Paul-Antoine HERVIEUX

Paul-Antoine HERVIEUX

Professeur, Optique Ultra-rapide et Nanophotonique (DON)Paul-Antoine.Hervieux@ipcms.unistra.fr
Tél: +33(0)3 88 10 72 14Bureau: 2407

Parcours de recherche

After training in high energy physics at the University of Grenoble and starting a career mainly focused on the theory of atomic and molecular collisions, I gradually turned to the physics of metallic clusters with activities focused on the description of the charge-exchange and fragmentation processes started during my postdoc in Berlin. Since 2004 and my recruitment as a full professor at the University of Strasbourg, I have been working on modelling the interaction of light with nanostructured matter (metallic and magnetic thin films, clusters and nanoparticles, semiconductor quantum dots,…) and more specifically on the ultrafast dynamics of charges and spins in nanostructures, with major challenges as the understanding and the control of magnetism at extreme spatiotemporal scales or the role played by the environment on the dynamical quantum properties of the systems (e.g. decoherence times).

Parcours universitaire

Professional experience 

Since 2017: Distinguished professor (PRCE2)

Since 2004: Professor of Physics at the Strasbourg University, Institute of Physics and Chemistry of Materials (IPCMS)

1995-2004: Associate Professor of Physics at the Metz University and researcher at the Laboratory of Molecular Physics and Collisions

1993-1994: Hahn-Meitner-Institut in Berlin, Germany, Post-Doctoral position with Pr. D. Gross

1989-1992: Department of Fundamental Research, Atomic Physics laboratory, CEA, Grenoble, PhD student

Education

07/1999: “Ability to Direct Research”, Metz University (1999). Title: “Different aspects of particle – metal cluster interaction: photons, electrons, positrons and ions”

1992: PhD in Atomic Physics, Grenoble University (November 1992). Dissertation title: “Theoretical and experimental studies of the excitation of multiply charged ions by electron impact”

1989: Master in Nuclear and Particle Physics (UJF-Grenoble I)

Professional Responsibilities

2020-, coordinator of the international graduate school QMat (Quantum Science and Nanomaterials) of the Strasbourg University

2020-, member of the administration committee of Presses universitaires de Strasbourg (PUS)

2013-2018, deputy vice-president of research of the Strasbourg University 

2011-2012, deputy dean of the physics department of the Strasbourg University

2006-2011, responsible of the master condensed matter and nanophysics of the Strasbourg University

2011-2015, elected member of the National University Council (section 30)

2008-2012, French delegate to the Management committee of the COST action CM0702

Recherches actuelles

Antimatter Physics aroud GBAR

Probing quantum effects with classical stochastic analogs

Nuclear spin qudits for quantum information processing

Dynamical processes in metallic and magnetic nanostructures

Quantum theory of atomic and molecular collision processes

Statistical fragmentation in atomic clusters

Since 2010, I develop a theoretical activity around the GBAR experiment, the aim of which being to measure the action of gravity on antimatter.

Since 2017, in collaboration with physicists from ISIS (Institut de Science et d’Ingénierie Supramoléculaires, team of Dr. Cyriaque Genet) we explore the possibility to experimentally create classical analogues of open quantum systems. The latter have been developed in the past, based on optical or hydrodynamic experiments. In contrast, we have proposed to use classical stochastic systems, implemented experimentally by means of micron-sized Brownian particles optically trapped by a laser beam. The particles are usually dielectric beads immersed in a fluid (water, air) acting as a thermal bath. The shape and stiffness of the trapping is proportional to the intensity of the laser and can thus be precisely controlled and tailored in real time. The corresponding instantaneous diffusive motion of the bead inside the modulated trap can be recorded with very high position resolution levels.

Since 2019, I am involved in the domain of quantum science and technologies in which I develop a project entitled “Nuclear Spin Qudits for quantum information processing”. Within the framework of the fascinating world of quantum information and the QUSTEC programme, this multidisciplinary project which combined expertise from nuclear, atomic and solid-state physics along in materials chemistry addresses a fundamental issue concerning the possibility to modify and eventually control hyperfine interactions which play a key role in single-molecule magnets (SMM). As an extension of the well-known two-level quantum bits (qubits), multilevel systems, the so-called qudits, where d represents the Hilbert space dimension, have been predicted to reduce the number of iterations in quantum-computation algorithms. This has been tested experimentally in SMM where multilevel are originated from the nuclear spins and the associated hyperfine interactions. Controlling or modifying these interactions may open the way to the manipulation of the multilevel systems’ properties thus leading to improvements or elaboration of new quantum computation algorithms. In close collaboration with experimental chemists and physicists from KIT (Pr. Mario Ruben and Pr. Wolfgang Wernsdorfer) we propose to establish a theoretical framework to answer this issue.

Since 2019, in collaboration with Dr. Bertrand Dupé from the University of Liège and within the framework of an USIAS project entitled “Coupled spin and charge femtosecond dynamics for topological material” we explore the possibility to coherently nucleate and control skyrmions in an ultrathin metal film from a femtosecond pulse in electric field.

Enseignement





LANDAU: Le livre qui a tout changé (ou presque) est à l’ALINEA

Mécanique Analytique (L2)

Mécanique Quantique (L3)

Histoire des Sciences (M1)

Relativité Générale (M1)

Lien vers l’équipe (Q-Dyno)

Publications

[1]
M. Valdes, M. Dufour, R. Lazauskas, P.-A. Hervieux, Ab initio calculations of scattering cross sections of the three-body system ((p)over-bar,e(+),e(-)) between the e(-) + (H)over-bar(n=2) and e(-) + (H)over-bar(n=3) thresholds, Physical Review A 97 (2018) 012709. https://doi.org/10.1103/PhysRevA.97.012709.
[1]
F. Tanjia, J. Hurst, P.-A. Hervieux, G. Manfredi, Plasmonic breathing modes in C-60 molecules: A quantum hydrodynamic approach, Physical Review A 98 (2018) 043430. https://doi.org/10.1103/PhysRevA.98.043430.
[1]
R. Sinha-Roy, J. Hurst, G. Manfredi, P.-A. Hervieux, Driving Orbital Magnetism in Metallic Nanoparticles through Circularly Polarized Light: A Real-Time TDDFT Study, ACS Photonics 7 (2020) 2429–2439. https://doi.org/10.1021/acsphotonics.0c00462.
[1]
S. Schroter, P.A. Hervieux, G. Manfredi, J. Eiglsperger, J. Madronero, Exact treatment of planar two-electron quantum dots: Effects of anharmonicity on the complexity, Physical Review B 87 (2013) 155413. https://doi.org/10.1103/PhysRevB.87.155413.
[1]
Y. Rosales-Cabara, G. Manfredi, G. Schnoering, P.-A. Hervieux, L. Mertz, C. Genet, Optimal protocols and universal time-energy bound in Brownian thermodynamics, Physical Review Research 2 (2020) 012012. https://doi.org/10.1103/PhysRevResearch.2.012012.
[1]
L.B. Pires, R. Goerlich, A.L. da Fonseca, M. Debiossac, P.-A. Hervieux, G. Manfredi, C. Genet, Optimal Time-Entropy Bounds and Speed Limits for Brownian Thermal Shortcuts., Physical Review Letters 131 (2023) 097101. https://doi.org/10.1103/PhysRevLett.131.097101.
[1]
P. Perez, D. Banerjee, F. Biraben, D. Brook-Roberge, M. Charlton, P. Clade, P. Comini, P. Crivelli, O. Dalkarov, P. Debu, A. Douillet, G. Dufour, P. Dupre, S. Eriksson, P. Froelich, P. Grandemange, S. Guellati, R. Guerout, J.M. Heinrich, P.-A. Hervieux, L. Hilico, A. Husson, P. Indelicato, S. Jonsell, J.-P. Karr, K. Khabarova, N. Kolachevsky, N. Kuroda, A. Lambrecht, A.M.M. Leite, L. Liszkay, D. Lunney, N. Madsen, G. Manfredi, B. Mansoulie, Y. Matsuda, A. Mohri, T. Mortensen, Y. Nagashima, V. Nesvizhevsky, F. Nez, C. Regenfus, J.-M. Rey, J.-M. Reymond, S. Reynaud, A. Rubbia, Y. Sacquin, F. Schmidt-Kaler, N. Sillitoe, M. Staszczak, C.I. Szabo-Foster, H. Torii, B. Vallage, M. Valdes, D.P. Van der Werf, A. Voronin, J. Walz, S. Wolf, S. Wronka, Y. Yamazaki, The GBAR antimatter gravity experiment, in: Hyperfine Interactions, 2015: pp. 21–27. https://doi.org/10.1007/s10751-015-1154-8.
[1]
S. Niang, M. Charlton, J.J. Choi, M. Chung, P. Clade, P. Comini, P. Crivelli, P.-P. Crepin, O. Dalkarov, P. Debu, L. Dodd, A. Douillet, P. Froehlich, J. Gafriller, S. Guellati, J. Heinrich, P.-A. Hervieux, L. Hilico, A. Husson, P. Indelicato, G. Janka, S. Jonsell, J.-P. Karr, B.H. Kim, E.-S. Kim, S.K. Kim, A. Kleyheeg, Y. Ko, T. Kosinski, N. Kuroda, B. Latacz, H. Lee, J. Lee, A.M.M. Leite, E. Lim, L. Liszkay, T. Louvradoux, D. Lunney, K. Leveque, G. Manfredi, B. Mansoulie, M. Matusiak, G. Mornacchi, V.V. Nesvizhevsky, F. Nez, R. Nishi, S. Nourbaksh, K.H. Park, N. Paul, P. Perez, B. Radics, C. Regenfus, S. Reynaud, J.Y. Rousse, A. Rubbia, J. Rzadkiewicz, Y. Sacquin, F. Schmidt-Kaler, M. Staszczak, B. Tuchming, B. Vallage, D.P. van der Werf, A. Voronin, A. Welker, S. Wolf, D. Won, S. Wronka, Y. Yamazaki, K.H. Yoo, C.J. Baker, G. Collaboration, Accumulation of Positrons from a LINAC Based Source, in: Acta Physica Polonica A, 2020: pp. 164–166. https://doi.org/10.12693/APhysPolA.137.164.
[1]
L. Mouawad, P.-A. Hervieux, C. Dal Cappello, J. Pansanel, V. Robert, Z. El Bitar, Electron impact ionization of pyrimidine: differential and total cross sections, in: Ancarani, LU and Bordas, C and Lepine, F and Vernhet, D and Bachau, H and Bredy, R and Dulieu, O and Penent, F (Ed.), 31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), IOP PUBLISHING LTD, DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND, 2020: p. 152073. https://doi.org/10.1088/1742-6596/1412/15/152073.
[1]
L. Mouawad, P.-A. Hervieux, C. Dal Cappello, Z. El Bitar, Ionization of phenol by single electron impact: triple differential cross sections, Journal of Physics B-Atomic Molecular and Optical Physics 53 (2020) 025202. https://doi.org/10.1088/1361-6455/ab5be6.
[1]
L. Mouawad, P.-A. Hervieux, C. Dal Cappello, J. Pansanel, V. Robert, Z. El Bitar, A quantum approach to calculate differential and total cross sections for electron impact ionization of molecular targets, in: Ancarani, LU and Bordas, C and Lepine, F and Vernhet, D and Bachau, H and Bredy, R and Dulieu, O and Penent, F (Ed.), 31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), IOP PUBLISHING LTD, DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND, 2020: p. 152074. https://doi.org/10.1088/1742-6596/1412/15/152074.
[1]
L. Mouawad, P.-A. Hervieux, C. Dal Cappello, J. Pansanel, V. Robert, Z. El Bitar, Triple differential cross sections for the ionization of pyrimidine by electron impact, European Physical Journal D 73 (2019) 76. https://doi.org/10.1140/epjd/e2019-90348-1.
[1]
L. Mouawad, P.-A. Hervieux, C. Dal Cappello, J. Pansanel, V. Robert, Z. El Bitar, Triple differential cross sections for the ionization of tetrahydrofuran by electron impact, Journal of Physics B-Atomic Molecular and Optical Physics 51 (2018) 175201. https://doi.org/10.1088/1361-6455/aad6cf.
[1]
L. Mouawad, P.A. Hervieux, C. Dal Cappello, J. Pansanel, A. Osman, M. Khalil, Z. El Bitar, Triple differential cross sections for the ionization of formic acid by electron impact, Journal of Physics B-Atomic Molecular and Optical Physics 50 (2017) 215204. https://doi.org/10.1088/1361-6455/aa8cb9.
[1]
O. Morandi, G. Manfredi, P.-A. Hervieux, Magnetization evolution in semiconductor heterostructures after laser excitation, in: Bigot, JY and Hubner, W and Rasing, T and Chantrell, R (Ed.), Ultrafast Magnetism I, SPRINGER INT PUBLISHING AG, Strasbourg, France, 2015: pp. 11–13. https://doi.org/10.1007/978-3-319-07743-7_4.
[1]
O. Morandi, J. Zamanian, G. Manfredi, P.-A. Hervieux, Study of the X-ray-plasma interaction for high intensity laser pulses, in: Bigot, JY and Hubner, W and Rasing, T and Chantrell, R (Ed.), Ultrafast Magnetism I, SPRINGER INT PUBLISHING AG, Strasbourg, France, 2015: pp. 183–185. https://doi.org/10.1007/978-3-319-07743-7_58.
[1]
O. Morandi, P.-A. Hervieux, G. Manfredi, Bose-Einstein condensation of positronium: modification of the s-wave scattering length below to the critical temperature, Journal of Physics B-Atomic Molecular and Optical Physics 49 (2016) 084002. https://doi.org/10.1088/0953-4075/49/8/084002.
[1]
O. Morandi, P.A. Hervieux, G. Manfredi, Bose-Einstein-condensation dynamics with a quantum-kinetic approach, Physical Review A 88 (2013) 023618. https://doi.org/10.1103/PhysRevA.88.023618.
[1]
O. Morandi, P.-A. Hervieux, G. Manfredi, Study of the quenched lifetime of an interacting positronium gas, Journal of Physics B-Atomic Molecular and Optical Physics 47 (2014). https://doi.org/10.1088/0953-4075/47/15/155202.
[1]
O. Morandi, J. Zamanian, G. Manfredi, P.-A. Hervieux, Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light, Physical Review E 90 (2014) 013103 /p.1–11. https://doi.org/10.1103/PhysRevE.90.013103.
[1]
O. Morandi, P.-A. Hervieux, G. Manfredi, Bose-Einstein condensation of positronium in silica pores, Physical Review A 89 (2014) 033609. https://doi.org/10.1103/PhysRevA.89.033609.
[1]
O. Morandi, P.-A. Hervieux, G. Manfredi, Study of the positronium thermalization in porous materials, European Physical Journal D 68 (2014) 84. https://doi.org/10.1140/epjd/e2014-40719-1.
[1]
O. Morandi, P.-A. Hervieux, Ultrafast dynamics in ferrimagnetic materials with a quantum Monte Carlo atomistic model, Physical Review B 96 (2017) 024441. https://doi.org/10.1103/PhysRevB.96.024441.
[1]
O. Morandi, P.-A. Hervieux, Theoretical study of the thermalization of the positronium interacting with atoms, in: Pujari, PK and Sudarshan, K and Dutta, D (Ed.), Journal of Physics: Conference Series, 2015: p. 012011 /p. 1–6. https://doi.org/10.1088/1742-6596/618/1/012011.
[1]
G. Manfredi, P.-A. Hervieux, N. Crouseilles, Spin effects in ultrafast laser-plasma interactions, European Physical Journal-Special Topics (2022). https://doi.org/10.1140/epjs/s11734-022-00669-5.
[1]
G. Manfredi, P.-A. Hervieux, J. Hurst, Phase-space modeling of solid-state plasmas, Reviews of Modern Plasma Physics 3 (2019) 13. https://doi.org/10.1007/s41614-019-0034-0.
[1]
G. Manfredi, P.-A. Hervieux, F. Tanjia, Quantum hydrodynamics for nanoplasmonics, in: Tsai, DP and Tanaka, T (Ed.), Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI, SPIE-INT SOC OPTICAL ENGINEERING, 2018. https://doi.org/10.1117/12.2320737.
[1]
G. Manfredi, J. Hurst, P.-A. Hervieux, Ultrafast spin current generation in ferromagnetic thin films, in: Drouhin, HJ and Wegrowe, JE and Razeghi, M and Jaffres, H (Ed.), SPINTRONICS XI, SPIE-INT SOC OPTICAL ENGINEERING, 2018. https://doi.org/10.1117/12.2319953.
[1]
G. Manfredi, P.-A. Hervieux, F. Haas, Nonlinear dynamics of electron-positron clusters, New Journal of Physics 14 (2012) 075012. https://doi.org/10.1088/1367-2630/14/7/075012.
[1]
G. Manfredi, P.A. Hervieux, F. Haas, Variational approach to the time-dependent Schrodinger-Newton equations, Classical and Quantum Gravity 30 (2013) 075006. https://doi.org/10.1088/0264-9381/30/7/075006.
[1]
G. Manfredi, P.-A. Hervieux, Adiabatic Cooling of Trapped Non-Neutral Plasmas, Physical Review Letters 109 (2012) 255005 /p.1–5. https://doi.org/10.1103/PhysRevLett.109.255005.
[1]
K. Lévêque-Simon, P.-A. Hervieux, Antihydrogen formation from laser-assisted antiproton-positronium collisions, Physical Review A 107 (2023) 052813. https://doi.org/10.1103/PhysRevA.107.052813.
[1]
K. Leveque-Simon, P.-A. Hervieux, Charge exchange three- and four-body reactions in the presence of a laser field, in: Ancarani, LU and Bordas, C and Lepine, F and Vernhet, D and Bachau, H and Bredy, R and Dulieu, O and Penent, F (Ed.), 31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), IOP PUBLISHING LTD, 2020: p. 222007. https://doi.org/10.1088/1742-6596/1412/22/222007.
[1]
R. Lazauskas, P.-A. Hervieux, M. Dufour, M. Valdes, Resonant antihydrogen formation in antiproton-positronium collisions, Journal of Physics B-Atomic Molecular and Optical Physics 49 (2016) 094002. https://doi.org/10.1088/0953-4075/49/9/094002.
[1]
P. Lamy, C. Dal Cappello, I. Charpentier, M.F. Ruiz-Lopez, P.-A. Hervieux, The second Born approximation for the double ionization of N-2 by electron impact, Journal of Physics B-Atomic Molecular and Optical Physics 49 (2016) 135203. https://doi.org/10.1088/0953-4075/49/13/135203.
[1]
G. Klughertz, G. Manfredi, P.-A. Hervieux, B.P. Pichon, S. Bégin-Colin, Effect of Disorder and Dipolar Interactions in Two-Dimensional Assemblies of Iron-Oxide Magnetic Nanoparticles, Journal of Physical Chemistry C 120 (2016) 7381–7387. https://doi.org/10.1021/acs.jpcc.6b00254.
[1]
G. Klughertz, L. Friedland, P.-A. Hervieux, G. Manfredi, Spin-torque switching and control using chirped AC currents, Journal of Physics D-Applied Physics 50 (2017) 415002. https://doi.org/10.1088/1361-6463/aa860b.
[1]
G. Klughertz, P.-A. Hervieux, G. Manfredi, Magnetization Reversal in a Cobalt Nanoparticle, in: Bigot, JY and Hubner, W and Rasing, T and Chantrell, R (Ed.), Ultrafast Magnetism I, SPRINGER INT PUBLISHING AG, Strasbourg, France, 2015: pp. 62–64. https://doi.org/10.1007/978-3-319-07743-7_21.
[1]
G. Klughertz, L. Friedland, P.-A. Hervieux, G. Manfredi, Autoresonant switching of the magnetization in single-domain nanoparticles: Two-level theory, Physical Review B 91 (2015) 104433. https://doi.org/10.1103/PhysRevB.91.104433.
[1]
G. Klughertz, P.-A. Hervieux, G. Manfredi, Autoresonant control of the magnetization switching in single-domain nanoparticles, Journal of Physics D-Applied Physics 47 (2014) 345004 /p.1–9. https://doi.org/10.1088/0022-3727/47/34/345004.
[1]
B.H. Kim, J.J. Choi, M. Chung, P. Clade, P. Comini, P. Crivelli, P.-P. Crepin, O. Dalkarov, P. Debu, L. Dodd, A. Douillet, P. Froehlich, S. Guellati, J. Heinrich, P.-A. Hervieux, L. Hilico, A. Husson, P. Indelicato, G. Janka, S. Jonsell, J.-P. Karr, E.-S. Kim, S.K. Kim, Y. Ko, T. Kosinski, N. Kuroda, B. Latacz, H. Lee, J. Lee, A.M.M. Leite, E. Lim, L. Liszkay, T. Louvradoux, D. Lunney, K. Leveque, G. Manfredi, B. Mansoulie, M. Matusiak, G. Mornacchi, V.V. Nesvizhevsky, F. Nez, S. Niang, R. Nishi, S. Nourbaksh, P. Lotrus, K.H. Park, N. Paul, P. Perez, B. Radics, C. Regenfus, S. Reynaud, J.-Y. Rousse, A. Rubbia, J. Rzadkiewicz, Y. Sacquin, F. Schmidt-Kaler, M. Staszczak, B. Tuchming, B. Vallage, D.P. van der Werf, A. Voronin, A. Welker, S. Wolf, D. Won, S. Wronka, Y. Yamazaki, K.-H. Yoo, Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment, in: Acta Physica Polonica A, 2020: pp. 122–125. https://doi.org/10.12693/APhysPolA.137.122.
[1]
M.F. Khelladi, A. Mansouri, C. Dal Cappello, I. Charpentier, P.-A. Hervieux, M.F. Ruiz-Lopez, A.C. Roy, Angular distributions in the double ionization of DNA bases by electron impact, Journal of Physics B-Atomic Molecular and Optical Physics 49 (2016) 225201. https://doi.org/10.1088/0953-4075/49/22/225201.
[1]
M. Khalid, O. Morandi, E. Mallet, P.-A. Hervieux, G. Manfredi, A. Moreau, C. Ciracì, Influence of the electron spill-out and nonlocality on gap plasmons in the limit of vanishing gaps, Physical Review B 104 (2021) 155435. https://doi.org/10.1103/PhysRevB.104.155435.
[1]
H. Kesserwan, G. Manfredi, J.-Y. Bigot, P.-A. Hervieux, Magnetization reversal in isolated and interacting single-domain nanoparticles, Physical Review B 84 (2011) 172407 /p. 1–5. https://doi.org/10.1103/PhysRevB.84.172407.
[1]
D. Jankovic, J.-G. Hartmann, M. Ruben, P.-A. Hervieux, Noisy qudit vs multiple qubits: conditions on gate efficiency for enhancing fidelity, NPJ Quantum Information 10 (2024). https://doi.org/10.1038/s41534-024-00829-6.
[1]
P. Indelicato, G. Chardin, P. Grandemange, D. Lunney, V. Manea, A. Badertscher, P. Crivelli, A. Curioni, A. Marchionni, B. Rossi, A. Rubbia, V. Nesvizhevsky, D. Brook-Roberge, P. Comini, P. Debu, P. Dupré, L. Liszkay, B. Mansoulié, P. Pérez, J.-M. Rey, B. Reymond, N. Ruiz, Y. Sacquin, B. Vallage, F. Biraben, P. Cladé, A. Douillet, G. Dufour, S. Guellati, L. Hilico, A. Lambrecht, R. Guérout, J.-P. Karr, F. Nez, S. Reynaud, C.I. Szabo, V.-Q. Tran, J. Trapateau, A. Mohri, Y. Yamazaki, M. Charlton, S. Eriksson, N. Madsen, D.P. Werf, N. Kuroda, H. Torii, Y. Nagashima, F. Schmidt-Kaler, J. Walz, S. Wolf, P.-A. Hervieux, G. Manfredi, A. Voronin, P. Froelich, S. Wronka, M. Staszczak, The Gbar project, or how does antimatter fall?, in: Hyperfine Interactions, 2014: pp. 1–10. https://doi.org/10.1007/s10751-014-1019-6.
[1]
C. Iacovita, J. Hurst, G. Manfredi, P.-A. Hervieux, B. Donnio, J.-L. Gallani, M.V. Rastei, Magnetic force fields of isolated small nanoparticle clusters, Nanoscale 12 (2020) 1842–1851. https://doi.org/10.1039/C9NR08634J.
[1]
A. Husson, B.H. Kim, A. Welker, M. Charlton, J.J. Choi, M. Chung, P. Clade, P. Comini, P.-P. Crepin, P. Crivelli, O. Dalkarov, P. Debu, L. Dodd, A. Douillet, S. Guellati-Khelifa, N. Garroum, P.-A. Hervieux, L. Hilico, P. Indelicato, G. Janka, S. Jonsell, J.-P. Karr, E.-S. Kim, S.K. Kim, Y. Ko, T. Kosinski, N. Kuroda, B. Latacz, H. Lee, J. Lee, A.M.M. Leite, K. Leveque, E. Lim, L. Liszkay, P. Lotrus, D. Lunney, G. Manfredi, B. Mansoulie, M. Matusiak, G. Mornacchi, V.V. Nesvizhevsky, F. Nez, S. Niang, R. Nishi, S. Nourbaksh, K.H. Park, N. Paul, P. Perez, S. Procureur, B. Radics, C. Regenfus, J.-M. Reymond, S. Reynaud, J.-Y. Rousse, O. Rousselle, A. Rubbia, J. Rzadkiewicz, Y. Sacquin, F. Schmidt-Kaler, M. Staszczak, B. Tuchming, B. Vallage, A. Voronin, D.P. van der Werf, S. Wolf, D. Won, S. Wronka, Y. Yamazaki, K.-H. Yoo, A pulsed high-voltage decelerator system to deliver low-energy antiprotons, Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment 1002 (2021) 165245. https://doi.org/10.1016/j.nima.2021.165245.
[1]
J. Hurst, P.M. Oppeneer, G. Manfredi, P.-A. Hervieux, Magnetic moment generation in small gold nanoparticles via the plasmonic inverse Faraday effect, Physical Review B 98 (2018) 134439. https://doi.org/10.1103/PhysRevB.98.134439.
[1]
J. Hurst, P.-A. Hervieux, G. Manfredi, Spin current generation by ultrafast laser pulses in ferromagnetic nickel films, Physical Review B 97 (2018) 014424. https://doi.org/10.1103/PhysRevB.97.014424.