Nano-devices

Our research aims at studying nanoscale materials using electrical and optical probes, possibly combined, to get insight into novel properties emerging when diminishing the size of the sample. Our multidisciplinary approach is at the frontier between physics, chemistry and materials science. It relies on the nanofabrication facility of IPCMS STnano, allowing us to make custom electrical interconnects capable of reproducibly and reliably addressing sub-micron samples.

One of our main perspectives is to extend the concept of spintronics devices, or systems where the electrical properties are highly sensitive to the magnetic configurations of the circuit elements, to multi-stimuli or multifunctional devices, where several external parameter can be used to tune the electrical properties (for example, the electric, magnetic or electromagnetic fields, the temperature, the pressure, the (electro)chemical environment…).

Light-matter interaction is also of interest, beyond the use of photons as a stimulus, as it allows probing the intrinsic electronic and vibrational properties of low-dimensional materials (graphene, carbon nanotubes, semiconductor nanostructures…), as well as their interactions (through, e.g., energy and/or charge transfer) within more complex heterostructures. These phenomena are investigated using a broad palette of optical techniques (micro-Raman and luminescence spectroscopies, time correlated single photon counting…). We are particularly interested in probing the optical response of electrostatically gated nanodevices.

Our philosophy is to tackle technologically relevant issues with a rather fundamental approach. We aim at developing reliable and original methods for fabricating and characterizing devices, of relevance for applications, and possibly leading to new commercial products.  This is why patents applications and valorisation projects are actively pursued in the group.

Research Activities

Graphene devices

Lateral nanoscale electrodes

Straintronics

Team Members

Professeur, Magnetic Objects on the NanoScale (DMONS)stephane.berciaud@ipcms.unistra.fr
Station: +33(0)3 88 10 72 56, +33(0)3 88 10 74 90Office: 1021
See personal page
Doctorante, Magnetic Objects on the NanoScale (DMONS)adeline.cascales@ipcms.unistra.fr
Station: +33(0)3 88 10 70 77Office: 1016
Assistant Ingénieur, Magnetic Objects on the NanoScale (DMONS)fabien.chevrier@ipcms.unistra.fr
Station: +33(0)3 88 10 70 69Office: 1007
Ingénieur de Recherche, Magnetic Objects on the NanoScale (DMONS)victor.dacosta@ipcms.unistra.fr
Station: +33(0)3 88 10 70 65Office: 1004
Maître de conférences, Magnetic Objects on the NanoScale (DMONS)jean-francois.dayen@ipcms.unistra.fr
Station: +33(0)3 88 10 70 74Office: 1012
See personal page
Doctorant, Magnetic Objects on the NanoScale (DMONS)arvind.dev@ipcms.unistra.fr
Station: +33(0)3 88 10 70 05Office: 6
Professeur, Magnetic Objects on the NanoScale (DMONS)bernard.doudin@ipcms.unistra.fr
Station: +33(0)3 88 10 72 39Office: 1014
See personal page
Chargé de Recherche, Magnetic Objects on the NanoScale (DMONS)arnaud.gloppe@ipcms.unistra.fr
Station: +33(0)3 88 10 72 56Office: 1021
See personal page
Doctorante, Magnetic Objects on the NanoScale (DMONS)aleena.joseph@ipcms.unistra.fr
Station: +33(0)3 88 10 70 05Office: 6
Chargé de Recherche, Magnetic Objects on the NanoScale (DMONS)bohdan.kundys@ipcms.unistra.fr
Station: +33(0)3 88 10 70 74Office: 1012
Doctorant, Magnetic Objects on the NanoScale (DMONS)jinu.kurian@ipcms.unistra.fr
Station: +33(0)3 88 10 70 05Office: 6
Post-doctorant, Magnetic Objects on the NanoScale (DMONS)krishna.maity@ipcms.unistra.fr
Station: +33(0)3 88 10 70 05Office: 6
Ingénieur de Recherche, Magnetic Objects on the NanoScale (DMONS)hicham.majjad@ipcms.unistra.fr
Station: +33(0)3 88 10 70 10Office: 1011
See personal page
Doctorant, Magnetic Objects on the NanoScale (DMONS)loic.moczko@ipcms.unistra.fr
Station: +33(0)3 88 10 72 31Office: 1053
Doctorante, Magnetic Objects on the NanoScale (DMONS)aditi.moghe@ipcms.unistra.fr
Station: +33(0)3 88 10 72 31Office: 1053
Doctorant, Magnetic Objects on the NanoScale (DMONS)ulrich.noumbe@ipcms.unistra.fr
Station: +33(0)3 88 10 72 31Office: 1053
Doctorant, Magnetic Objects on the NanoScale (DMONS)mohamed.soliman@ipcms.unistra.fr
Station: +33(0)3 88 10 70 84Office: 1017
Team photo

Recent publications :

[1]
X. Zhang, K. Makles, L. Colombier, D. Metten, H. Majjad, P. Verlot, S. Berciaud, Dynamically-enhanced strain in atomically thin resonators, Nature Communications. 11 (2020) 5526. https://doi.org/10.1038/s41467-020-19261-3.
[1]
P. Rastogi, A. Chu, C. Greboval, J. Qu, U.N. Noumbe, S.-S. Chee, M. Goyal, A. Khalili, X.Z. Xu, H. Cruguel, S. Ithurria, B. Gallas, J.-F. Dayen, L. Dudy, M.G. Silly, G. Patriarche, A. Degiron, G. Vincent, E. Lhuillier, Pushing Absorption of Perovskite Nanocrystals into the Infrared, Nano Letters. 20 (2020) 3999–4006. https://doi.org/10.1021/acs.nanolett.0c01302.
[1]
F. Omeis, A.F.S. Seica, R. Bernard, N. Javahiraly, H. Majjad, D. Moss, P. Hellwig, Following the Chemical Immobilization of Membrane Proteins on Plasmonic Nanoantennas Using Infrared Spectroscopy, ACS Sensors. 5 (2020) 2191–2197. https://doi.org/10.1021/acssensors.0c00824.
[1]
U.N. Noumbe, C. Greboval, C. Livache, A. Chu, H. Majjad, L.E.P. Lopez, L.D.N. Mouafo, B. Doudin, S. Berciaud, J. Chaste, A. Ouerghi, E. Lhuillier, J.-F. Dayen, Reconfigurable 2D/0D p-n Graphene/HgTe Nanocrystal Heterostructure for Infrared Detection, ACS Nano. 14 (2020) 4567–4576. https://doi.org/10.1021/acsnano.0c00103.
[1]
L.D.N. Mouafo, F. Godel, L. Simon, Y.J. Dappe, W. Baaziz, U.N. Noumbe, E. Lorchat, M.-B. Martin, S. Berciaud, B. Doudin, O. Ersen, B. Dlubak, P. Seneor, J.-F. Dayen, 0D/2D Heterostructures Vertical Single Electron Transistor, Advanced Functional Materials. (2020) 2008255. https://doi.org/10.1002/adfm.202008255.
[1]
T.N. Moshkina, P. Le Poul, A. Barsella, O. Pytela, F. Bures, F. Robin-Le Guen, S. Achelle, E.V. Nosova, G.N. Lipunova, V.N. Charushin, Electron-Withdrawing Substituted Quinazoline Push-Pull Chromophores: Synthesis, Electrochemical, Photophysical and Second-Order Nonlinear Optical Properties, European Journal of Organic Chemistry. early (2020) 5445–5454. https://doi.org/10.1002/ejoc.202000870.
[1]
E. Lorchat, L.E.P. Lopez, C. Robert, D. Lagarde, G. Froehlicher, T. Taniguchi, K. Watanabe, X. Marie, S. Berciaud, Filtering the photoluminescence spectra of atomically thin semiconductors with graphene, Nature Nanotechnology. 15 (2020) 283+. https://doi.org/10.1038/s41565-020-0644-2.
[1]
D. Kundys, A. Cascales, A.S. Makhort, H. Majjad, F. Chevrier, B. Doudin, A. Fedrizzi, B. Kundys, Optically Rewritable Memory in a Graphene-Ferroelectric-Photovoltaic Heterostructure, Physical Review Applied. 13 (2020) 064034. https://doi.org/10.1103/PhysRevApplied.13.064034.
[1]
C. Greboval, U.N. Noumbe, A. Chu, Y. Prado, A. Khalili, C. Dabard, T.H. Dang, S. Colis, J. Chaste, A. Ouerghi, J.-F. Dayen, E. Lhuillier, Gate tunable vertical geometry phototransistor based on infrared HgTe nanocrystals, Applied Physics Letters. 117 (2020) 251104. https://doi.org/10.1063/5.0032622.
[1]
P. Dunne, C. Fowley, G. Hlawacek, J. Kurian, G. Atcheson, S. Colis, N. Teichert, B. Kundys, M. Venkatesan, J. Lindner, A.M. Deac, T.M. Hermans, J.M.D. Coey, B. Doudin, Helium Ion Microscopy for Reduced Spin Orbit Torque Switching Currents, Nano Letters. 20 (2020) 7036–7042. https://doi.org/10.1021/acs.nanolett.0c02060.
[1]
P. Dunne, T. Adachi, A.A. Dev, A. Sorrenti, L. Giacchetti, A. Bonnin, C. Bourdon, P.H. Mangin, J.M.D. Coey, B. Doudin, T.M. Hermans, Liquid flow and control without solid walls, Nature. 581 (2020) 58+. https://doi.org/10.1038/s41586-020-2254-4.
[1]
B. Doppagne, T. Neuman, R. Soria-Martinez, L.E.P. López, H. Bulou, M. Romeo, S. Berciaud, F. Scheurer, J. Aizpurua, G. Schull, Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy, Nature Nanotechnology. (2020). https://doi.org/10.1038/s41565-019-0620-x.
[1]
J.-F. Dayen, S.J. Ray, O. Karis, I.J. Vera-Marun, M.V. Kamalakar, Two-dimensional van der Waals spinterfaces and magnetic-interfaces, Applied Physics Reviews. 7 (2020) 011303. https://doi.org/10.1063/1.5112171.
[1]
S. Berciaud, M. Potemski, C. Faugeras, Many-Body Effects in Suspended Graphene Probed through Magneto-Phonon Resonances, PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS. (2020) 2000345. https://doi.org/10.1002/pssr.202000345.

Graphene as an integrated optical filter for two-dimensional semiconductors

Cartographier à l’échelle nano l’électroluminescence d’un semiconducteur bidimensionnel

Charge vs energy transfer between 2D materials

Une description unifiée des phonons optiques dans un semiconducteur lamellaire

Sonder l’interaction entre un nano-émetteur unique et une monocouche de graphène

Probing the mechanical properties of a graphene blister with photons

Imaging the electronic band structure of a stack of N-layer graphene using magneto-Raman spectroscopy

Graphene spintronics

Resist-free fabrication of graphene devices

Optical and opto-electronic properties of freestanding graphene

Interaction between graphene and a single nano-emitter

Coherent transport in quantum dots networks

Organic electronics meets molecular electronics

Magnetic nanojunctions

Straintronics in low dimensional systems