physical%20Review%20B%2089%20%282014%29%20094426.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.89.094426%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.89.094426%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Nonreciprocal%20Oersted%20field%20contribution%20to%20the%20current-induced%20frequency%20shift%20of%20magnetostatic%20surface%20waves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammad%22%2C%22lastName%22%3A%22Haidar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikhail%22%2C%22lastName%22%3A%22Kostylev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuyang%22%2C%22lastName%22%3A%22Lao%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222014%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.89.094426%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.89.094426%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A45%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22SPIZDMF9%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haidar%20and%20Bailleul%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Haidar%2C%20M.%20Bailleul%2C%20Spin-polarized%20electron%20scattering%20in%20permalloy%20films%3A%20a%20spin-wave%20study%2C%20in%3A%20Bigot%2C%20JY%20and%20Hubner%2C%20W%20and%20Rasing%2C%20T%20and%20Chantrell%2C%20R%20%28Ed.%29%2C%20Ultrafast%20Magnetism%20I%2C%20SPRINGER%20INT%20PUBLISHING%20AG%2C%20Strasbourg%2C%20France%2C%202015%3A%20pp.%20100%26%23x2013%3B102.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2F978-3-319-07743-7_33%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2F978-3-319-07743-7_33%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22conferencePaper%22%2C%22title%22%3A%22Spin-polarized%20electron%20scattering%20in%20permalloy%20films%3A%20a%20spin-wave%20study%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammad%22%2C%22lastName%22%3A%22Haidar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22name%22%3A%22Bigot%2C%20JY%20and%20Hubner%2C%20W%20and%20Rasing%2C%20T%20and%20Chantrell%2C%20R%22%7D%5D%2C%22abstractNote%22%3A%22The%20current-induced%20spin-wave%20Doppler%20shift%20technique%20was%20used%20to%20measure%20the%20degree%20of%20spin-polarization%20of%20the%20electrical%20current%20in%20permalloy%20films%20of%20thickness%206-20nm.%20We%20find%20that%20the%20spin-polarization%20decreases%20as%20the%20film%20thickness%20decreases.%20This%20is%20interpreted%20within%20the%20two%20current%20model%20of%20spinpolarized%20transport.%22%2C%22date%22%3A%222015%22%2C%22proceedingsTitle%22%3A%22Ultrafast%20Magnetism%20I%22%2C%22conferenceName%22%3A%22Ultrafast%20Magnetism%20Conference%20%28UMC%202013%29%2C%20Strasbourg%2C%2028%20octobre%20-%201er%20novembre%202013%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1007%5C%2F978-3-319-07743-7_33%22%2C%22ISBN%22%3A%22978-3-319-07743-7%20978-3-319-07742-0%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1007%5C%2F978-3-319-07743-7_33%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A51%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22G6DZTEFQ%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haidar%20and%20Bailleul%22%2C%22parsedDate%22%3A%222013%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Haidar%2C%20M.%20Bailleul%2C%20Thickness%20dependence%20of%20degree%20of%20spin%20polarization%20of%20electrical%20current%20in%20permalloy%20thin%20films%2C%20Physical%20Review%20B%2088%20%282013%29%20054417.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.88.054417%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.88.054417%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Thickness%20dependence%20of%20degree%20of%20spin%20polarization%20of%20electrical%20current%20in%20permalloy%20thin%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Haidar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22Spin-polarized%20electrical%20transport%20is%20investigated%20in%20Al2O3%5C%2FNi80Fe20%5C%2FAl2O3%20thin%20films%20for%20permalloy%20thickness%20between%206%20and%2020%20nm.%20The%20degree%20of%20spin%20polarization%20of%20the%20current%20flowing%20in%20the%20plane%20of%20the%20film%20is%20measured%20through%20the%20current-induced%20spin-wave%20Doppler%20shift.%20We%20find%20that%20it%20decreases%20as%20the%20film%20thickness%20decreases%20from%200.63%20at%2020%20nm%20to%200.42%20at%206%20nm.%20This%20decrease%20is%20attributed%20to%20a%20spin%20depolarization%20induced%20by%20the%20film%20surfaces.%20A%20model%20is%20proposed%20which%20takes%20into%20account%20the%20contributions%20of%20the%20different%20sources%20of%20electron%20scattering%20%28alloy%20disorder%2C%20phonons%2C%20thermal%20magnons%2C%20grain%20boundaries%2C%20film%20surfaces%29%20to%20the%20measured%20spin-dependent%20resistivities.%22%2C%22date%22%3A%222013%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.88.054417%22%2C%22ISSN%22%3A%221098-0121%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.88.054417%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A45%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22RMAEAM46%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Grassi%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Grassi%2C%20M.%20Geilen%2C%20K.A.%20Oukaci%2C%20Y.%20Henry%2C%20D.%20Lacour%2C%20D.%20Stoeffler%2C%20M.%20Hehn%2C%20P.%20Pirro%2C%20M.%20Bailleul%2C%20Higgs%20and%20Goldstone%20spin-wave%20modes%20in%20striped%20magnetic%20texture%2C%20Physical%20Review%20B%20105%20%282022%29%20044444.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.105.094444%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.105.094444%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Higgs%20and%20Goldstone%20spin-wave%20modes%20in%20striped%20magnetic%20texture%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matias%22%2C%22lastName%22%3A%22Grassi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Moritz%22%2C%22lastName%22%3A%22Geilen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kosseila%20Ait%22%2C%22lastName%22%3A%22Oukaci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Lacour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stoeffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Hehn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Pirro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22Spontaneous%20symmetry%20breaking%20is%20ubiquitous%20in%20physics.%20Its%20spectroscopic%20signature%20consists%20in%20the%20softening%20of%20a%20specific%20mode%20upon%20approaching%20the%20transition%20from%20the%20high-symmetry%20side%20and%20its%20subsequent%20splitting%20into%20a%20zero-frequency%20Goldstone%20mode%20and%20a%20nonzero-frequency%20Higgs%20mode.%20Although%20they%20determine%20the%20whole%20system%20dynamics%2C%20these%20features%20are%20difficult%20to%20address%20in%20practice%20because%20of%20their%20vanishing%20coupling%20to%20most%20experimental%20probes%20and%5C%2For%20their%20strong%20interaction%20with%20other%20fluctuations.%20In%20this%20paper%2C%20we%20consider%20a%20periodic%20magnetic%20modulation%20occurring%20in%20a%20ferromagnetic%20film%20with%20perpendicular-to-plane%20magnetic%20anisotropy%20and%20observe%20its%20Goldstone%20and%20Higgs%20spin-wave%20modes%20at%20room%20temperature%20using%20microwave%20and%20optical%20techniques.%20This%20simple%20system%20constitutes%20a%20particularly%20convenient%20platform%20for%20further%20exploring%20the%20dynamics%20of%20symmetry%20breaking.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.105.094444%22%2C%22ISSN%22%3A%222469-9950%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.105.094444%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%222A2F8AAB%22%5D%2C%22dateModified%22%3A%222022-06-09T14%3A47%3A07Z%22%7D%7D%2C%7B%22key%22%3A%2263ZEPCBU%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Grassi%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Grassi%2C%20M.%20Geilen%2C%20D.%20Louis%2C%20M.%20Mohseni%2C%20T.%20Braecher%2C%20M.%20Hehn%2C%20D.%20Stoeffler%2C%20M.%20Bailleul%2C%20P.%20Pirro%2C%20Y.%20Henry%2C%20Slow-Wave-Based%20Nanomagnonic%20Diode%2C%20Physical%20Review%20Applied%2014%20%282020%29%20024047.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.14.024047%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.14.024047%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Slow-Wave-Based%20Nanomagnonic%20Diode%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matias%22%2C%22lastName%22%3A%22Grassi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Moritz%22%2C%22lastName%22%3A%22Geilen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Damien%22%2C%22lastName%22%3A%22Louis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Morteza%22%2C%22lastName%22%3A%22Mohseni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Braecher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Hehn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Stoeffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Pirro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%5D%2C%22abstractNote%22%3A%22Spin%20waves%2C%20the%20collective%20excitations%20of%20the%20magnetic%20order%20parameter%2C%20and%20magnons%2C%20the%20associated%20quasiparticles%2C%20are%20envisioned%20as%20possible%20data%20carriers%20in%20future%20wave-based%20computing%20architectures.%20On%20the%20road%20toward%20spin-wave%20computing%2C%20the%20development%20of%20a%20diodelike%20device%20capable%20of%20transmitting%20spin%20waves%20in%20only%20one%20direction%2C%20thus%20allowing%20controlled%20signal%20routing%2C%20is%20an%20essential%20step.%20Here%20we%20report%20on%20the%20design%20and%20experimental%20realization%20of%20a%20microstructured%20magnonic%20diode%20in%20a%20ferromagnetic%20bilayer%20system.%20Effective%20unidirectional%20propagation%20of%20spin%20waves%20is%20achieved%20by%20taking%20advantage%20of%20nonreciprocities%20produced%20by%20dynamic%20dipolar%20interactions%20in%20transversally%20magnetized%20media%2C%20which%20lack%20symmetry%20about%20their%20horizontal%20midplane.%20More%20specifically%2C%20dipolar-induced%20nonreciprocities%20are%20used%20to%20engineer%20the%20spin-wave%20dispersion%20relation%20of%20the%20bilayer%20system%20so%20that%20the%20group%20velocity%20is%20reduced%20to%20very%20low%20values%20for%20one%20direction%20of%20propagation%20and%20not%20for%20the%20other%2C%20thus%20producing%20unidirectional%20slow%20spin%20waves.%20Brillouin%20light%20scattering%20and%20propagating-spin-wave%20spectroscopy%20are%20used%20to%20demonstrate%20the%20diodelike%20behavior%20of%20the%20device%2C%20the%20composition%20of%20which%20is%20first%20optimized%20through%20micromagnetic%20simulations.%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.14.024047%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevApplied.14.024047%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%222A2F8AAB%22%5D%2C%22dateModified%22%3A%222022-02-22T16%3A21%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22K3AZLENK%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gladii%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EO.%20Gladii%2C%20M.%20Collet%2C%20Y.%20Henry%2C%20J.-V.%20Kim%2C%20A.%20Anane%2C%20M.%20Bailleul%2C%20Determining%20Key%20Spin-Orbitronic%20Parameters%20via%20Propagating%20Spin%20Waves%2C%20Physical%20Review%20Applied%2013%20%282020%29%20014016.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.014016%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.014016%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Determining%20Key%20Spin-Orbitronic%20Parameters%20via%20Propagating%20Spin%20Waves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Gladii%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Collet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-V.%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.13.014016%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.13.014016%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222021-10-22T12%3A15%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22QP9TRK57%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gladii%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EO.%20Gladii%2C%20D.%20Halley%2C%20Y.%20Henry%2C%20M.%20Bailleul%2C%20Spin-wave%20propagation%20and%20spin-polarized%20electron%20transport%20in%20single-crystal%20iron%20films%2C%20Physical%20Review%20B%2096%20%282017%29%20174420.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.96.174420%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.96.174420%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spin-wave%20propagation%20and%20spin-polarized%20electron%20transport%20in%20single-crystal%20iron%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Gladii%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Halley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22The%20techniques%20of%20propagating%20spin-wave%20spectroscopy%20and%20current-induced%20spin-wave%20Doppler%20shift%20are%20applied%20to%20a%2020-nm-thick%20Fe%5C%2FMgO%28001%29%20film.%20The%20magnetic%20parameters%20extracted%20from%20the%20position%20of%20the%20spin-wave%20resonance%20peaks%20are%20very%20close%20to%20those%20tabulated%20for%20bulk%20iron.%20From%20the%20zero-current%20propagating%20wave%20forms%2C%20a%20group%20velocity%20of%204%20km%5C%2Fs%20and%20an%20attenuation%20length%20of%20about%206%20mu%20m%20are%20extracted%20for%201.6-mu%20m-wavelength%20spin%20wave%20at%2018%20GHz.%20From%20the%20measured%20current-induced%20spin-wave%20Doppler%20shift%2C%20we%20extract%20a%20surprisingly%20high%20degree%20of%20spin%20polarization%20of%20the%20current%20of%2083%25%2C%20which%20constitutes%20the%20main%20finding%20of%20this%20work.%20This%20set%20of%20results%20makes%20single-crystalline%20iron%20a%20promising%20candidate%20for%20building%20devices%20utilizing%20high-frequency%20spin%20waves%20and%20spin-polarized%20currents.%22%2C%22date%22%3A%222017%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.96.174420%22%2C%22ISSN%22%3A%222469-9950%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.96.174420%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222018-05-30T12%3A04%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22G95VXJ3F%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gladii%20et%20al.%22%2C%22parsedDate%22%3A%222016%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EO.%20Gladii%2C%20M.%20Collet%2C%20K.%20Garcia-Hernandez%2C%20C.%20Cheng%2C%20S.%20Xavier%2C%20P.%20Bortolotti%2C%20V.%20Cros%2C%20Y.%20Henry%2C%20J.-V.%20Kim%2C%20A.%20Anane%2C%20M.%20Bailleul%2C%20Spin%20wave%20amplification%20using%20the%20spin%20Hall%20effect%20in%20permalloy%5C%2Fplatinum%20bilayers%2C%20Applied%20Physics%20Letters%20108%20%282016%29%20202407.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4952447%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4952447%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spin%20wave%20amplification%20using%20the%20spin%20Hall%20effect%20in%20permalloy%5C%2Fplatinum%20bilayers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Gladii%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Collet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Garcia-Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Cheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Xavier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-V.%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222016%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4952447%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4952447%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A54%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22WZ2ZIN2U%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gladii%20et%20al.%22%2C%22parsedDate%22%3A%222016%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EO.%20Gladii%2C%20M.%20Haidar%2C%20Y.%20Henry%2C%20M.%20Kostylev%2C%20M.%20Bailleul%2C%20Frequency%20nonreciprocity%20of%20surface%20spin%20wave%20in%20permalloy%20thin%20films%2C%20Physical%20Review%20B%2093%20%282016%29%20054430.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.93.054430%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.93.054430%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Frequency%20nonreciprocity%20of%20surface%20spin%20wave%20in%20permalloy%20thin%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Gladii%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Haidar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kostylev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222016%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.93.054430%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1103%5C%2FPhysRevB.93.054430%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A45%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22GBVSJ6SH%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22De%20Loubensl%20and%20Bailleul%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EG.%20De%20Loubensl%2C%20M.%20Bailleul%2C%20Microwave%20Nanomagnetism%3A%20Spin%20Torque%20Oscillators%20and%20Magnonics%2C%20in%3A%20C.%20Fermon%2C%20M.%20VanDeVoorde%20%28Eds.%29%2C%20NANOMAGNETISM%3A%20APPLICATIONS%20AND%20PERSPECTIVES%20%5C%2F%20Edited%20by%20M.%20VanDeVoorde%2C%202017%3A%20pp.%20269%26%23x2013%3B296.%20%3Ca%20href%3D%2710.1002%5C%2F9783527698509%27%3E10.1002%5C%2F9783527698509%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22bookSection%22%2C%22title%22%3A%22Microwave%20Nanomagnetism%3A%20Spin%20Torque%20Oscillators%20and%20Magnonics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregoire%22%2C%22lastName%22%3A%22De%20Loubensl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22C%22%2C%22lastName%22%3A%22Fermon%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22VanDeVoorde%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22bookTitle%22%3A%22NANOMAGNETISM%3A%20APPLICATIONS%20AND%20PERSPECTIVES%20%5C%2F%20edited%20by%20M.%20VanDeVoorde%22%2C%22date%22%3A%222017%22%2C%22language%22%3A%22%22%2C%22ISBN%22%3A%22978-3-527-69905-6%22%2C%22url%22%3A%2210.1002%5C%2F9783527698509%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222023-05-31T12%3A47%3A51Z%22%7D%7D%2C%7B%22key%22%3A%22BPIA3S4X%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Collet%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Collet%2C%20O.%20Gladii%2C%20M.%20Evelt%2C%20V.%20Bessonov%2C%20L.%20Soumah%2C%20P.%20Bortolotti%2C%20S.O.%20Demokritov%2C%20Y.%20Henry%2C%20V.%20Cros%2C%20M.%20Bailleul%2C%20V.E.%20Demidov%2C%20A.%20Anane%2C%20Spin-wave%20propagation%20in%20ultra-thin%20YIG%20based%20waveguides%2C%20Applied%20Physics%20Letters%20110%20%282017%29%20092408.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4976708%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4976708%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spin-wave%20propagation%20in%20ultra-thin%20YIG%20based%20waveguides%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Collet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olga%22%2C%22lastName%22%3A%22Gladii%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Evelt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Bessonov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Soumah%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20O.%22%2C%22lastName%22%3A%22Demokritov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%20E.%22%2C%22lastName%22%3A%22Demidov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222017%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4976708%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4976708%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A26%3A17Z%22%7D%7D%2C%7B%22key%22%3A%22QMNNQIGP%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chang%20et%20al.%22%2C%22parsedDate%22%3A%222011%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EC.S.%20Chang%2C%20M.%20Kostylev%2C%20A.O.%20Adeyeye%2C%20M.%20Bailleul%2C%20S.%20Samarin%2C%20Coplanar%20probe%20microwave%20current%20injection%20ferromagnetic%20resonance%20of%20magnetic%20nanostructures%2C%20EPL%2096%20%282011%29%2057007%20%5C%2Fp.%201%26%23x2013%3B6.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1209%5C%2F0295-5075%5C%2F96%5C%2F57007%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1209%5C%2F0295-5075%5C%2F96%5C%2F57007%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Coplanar%20probe%20microwave%20current%20injection%20ferromagnetic%20resonance%20of%20magnetic%20nanostructures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20S.%22%2C%22lastName%22%3A%22Chang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kostylev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20O.%22%2C%22lastName%22%3A%22Adeyeye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Samarin%22%7D%5D%2C%22abstractNote%22%3A%22The%20non-uniform%20standing%20spin-wave%20modes%20in%20thin%20magnetic%20films%20and%20nanostructures%20provide%20important%20information%20about%20their%20magnetic%20properties.%20Very%20often%20they%20are%20lacking%20in%20the%20recorded%20ferromagnetic%20resonance%20spectra%20for%20symmetry%20reasons.%20In%20this%20work%20we%20experimentally%20demonstrate%20that%20by%20direct%20injection%20of%20microwave%20currents%20into%20a%20magnetic%20nanostructure%20using%20a%20sub-millimetre%20sized%20microwave%20coaxial%20to%20coplanar%20adaptor%20one%20can%20efficiently%20excite%20non-uniform%20standing%20spin%20wave%20modes%20with%20odd%20symmetry.%20The%20proposed%20method%20is%20quick%20and%20allows%20easy%20spatial%20mapping%20of%20magnetic%20properties%20with%20the%20resolution%20down%20to%20100%20mu%20m.%20We%20have%20validated%20this%20method%20using%20an%20example%20from%20a%20periodical%20array%20of%20nanostripes.%20Copyright%20%28C%29%20EPLA%2C%202011%22%2C%22date%22%3A%222011%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1209%5C%2F0295-5075%5C%2F96%5C%2F57007%22%2C%22ISSN%22%3A%220295-5075%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1209%5C%2F0295-5075%5C%2F96%5C%2F57007%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A31%3A17Z%22%7D%7D%2C%7B%22key%22%3A%224M9CDHTG%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Camara%20et%20al.%22%2C%22parsedDate%22%3A%222016%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EI.S.%20Camara%2C%20C.%20Achkar%2C%20N.%20Liakakos%2C%20A.%20Pierrot%2C%20V.%20Pierron-Bohnes%2C%20Y.%20Henry%2C%20K.%20Soulantica%2C%20M.%20Respaud%2C%20T.%20Blon%2C%20M.%20Bailleul%2C%20Enhanced%20magnetocrystalline%20anisotropy%20in%20an%20ultra-dense%20array%20of%20air-exposed%20crystalline%20cobalt%20nanowires%2C%20Applied%20Physics%20Letters%20109%20%282016%29%20202406.%20https%3A%5C%2F%5C%2Fdoi.org%5C%2F%3Ca%20href%3D%27http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4967982%27%3Ehttp%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4967982%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhanced%20magnetocrystalline%20anisotropy%20in%20an%20ultra-dense%20array%20of%20air-exposed%20crystalline%20cobalt%20nanowires%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%20S.%22%2C%22lastName%22%3A%22Camara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Achkar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Liakakos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Pierrot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00e9ronique%22%2C%22lastName%22%3A%22Pierron-Bohnes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Soulantica%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Respaud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Blon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222016%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4967982%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4967982%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%2C%22ZN5EITAC%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A26%3A09Z%22%7D%7D%2C%7B%22key%22%3A%22AQJVPW87%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Balaji%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.%20Balaji%2C%20M.%20Kostylev%2C%20M.%20Bailleul%2C%20Scattering%20of%20a%20magnetostatic%20surface%20spin%20wave%20from%20a%20one-dimensional%20step%20potential%20in%20a%20ferromagnetic%20film%2C%20Journal%20of%20Applied%20Physics%20125%20%282019%29%20163903.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5091806%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5091806%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Scattering%20of%20a%20magnetostatic%20surface%20spin%20wave%20from%20a%20one-dimensional%20step%20potential%20in%20a%20ferromagnetic%20film%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arjun%22%2C%22lastName%22%3A%22Balaji%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikhail%22%2C%22lastName%22%3A%22Kostylev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5091806%22%2C%22ISSN%22%3A%220021-8979%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5091806%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222022-02-22T16%3A18%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22KA9P6LAH%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bailleul%20and%20Chauleau%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Bailleul%2C%20J.-Y.%20Chauleau%2C%20Current-Induced%20Spin%20Wave%20Doppler%20Shift%2C%20in%3A%20S.%20Demokritov%20%28Ed.%29%2C%20SPIN%20WAVE%20CONFINEMENT%3A%20Propagating%20Waves%26%23x202F%3B%3B%202ND%20Edition%20%5C%2F%20Edited%20by%20S.O.%20Demokritov%2C%202017%3A%20pp.%20295%26%23x2013%3B328.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22bookSection%22%2C%22title%22%3A%22Current-Induced%20Spin%20Wave%20Doppler%20Shift%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthieu%22%2C%22lastName%22%3A%22Bailleul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Yves%22%2C%22lastName%22%3A%22Chauleau%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22SO%22%2C%22lastName%22%3A%22Demokritov%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22bookTitle%22%3A%22SPIN%20WAVE%20CONFINEMENT%3A%20Propagating%20Waves%20%3B%202ND%20Edition%20%5C%2F%20edited%20by%20S.O.%20Demokritov%22%2C%22date%22%3A%222017%22%2C%22language%22%3A%22%22%2C%22ISBN%22%3A%22978-1-315-11082-0%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222023-05-02T13%3A38%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22BIDB2Q7X%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bailleul%22%2C%22parsedDate%22%3A%222013%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Bailleul%2C%20Shielding%20of%20the%20electromagnetic%20field%20of%20a%20coplanar%20waveguide%20by%20a%20metal%20film%3A%20Implications%20for%20broadband%20ferromagnetic%20resonance%20measurements%2C%20Applied%20Physics%20Letters%20103%20%282013%29%20192405.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4829367%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4829367%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Shielding%20of%20the%20electromagnetic%20field%20of%20a%20coplanar%20waveguide%20by%20a%20metal%20film%3A%20Implications%20for%20broadband%20ferromagnetic%20resonance%20measurements%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bailleul%22%7D%5D%2C%22abstractNote%22%3A%22We%20show%20that%20the%20propagation%20of%20microwave%20fields%20along%20a%20planar%20transmission%20line%20is%20strongly%20modified%20when%20a%20conducting%20film%20is%20brought%20close%20to%20it.%20The%20effect%20is%20attributed%20to%20the%20shielding%20of%20the%20electrical%20and%5C%2For%20magnetic%20microwave%20fields%20which%20is%20shown%20to%20occur%20over%20a%20wide%20range%20of%20parameters%20%28microwave%20frequency%2C%20film%20square%20resistance%2C%20transverse%20dimensions%20of%20the%20waveguide%29.%20This%20is%20illustrated%20by%20finite-element%20electromagnetic%20simulations%20and%20interpreted%20using%20a%20distributed%20impedance%20model.%20We%20discuss%20the%20implications%20of%20this%20phenomenon%20for%20broadband%20measurements%20of%20ferromagnetic%20resonance%20realized%20by%20placing%20a%20ferromagnetic%20metal%20film%20above%20a%20coplanar%20waveguide.%20%28C%29%202013%20AIP%20Publishing%20LLC.%22%2C%22date%22%3A%222013%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4829367%22%2C%22ISSN%22%3A%220003-6951%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1063%5C%2F1.4829367%22%2C%22collections%22%3A%5B%22UJZN2BUR%22%2C%22UVN4N32C%22%5D%2C%22dateModified%22%3A%222017-04-04T09%3A25%3A50Z%22%7D%7D%5D%7D
[1]
C. Weiss, M. Grassi, Y. Roussigne, A. Stashkevich, T. Schefer, J. Robert, M. Bailleul, M. Kostylev, Excitation and reception of magnetostatic surface spin waves in thin conducting ferromagnetic films by coplanar microwave antennas. Part II: Experiment, Journal of Magnetism and Magnetic Materials 565 (2023) 170002. https://doi.org/10.1016/j.jmmm.2022.170002.
[1]
V. Vlaminck, L. Temdie, V. Castel, M.B. Jungfleisch, D. Stoeffler, Y. Henry, M. Bailleul, Spin wave diffraction model for perpendicularly magnetized films, Journal of Applied Physics 133 (2023) 053903. https://doi.org/10.1063/5.0128666.
[1]
L. Temdie, V. Castel, V. Vlaminck, M.B. Jungfleisch, R. Bernard, H. Majjad, D. Stoeffler, Y. Henry, M. Bailleul, Probing Spin Wave Diffraction Patterns of Curved Antennas, Physical Review Applied 21 (2024) 014032. https://doi.org/10.1103/PhysRevApplied.21.014032.
[1]
L. Temdie, V. Castel, T. Reimann, M. Lindner, C. Dubs, G. Pradhan, J. Solano, R. Bernard, H. Majjad, Y. Henry, M. Bailleul, V. Vlaminck, Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating, Magnetochemistry 9 (2023) 199. https://doi.org/10.3390/magnetochemistry9080199.
[1]
L. Temdie, V. Castel, C. Dubs, G. Pradhan, J. Solano, H. Majjad, R. Bernard, Y. Henry, M. Bailleul, V. Vlaminck, High wave vector non-reciprocal spin wave beams, AIP Advances 13 (2023) 025207. https://doi.org/10.1063/9.0000535.
[1]
M. Sushruth, M. Grassi, K. Ait-Oukaci, D. Stoeffler, Y. Henry, D. Lacour, M. Hehn, U. Bhaskar, M. Bailleul, T. Devolder, J.-P. Adam, Electrical spectroscopy of forward volume spin waves in perpendicularly magnetized materials, Physical Review Research 2 (2020) 043203. https://doi.org/10.1103/PhysRevResearch.2.043203.
[1]
J. Solano, O. Gladii, P. Kuntz, Y. Henry, D. Halley, M. Bailleul, Spin-wave study of magnetic perpendicular surface anisotropy in single crystalline MgO/Fe/MgO films, Physical Review Materials 6 (2022) 124409. https://doi.org/10.1103/PhysRevMaterials.6.124409.
[1]
J. Robert, P. Turek, M. Bailleul, A.K. Boudalis, Broadband electron paramagnetic resonance of a molecular spin triangle, Physical Chemistry Chemical Physics 23 (2021) 20268–20274. https://doi.org/10.1039/d1cp03295j.
[1]
M. Pacé, O. Kovalenko, J. Solano, M. Hehn, M. Bailleul, M. Vomir, Increasing terahertz spintronic emission with planar antennas, APL Materials 12 (2024) 051113. https://doi.org/10.1063/5.0200413.
[1]
K.A. Oukaci, D. Stoeffler, M. Hehn, M. Grassi, B. Sarpi, M. Bailleul, Y. Henry, S. Petit, F. Montaigne, R. Belkhou, D. Lacour, Oscillatory buckling reversal of a weak stripe magnetic texture, Materials Research Letters 11 (2023) 789–795. https://doi.org/10.1080/21663831.2023.2238010.
[1]
V. Marichez, A. Sato, P.A. Dunne, J. Leira-Iglesias, G.J.M. Formon, M.K. Schicho, I. de Feijter, P. Hébraud, M. Bailleul, P. Besenius, M. Venkatesan, J.M.D. Coey, E.W. Meijer, T.M. Hermans, Magnetic Control over the Fractal Dimension of Supramolecular Rod Networks, Journal of the American Chemical Society 143 (2021) 11914–11918. https://doi.org/10.1021/jacs.1c05053.
[1]
N. Loayza, M.B. Jungfleisch, A. Hoffmann, M. Bailleul, V. Vlaminck, Fresnel diffraction of spin waves, Physical Review B 98 (2018) 144430. https://doi.org/10.1103/PhysRevB.98.144430.
[1]
Y. Henry, D. Stoeffler, J.- Kim V., M. Bailleul, Unidirectional spin-wave channeling along magnetic domain walls of Bloch type, Physical Review B 100 (2019) 024416. https://doi.org/10.1103/PhysRevB.100.024416.
[1]
M. Haidar, M. Bailleul, M. Kostylev, Y. Lao, Nonreciprocal Oersted field contribution to the current-induced frequency shift of magnetostatic surface waves, Physical Review B 89 (2014) 094426. https://doi.org/10.1103/PhysRevB.89.094426.
[1]
M. Haidar, M. Bailleul, Spin-polarized electron scattering in permalloy films: a spin-wave study, in: Bigot, JY and Hubner, W and Rasing, T and Chantrell, R (Ed.), Ultrafast Magnetism I, SPRINGER INT PUBLISHING AG, Strasbourg, France, 2015: pp. 100–102. https://doi.org/10.1007/978-3-319-07743-7_33.
[1]
M. Haidar, M. Bailleul, Thickness dependence of degree of spin polarization of electrical current in permalloy thin films, Physical Review B 88 (2013) 054417. https://doi.org/10.1103/PhysRevB.88.054417.
[1]
M. Grassi, M. Geilen, K.A. Oukaci, Y. Henry, D. Lacour, D. Stoeffler, M. Hehn, P. Pirro, M. Bailleul, Higgs and Goldstone spin-wave modes in striped magnetic texture, Physical Review B 105 (2022) 044444. https://doi.org/10.1103/PhysRevB.105.094444.
[1]
M. Grassi, M. Geilen, D. Louis, M. Mohseni, T. Braecher, M. Hehn, D. Stoeffler, M. Bailleul, P. Pirro, Y. Henry, Slow-Wave-Based Nanomagnonic Diode, Physical Review Applied 14 (2020) 024047. https://doi.org/10.1103/PhysRevApplied.14.024047.
[1]
O. Gladii, M. Collet, Y. Henry, J.-V. Kim, A. Anane, M. Bailleul, Determining Key Spin-Orbitronic Parameters via Propagating Spin Waves, Physical Review Applied 13 (2020) 014016. https://doi.org/10.1103/PhysRevApplied.13.014016.
[1]
O. Gladii, D. Halley, Y. Henry, M. Bailleul, Spin-wave propagation and spin-polarized electron transport in single-crystal iron films, Physical Review B 96 (2017) 174420. https://doi.org/10.1103/PhysRevB.96.174420.
[1]
O. Gladii, M. Collet, K. Garcia-Hernandez, C. Cheng, S. Xavier, P. Bortolotti, V. Cros, Y. Henry, J.-V. Kim, A. Anane, M. Bailleul, Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers, Applied Physics Letters 108 (2016) 202407. https://doi.org/10.1063/1.4952447.
[1]
O. Gladii, M. Haidar, Y. Henry, M. Kostylev, M. Bailleul, Frequency nonreciprocity of surface spin wave in permalloy thin films, Physical Review B 93 (2016) 054430. https://doi.org/10.1103/PhysRevB.93.054430.
[1]
G. De Loubensl, M. Bailleul, Microwave Nanomagnetism: Spin Torque Oscillators and Magnonics, in: C. Fermon, M. VanDeVoorde (Eds.), NANOMAGNETISM: APPLICATIONS AND PERSPECTIVES / Edited by M. VanDeVoorde, 2017: pp. 269–296. 10.1002/9783527698509.
[1]
M. Collet, O. Gladii, M. Evelt, V. Bessonov, L. Soumah, P. Bortolotti, S.O. Demokritov, Y. Henry, V. Cros, M. Bailleul, V.E. Demidov, A. Anane, Spin-wave propagation in ultra-thin YIG based waveguides, Applied Physics Letters 110 (2017) 092408. https://doi.org/10.1063/1.4976708.
[1]
C.S. Chang, M. Kostylev, A.O. Adeyeye, M. Bailleul, S. Samarin, Coplanar probe microwave current injection ferromagnetic resonance of magnetic nanostructures, EPL 96 (2011) 57007 /p. 1–6. https://doi.org/10.1209/0295-5075/96/57007.
[1]
I.S. Camara, C. Achkar, N. Liakakos, A. Pierrot, V. Pierron-Bohnes, Y. Henry, K. Soulantica, M. Respaud, T. Blon, M. Bailleul, Enhanced magnetocrystalline anisotropy in an ultra-dense array of air-exposed crystalline cobalt nanowires, Applied Physics Letters 109 (2016) 202406. https://doi.org/http://dx.doi.org/10.1063/1.4967982.
[1]
A. Balaji, M. Kostylev, M. Bailleul, Scattering of a magnetostatic surface spin wave from a one-dimensional step potential in a ferromagnetic film, Journal of Applied Physics 125 (2019) 163903. https://doi.org/10.1063/1.5091806.
[1]
M. Bailleul, J.-Y. Chauleau, Current-Induced Spin Wave Doppler Shift, in: S. Demokritov (Ed.), SPIN WAVE CONFINEMENT: Propagating Waves ; 2ND Edition / Edited by S.O. Demokritov, 2017: pp. 295–328.
[1]
M. Bailleul, Shielding of the electromagnetic field of a coplanar waveguide by a metal film: Implications for broadband ferromagnetic resonance measurements, Applied Physics Letters 103 (2013) 192405. https://doi.org/10.1063/1.4829367.