Giant photoconductance at infinite-layer nickelate/SrTiO3 interfaces via an optically induced high-mobility electron gas. D. Sanchez-Manzano, G. Krieger, A. Raji, B. Geisler, V. Humbert, H. Jaffrès, J. Santamaría, R. Pentcheva, A. Gloter, D. Preziosi et Javier E. Villegas. Nature Materials, le 10 octobre 2025
Contact IPCMS : Daniele Presiozi (Chargé de recherche – DCMI)
As the miniaturization of traditional silicon-based electronics nears its physical limits, the semiconductor industry faces mounting challenges: energy inefficiency, data bottlenecks in von Neumann architectures, and inflexible hardware for AI-driven tasks. Emerging applications like autonomous systems, IoT, and real-time learning demand a radical shift in how computation and memory are integrated at the nanoscale.
Developed by an international consortium of leading institutions including Université de Strasbourg, Institute of Nanotechnoly of Lyon, Université Paris-Saclay, and the National Institute for Materials Science (Japan), we are excited to present a new achievement in nanoelectronics: The Van der Waals Inverted Floating Gate Field-Effect Transistor (IFGFET) — a novel device topology that bridges logic, memory, and neuromorphic computing in a single architecture.
This innovation leverages Van-der-Waals heterostructures, combining ReS₂ semiconductors with a top polymorphic floating gate and a bottom control gate. This topology makes it possible to access the floating gate and leads to a better electrostatic control of the channel compared to the traditional topologies.
In addition, this technology provides game changing features such as:
Dual-mode functionality: Operates as a reconfigurable logic gate and a non-volatile memory element.
Neuromorphic capabilities: Emulates synaptic behavior with 92% ANN accuracy and supports spiking neuron circuits.
Compact and secure design: Enables on-demand, programmable AI circuits with inherent data security through self-erasing memory.
Enhanced electrostatic control: Inverted topology boosts performance compared to conventional FGFETs by optimizing gate-to-channel coupling.
This reconfigurable device may unlock new frontiers in in-memory computing, neuromorphic and spiking neural network, and secure AI hardware.
Réference : Hoshang Sahib, Aravind Raji, Francesco Rosa, Giacomo Merzoni, Giacomo Ghiringhelli, Marco Salluzzo, Alexandre Gloter, Nathalie Viart, Daniele Preziosi Superconductivity in PrNiO2 infinite-layer nickelates Advanced Materials2025 https://doi.org/10.1002/adma.202416187
Contact : Daniele Preziosi (Chercheur à l’Institut de physique et de chimie des matériaux de Strasbourg (CNRS/Université de Strasbourg) daniele.preziosi@ipcms.unistra.fr
Explications avec Paul-Antoine Hervieux, membre de la collaboration et enseignant-chercheur à l’Institut de physique et chimie des matériaux de Strasbourg (IPCMS – CNRS/Unistra).
“CORELMAG” fait partie des projets ANR 2019 : Nanocomposites innovants libérant des facteurs biologiques par hyperthermie magnétique en tant que composants de matrices intelligentes pour l’ingénierie tissulaire.
Coordinateur du projet : Damien MERTZ (IPCMS – DCMI)
Divergence of catalytic systems in the zinc-catalysed alkylation of benzaldehyde mediated by chiral proline-based ligands. Thibault Thierry, Yannick Geiger & Stéphane Bellemin-Laponnaz Nature Synthesis2024 DOI https://doi.org/10.1038/s44160-024-00491-y
The article recently published in Nature Nanotechnology (Doi : 10.1038/s41565-024-01622-4): Submolecular-scale control of phototautomerization / Anna Roslawska, Katharina Kaiser, Michelangelo Romeo, Eloïse Devaux, Fabrice Scheurer, Stéphane Berciaud, Tomas Neuman and Guillaume Schull, is the subject of a news item on the CNRS Physique website.