Seminar DCMI and Axis 4 and 5, presented by Paul STEADMAN

Speaker: Paul STEADMAN (Responsable de la ligne I10 au Synchroton Diamond)

Abstract : A study of the electric current induced hysteresis in Pt/CoFeTaB thin films revealed an unexpected behaviour in the hysteresis curves measured using polarised soft X-ray reflectivity [1]. Following a detailed study of the polarisation dependence of the reflected intensity [2] both detailed calculations and experimental data revealed that the switching is Y type (magnetisation switching perpendicular to the current), is very sensitive to external magnetic fields and that, rather bizarrely, only part of the film is switching. In addition the importance of non-linear dependence on the magnetic scattering and its dependence on polarisation and energy have been uncovered experimentally and explained with a very simple model.

  • [1] D. M. Burn, R. Fan, O. Inyang, M. Tokac¸ L. Bouchenoire, A. T. Hindmarch and P. Steadman, P. (2022). Phys. Rev. B, 106, 094429.
  • [2] Raymond Fan, Kiranjot, Razan O. M. Aboljadayel, Kalel Alsaeed, Peter, J. Synchrotron Rad. (2024). 31, 493–507

Seminar Axis 1 and DON, presented by Saad Yalouz

Speaker : Saad Yalouz (Laboratoire de Chimie Quantique de Strasbourg)

Abstract : In the realm of quantum computing, the characterization of many-body systems stands out as one of the most promising applications for emerging quantum platforms. While significant effort has been dedicated to developing near-term quantum algorithms for describing purely fermionic systems (particularly for Quantum Chemistry), there exists a gap in extending beyond the “bare” electronic structure to encompass the influence of an external environment. This gap becomes apparent when considering hybrid “fermion+boson” systems, which naturally arise when the electronic structure of a system interacts with an external bosonic field, such as photons or phonons. The theoretical description of such systems poses a considerable challenge, necessitating the depiction of entanglement between the two types of particles. Addressing this challenge defines an interesting target for quantum computers. In this presentation, I will delve into recent endeavors initiated at the Laboratoire de Chimie Quantique Strasbourg to tackle these questions. Drawing from a polaritonic chemistry problem, I will elucidate how we are currently designing near-term quantum algorithms to describe both ground and excited states in such systems

Contact : Paul-Antoine Hervieux