Deux approches sont actuellement poursuivies dans l’équipe: physique quantique mésoscopique et descriptions ab initio des propriétés électroniques des matériaux. Dans le cas de la physique quantique mésoscopique, l’objectif est de saisir les mécanismes physiques sous-jacents d’un phénomène donné, et de fournir des descriptions qualitatives et quantitatives des données expérimentales. Tout d’abord, un modèle approprié et mathématiquement traitable, contenant les ingrédients essentiels, est développé. Ensuite, le modèle est résolu en utilisant des outils analytiques ou numériques. L’autre axe vise à développer de nouvelles méthodes de calcul donnant une description fiable des résultats expérimentaux pour la structure électronique et le transport dépendant du spin des matériaux à hétérojonction, consacrées aux technologies de l’électronique de spin. Cette étude est effectuée au moyen de la théorie fonctionnelle de densité (DFT) dépendante du spin.
Equipes
Calculs ab initio de structure électronique
Publications récentes :
1839302
2A2F8AAB
2023
items
1
surface-science-reports
author
desc
year
https://www.ipcms.fr/wp-content/plugins/zotpress/
[1]
R. Vollondat, D. Stoeffler, D. Preziosi, S. Roques, A. Slaoui, T. Fix, Tunability of silicon clathrate film properties by controlled guest-occupation of their cages., Journal of Chemical Physics. 158 (2023) 164709.
https://doi.org/10.1063/5.0143828.
[1]
V. Vlaminck, L. Temdie, V. Castel, M.B. Jungfleisch, D. Stoeffler, Y. Henry, M. Bailleul, Spin wave diffraction model for perpendicularly magnetized films, Journal of Applied Physics. 133 (2023) 053903.
https://doi.org/10.1063/5.0128666.
[1]
K.A. Oukaci, D. Stoeffler, M. Hehn, M. Grassi, B. Sarpi, M. Bailleul, Y. Henry, S. Petit, F. Montaigne, R. Belkhou, D. Lacour, Oscillatory buckling reversal of a weak stripe magnetic texture, Materials Research Letters. 11 (2023) 789–795.
https://doi.org/10.1080/21663831.2023.2238010.
1839302
2A2F8AAB
2022
items
1
surface-science-reports
author
desc
year
https://www.ipcms.fr/wp-content/plugins/zotpress/
[1]
V. Tokar I., Exact renormalization group equation for lattice Ginzburg-Landau models adapted to the solution in the local potential approximation, Journal of Statistical Mechanics-Theory and Experiment. 2022 (2022) 123202.
https://doi.org/10.1088/1742-5468/aca0e6.
[1]
R. Pasquier, K. Rassoul, M. Alouani, Inverse spin crossover in fluorinated Fe(1,10-phenanthroline)2(NCS) 2 adsorbed on Cu (001) surface, Computational Condensed Matter. 32 (2022) e00735.
https://doi.org/10.1016/j.cocom.2022.e00735.
[1]
M. Grassi, M. Geilen, K.A. Oukaci, Y. Henry, D. Lacour, D. Stoeffler, M. Hehn, P. Pirro, M. Bailleul, Higgs and Goldstone spin-wave modes in striped magnetic texture, Physical Review B. 105 (2022) 044444.
https://doi.org/10.1103/PhysRevB.105.094444.
[1]
B. Chowrira, L. Kandpal, M. Lamblin, F. Ngassam, C.-A. Kouakou, T. Zafar, D. Mertz, B. Vileno, C. Kieber, G. Versini, B. Gobaut, L. Joly, T. Ferté, E. Monteblanco, A. Bahouka, R. Bernard, S. Mohapatra, H. Prima Garcia, S. Elidrissi, M. Gavara, E. Sternitzky, V. Da Costa, M. Hehn, F. Montaigne, F. Choueikani, P. Ohresser, D. Lacour, W. Weber, S. Boukari, M. Alouani, M. Bowen, Quantum Advantage in a Molecular Spintronic Engine that Harvests Thermal Fluctuation Energy., Advanced Materials. Early access (2022) e2206688–e2206688.
https://doi.org/10.1002/adma.202206688.
[1]
C. Blaas-Anselmi, F. Helluin, R. Jalabert, G. Weick, D. Weinmann, Asymmetric power dissipation in electronic transport through a quantum point contact, SciPost Phys. 12 (2022) 105.
https://doi.org/10.21468/SciPostPhys.12.3.105.
1839302
2A2F8AAB
2021
items
1
surface-science-reports
author
desc
year
https://www.ipcms.fr/wp-content/plugins/zotpress/
[1]
M.G. Viloria, G. Weick, D. Weinmann, R.A. Jalabert, Magnetic response of metallic nanoparticles: Geometric and weakly relativistic effects, Physical Review B. 104 (2021) 245428.
https://doi.org/10.1103/PhysRevB.104.245428.
[1]
V.I. Tokar, Self-consistent renormalization group approach to continuous phase transitions in alloys: application to ordering in beta-brass, Journal of Statistical Mechanics-Theory and Experiment. (2021) 013215.
https://doi.org/10.1088/1742-5468/abd941.
[1]
G.J. Percebois, D. Weinmann, Deep neural networks for inverse problems in mesoscopic physics: Characterization of the disorder configuration from quantum transport properties, Physical Review B. 104 (2021) 075422.
https://doi.org/10.1103/PhysRevB.104.075422.
[1]
K. Katcko, E. Urbain, F. Ngassam, L. Kandpal, B. Chowrira, F. Schleicher, U. Halisdemir, D. Wang, T. Scherer, D. Mertz, B. Leconte, N. Beyer, D. Spor, P. Panissod, A. Boulard, J. Arabski, C. Kieber, E. Sternitzky, V. Costa, M. Hehn, F. Montaigne, A. Bahouka, W. Weber, E. Beaurepaire, C. Kubel, D. Lacour, M. Alouani, S. Boukari, M. Bowen, Encoding Information on the Excited State of a Molecular Spin Chain, Advanced Functional Materials. 31 (2021) 2009467.
https://doi.org/10.1002/adfm.202009467.
[1]
A. Jaafar, I. Rungger, S. Sanvito, M. Alouani, Effect of a ferromagnetic STM cobalt tip on a single Co-phthalocyanine molecule adsorbed on a ferromagnetic substrate, Physics Open. 9 (2021) 100088.
https://doi.org/10.1016/j.physo.2021.100088.
[1]
C. Gold, B.A. Bräm, M.S. Ferguson, T. Krähenmann, A. Hofmann, R. Steinacher, K.R. Fratus, C. Reichl, W. Wegscheider, D. Weinmann, K. Ensslin, T. Ihn, Imaging signatures of the local density of states in an electronic cavity, Physical Review Research. 3 (2021) L032005.
https://doi.org/10.1103/PhysRevResearch.3.L032005.
[1]
K.R. Fratus, C.L. Calonnec, R.A. Jalabert, G. Weick, D. Weinmann, Signatures of folded branches in the scanning gate microscopy of ballistic electronic cavities, SciPost Physics. 10 (2021) 69.
https://doi.org/10.21468/SciPostPhys.10.3.069.
[1]
K. Bjornson, J.M. Wills, M. Alouani, O. Granas, P. Thunstrom, C.S. Ong, O. Eriksson, In Situ Pseudopotentials for Electronic Structure Theory, Journal of Physical Chemistry C. 125 (2021) 15103–15111.
https://doi.org/10.1021/acs.jpcc.1c04791.
[1]
T.F. Allard, G. Weick, Quantum theory of plasmon polaritons in chains of metallic nanoparticles: From near- to far-field coupling regime, Physical Review B. 104 (2021) 125434.
https://doi.org/10.1103/PhysRevB.104.125434.
1839302
2A2F8AAB
2020
items
1
surface-science-reports
author
desc
year
https://www.ipcms.fr/wp-content/plugins/zotpress/
[1]
B. Taudul, M. Bowen, M. Alouani, Impact of single and double oxygen vacancies on electronic transport in Fe/MgO/Fe magnetic tunnel junctions, Journal of Applied Physics. 128 (2020) 143902.
https://doi.org/10.1063/5.0019718.
[1]
M. Sushruth, M. Grassi, K. Ait-Oukaci, D. Stoeffler, Y. Henry, D. Lacour, M. Hehn, U. Bhaskar, M. Bailleul, T. Devolder, J.-P. Adam, Electrical spectroscopy of forward volume spin waves in perpendicularly magnetized materials, Physical Review Research. 2 (2020) 043203.
https://doi.org/10.1103/PhysRevResearch.2.043203.
[1]
K.A. Oukaci, D. Lacour, D. Stoeffler, B. Sarpi, F. Montaigne, R. Belkhou, M. Hehn, Weak Stripe Angle Determination by Quantitative x-ray Magnetic Microscopy, Physical Review Applied. 14 (2020) 024083.
https://doi.org/10.1103/PhysRevApplied.14.024083.
[1]
M. Grassi, M. Geilen, D. Louis, M. Mohseni, T. Braecher, M. Hehn, D. Stoeffler, M. Bailleul, P. Pirro, Y. Henry, Slow-Wave-Based Nanomagnonic Diode, Physical Review Applied. 14 (2020) 024047.
https://doi.org/10.1103/PhysRevApplied.14.024047.
[1]
C.A. Downing, G. Weick, Plasmonic modes in cylindrical nanoparticles and dimers, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences. 476 (2020) 20200530.
https://doi.org/10.1098/rspa.2020.0530.
Effect of diffusion and alloying on the magnetic and transport properties of Fe/V/Fe trilayers
Physique Quantique Mésoscopique
Propriétés Physiques du Désordre et de la Frustration Géométrique
XAS et XMCD aux seuils L23 de Fe et Mo dans Sr2
Spintronique organique
Oxydes pour la spintronique
Interactions d’échange en compétion dans des multicouches magnétiques
Surface-confined Self-Assembly